PowerToys/src/modules/fancyzones/lib/util.cpp
vldmr11080 9e8facaa6f
Windows snap hotkeys to move windows between screens (#1603)
* When moving window into zones using arrow keys, support multi-monitor scenario

* Minor coding style adjustments

* Split implementation into separate functions because of readability

* Rename certain arguments

* Modify unit tests after API changes

* Address PR comments and add unit tests

* Return true from MoveWindowIntoZoneByDirection only if window is successfully added to new zone

* Improved monitor ordering (#1)

* Implemented improved monitor ordering v1

* Fixed some embarrassing bugs, added some tests

* Added one more test

* Extracted a value to a variable

* ASCII art in unit test comments describing monitor layouts

* Removed empty line for consistency

* Update comment to match the code

* Refactored tests, added tests for X,Y offsets

Co-authored-by: Ivan Stošić <ivan100sic@gmail.com>
2020-03-24 18:50:26 +01:00

111 lines
3.4 KiB
C++

#include "pch.h"
#include "util.h"
#include <common/dpi_aware.h>
typedef BOOL(WINAPI* GetDpiForMonitorInternalFunc)(HMONITOR, UINT, UINT*, UINT*);
UINT GetDpiForMonitor(HMONITOR monitor) noexcept
{
UINT dpi{};
if (wil::unique_hmodule user32{ LoadLibrary(L"user32.dll") })
{
if (auto func = reinterpret_cast<GetDpiForMonitorInternalFunc>(GetProcAddress(user32.get(), "GetDpiForMonitorInternal")))
{
func(monitor, 0, &dpi, &dpi);
}
}
if (dpi == 0)
{
if (wil::unique_hdc hdc{ GetDC(nullptr) })
{
dpi = GetDeviceCaps(hdc.get(), LOGPIXELSX);
}
}
return (dpi == 0) ? DPIAware::DEFAULT_DPI : dpi;
}
void OrderMonitors(std::vector<std::pair<HMONITOR, RECT>>& monitorInfo)
{
const size_t nMonitors = monitorInfo.size();
// blocking[i][j] - whether monitor i blocks monitor j in the ordering, i.e. monitor i should go before monitor j
std::vector<std::vector<bool>> blocking(nMonitors, std::vector<bool>(nMonitors, false));
// blockingCount[j] - the number of monitors which block monitor j
std::vector<size_t> blockingCount(nMonitors, 0);
for (size_t i = 0; i < nMonitors; i++)
{
RECT rectI = monitorInfo[i].second;
for (size_t j = 0; j < nMonitors; j++)
{
RECT rectJ = monitorInfo[j].second;
blocking[i][j] = rectI.top < rectJ.bottom && rectI.left < rectJ.right && i != j;
if (blocking[i][j])
{
blockingCount[j]++;
}
}
}
// used[i] - whether the sorting algorithm has used monitor i so far
std::vector<bool> used(nMonitors, false);
// the sorted sequence of monitors
std::vector<std::pair<HMONITOR, RECT>> sortedMonitorInfo;
for (size_t iteration = 0; iteration < nMonitors; iteration++)
{
// Indices of candidates to become the next monitor in the sequence
std::vector<size_t> candidates;
// First, find indices of all unblocked monitors
for (size_t i = 0; i < nMonitors; i++)
{
if (blockingCount[i] == 0 && !used[i])
{
candidates.push_back(i);
}
}
// In the unlikely event that there are no unblocked monitors, declare all unused monitors as candidates.
if (candidates.empty())
{
for (size_t i = 0; i < nMonitors; i++)
{
if (!used[i])
{
candidates.push_back(i);
}
}
}
// Pick the lexicographically smallest monitor as the next one
size_t smallest = candidates[0];
for (size_t j = 1; j < candidates.size(); j++)
{
size_t current = candidates[j];
// Compare (top, left) lexicographically
if (std::tie(monitorInfo[current].second.top, monitorInfo[current].second.left)
< std::tie(monitorInfo[smallest].second.top, monitorInfo[smallest].second.left))
{
smallest = current;
}
}
used[smallest] = true;
sortedMonitorInfo.push_back(monitorInfo[smallest]);
for (size_t i = 0; i < nMonitors; i++)
{
if (blocking[smallest][i])
{
blockingCount[i]--;
}
}
}
monitorInfo = std::move(sortedMonitorInfo);
}