PowerToys/Pythonnet.Runtime/methodobject.cs

189 lines
7.2 KiB
C#
Raw Normal View History

2014-01-11 00:19:14 +08:00
// ==========================================================================
// This software is subject to the provisions of the Zope Public License,
// Version 2.0 (ZPL). A copy of the ZPL should accompany this distribution.
// THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
// WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
// FOR A PARTICULAR PURPOSE.
// ==========================================================================
using System;
using System.Collections;
using System.Reflection;
namespace Python.Runtime {
//========================================================================
// Implements a Python type that represents a CLR method. Method objects
// support a subscript syntax [] to allow explicit overload selection.
//========================================================================
internal class MethodObject : ExtensionType {
internal MethodInfo[] info;
internal string name;
internal MethodBinding unbound;
internal MethodBinder binder;
internal bool is_static = false;
internal IntPtr doc;
public MethodObject(string name, MethodInfo[] info) : base() {
_MethodObject(name, info);
}
public MethodObject(string name, MethodInfo[] info, bool allow_threads) : base()
{
_MethodObject(name, info);
binder.allow_threads = allow_threads;
}
private void _MethodObject(string name, MethodInfo[] info)
{
this.name = name;
this.info = info;
binder = new MethodBinder();
for (int i = 0; i < info.Length; i++)
{
MethodInfo item = (MethodInfo)info[i];
binder.AddMethod(item);
if (item.IsStatic)
{
this.is_static = true;
}
}
}
public virtual IntPtr Invoke(IntPtr inst, IntPtr args, IntPtr kw) {
return this.Invoke(inst, args, kw, null);
}
public virtual IntPtr Invoke(IntPtr target, IntPtr args, IntPtr kw,
MethodBase info) {
return binder.Invoke(target, args, kw, info, this.info);
}
//====================================================================
// Helper to get docstrings from reflected method / param info.
//====================================================================
internal IntPtr GetDocString() {
if (doc != IntPtr.Zero) {
return doc;
}
string str = "";
Type marker = typeof(DocStringAttribute);
MethodBase[] methods = binder.GetMethods();
foreach (MethodBase method in methods) {
if (str.Length > 0)
str += Environment.NewLine;
Attribute[] attrs = (Attribute[]) method.GetCustomAttributes(marker, false);
if (attrs.Length == 0) {
str += method.ToString();
}
else {
DocStringAttribute attr = (DocStringAttribute)attrs[0];
str += attr.DocString;
}
}
doc = Runtime.PyString_FromString(str);
return doc;
}
//====================================================================
// This is a little tricky: a class can actually have a static method
// and instance methods all with the same name. That makes it tough
// to support calling a method 'unbound' (passing the instance as the
// first argument), because in this case we can't know whether to call
// the instance method unbound or call the static method.
//
// The rule we is that if there are both instance and static methods
// with the same name, then we always call the static method. So this
// method returns true if any of the methods that are represented by
// the descriptor are static methods (called by MethodBinding).
//====================================================================
internal bool IsStatic() {
return this.is_static;
}
//====================================================================
// Descriptor __getattribute__ implementation.
//====================================================================
public static IntPtr tp_getattro(IntPtr ob, IntPtr key) {
MethodObject self = (MethodObject)GetManagedObject(ob);
if (!Runtime.PyString_Check(key)) {
return Exceptions.RaiseTypeError("string expected");
}
string name = Runtime.GetManagedString(key);
if (name == "__doc__") {
IntPtr doc = self.GetDocString();
Runtime.Incref(doc);
return doc;
}
return Runtime.PyObject_GenericGetAttr(ob, key);
}
//====================================================================
// Descriptor __get__ implementation. Accessing a CLR method returns
// a "bound" method similar to a Python bound method.
//====================================================================
public static IntPtr tp_descr_get(IntPtr ds, IntPtr ob, IntPtr tp) {
MethodObject self = (MethodObject)GetManagedObject(ds);
MethodBinding binding;
// If the method is accessed through its type (rather than via
// an instance) we return an 'unbound' MethodBinding that will
// cached for future accesses through the type.
if (ob == IntPtr.Zero) {
if (self.unbound == null) {
self.unbound = new MethodBinding(self, IntPtr.Zero);
}
binding = self.unbound;
Runtime.Incref(binding.pyHandle);;
return binding.pyHandle;
}
if (Runtime.PyObject_IsInstance(ob, tp) < 1) {
return Exceptions.RaiseTypeError("invalid argument");
}
binding = new MethodBinding(self, ob);
return binding.pyHandle;
}
//====================================================================
// Descriptor __repr__ implementation.
//====================================================================
public static IntPtr tp_repr(IntPtr ob) {
MethodObject self = (MethodObject)GetManagedObject(ob);
string s = String.Format("<method '{0}'>", self.name);
return Runtime.PyString_FromStringAndSize(s, s.Length);
}
//====================================================================
// Descriptor dealloc implementation.
//====================================================================
public static new void tp_dealloc(IntPtr ob) {
MethodObject self = (MethodObject)GetManagedObject(ob);
Runtime.Decref(self.doc);
if (self.unbound != null) {
Runtime.Decref(self.unbound.pyHandle);
}
ExtensionType.FinalizeObject(self);
}
}
}