mirror of
https://github.com/fatedier/frp.git
synced 2024-12-16 03:19:00 +08:00
888 lines
27 KiB
Go
888 lines
27 KiB
Go
/**
|
|
* Reed-Solomon Coding over 8-bit values.
|
|
*
|
|
* Copyright 2015, Klaus Post
|
|
* Copyright 2015, Backblaze, Inc.
|
|
*/
|
|
|
|
// Package reedsolomon enables Erasure Coding in Go
|
|
//
|
|
// For usage and examples, see https://github.com/klauspost/reedsolomon
|
|
//
|
|
package reedsolomon
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"io"
|
|
"runtime"
|
|
"sync"
|
|
|
|
"github.com/klauspost/cpuid"
|
|
)
|
|
|
|
// Encoder is an interface to encode Reed-Salomon parity sets for your data.
|
|
type Encoder interface {
|
|
// Encode parity for a set of data shards.
|
|
// Input is 'shards' containing data shards followed by parity shards.
|
|
// The number of shards must match the number given to New().
|
|
// Each shard is a byte array, and they must all be the same size.
|
|
// The parity shards will always be overwritten and the data shards
|
|
// will remain the same, so it is safe for you to read from the
|
|
// data shards while this is running.
|
|
Encode(shards [][]byte) error
|
|
|
|
// Verify returns true if the parity shards contain correct data.
|
|
// The data is the same format as Encode. No data is modified, so
|
|
// you are allowed to read from data while this is running.
|
|
Verify(shards [][]byte) (bool, error)
|
|
|
|
// Reconstruct will recreate the missing shards if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// ones that don't have data.
|
|
//
|
|
// The length of the array must be equal to the total number of shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// The reconstructed shard set is complete, but integrity is not verified.
|
|
// Use the Verify function to check if data set is ok.
|
|
Reconstruct(shards [][]byte) error
|
|
|
|
// ReconstructData will recreate any missing data shards, if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// data shards that don't have data.
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// As the reconstructed shard set may contain missing parity shards,
|
|
// calling the Verify function is likely to fail.
|
|
ReconstructData(shards [][]byte) error
|
|
|
|
// Update parity is use for change a few data shards and update it's parity.
|
|
// Input 'newDatashards' containing data shards changed.
|
|
// Input 'shards' containing old data shards (if data shard not changed, it can be nil) and old parity shards.
|
|
// new parity shards will in shards[DataShards:]
|
|
// Update is very useful if DataShards much larger than ParityShards and changed data shards is few. It will
|
|
// faster than Encode and not need read all data shards to encode.
|
|
Update(shards [][]byte, newDatashards [][]byte) error
|
|
|
|
// Split a data slice into the number of shards given to the encoder,
|
|
// and create empty parity shards.
|
|
//
|
|
// The data will be split into equally sized shards.
|
|
// If the data size isn't dividable by the number of shards,
|
|
// the last shard will contain extra zeros.
|
|
//
|
|
// There must be at least 1 byte otherwise ErrShortData will be
|
|
// returned.
|
|
//
|
|
// The data will not be copied, except for the last shard, so you
|
|
// should not modify the data of the input slice afterwards.
|
|
Split(data []byte) ([][]byte, error)
|
|
|
|
// Join the shards and write the data segment to dst.
|
|
//
|
|
// Only the data shards are considered.
|
|
// You must supply the exact output size you want.
|
|
// If there are to few shards given, ErrTooFewShards will be returned.
|
|
// If the total data size is less than outSize, ErrShortData will be returned.
|
|
Join(dst io.Writer, shards [][]byte, outSize int) error
|
|
}
|
|
|
|
// reedSolomon contains a matrix for a specific
|
|
// distribution of datashards and parity shards.
|
|
// Construct if using New()
|
|
type reedSolomon struct {
|
|
DataShards int // Number of data shards, should not be modified.
|
|
ParityShards int // Number of parity shards, should not be modified.
|
|
Shards int // Total number of shards. Calculated, and should not be modified.
|
|
m matrix
|
|
tree inversionTree
|
|
parity [][]byte
|
|
o options
|
|
}
|
|
|
|
// ErrInvShardNum will be returned by New, if you attempt to create
|
|
// an Encoder where either data or parity shards is zero or less.
|
|
var ErrInvShardNum = errors.New("cannot create Encoder with zero or less data/parity shards")
|
|
|
|
// ErrMaxShardNum will be returned by New, if you attempt to create an
|
|
// Encoder where data and parity shards are bigger than the order of
|
|
// GF(2^8).
|
|
var ErrMaxShardNum = errors.New("cannot create Encoder with more than 256 data+parity shards")
|
|
|
|
// buildMatrix creates the matrix to use for encoding, given the
|
|
// number of data shards and the number of total shards.
|
|
//
|
|
// The top square of the matrix is guaranteed to be an identity
|
|
// matrix, which means that the data shards are unchanged after
|
|
// encoding.
|
|
func buildMatrix(dataShards, totalShards int) (matrix, error) {
|
|
// Start with a Vandermonde matrix. This matrix would work,
|
|
// in theory, but doesn't have the property that the data
|
|
// shards are unchanged after encoding.
|
|
vm, err := vandermonde(totalShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Multiply by the inverse of the top square of the matrix.
|
|
// This will make the top square be the identity matrix, but
|
|
// preserve the property that any square subset of rows is
|
|
// invertible.
|
|
top, err := vm.SubMatrix(0, 0, dataShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
topInv, err := top.Invert()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return vm.Multiply(topInv)
|
|
}
|
|
|
|
// buildMatrixPAR1 creates the matrix to use for encoding according to
|
|
// the PARv1 spec, given the number of data shards and the number of
|
|
// total shards. Note that the method they use is buggy, and may lead
|
|
// to cases where recovery is impossible, even if there are enough
|
|
// parity shards.
|
|
//
|
|
// The top square of the matrix is guaranteed to be an identity
|
|
// matrix, which means that the data shards are unchanged after
|
|
// encoding.
|
|
func buildMatrixPAR1(dataShards, totalShards int) (matrix, error) {
|
|
result, err := newMatrix(totalShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for r, row := range result {
|
|
// The top portion of the matrix is the identity
|
|
// matrix, and the bottom is a transposed Vandermonde
|
|
// matrix starting at 1 instead of 0.
|
|
if r < dataShards {
|
|
result[r][r] = 1
|
|
} else {
|
|
for c := range row {
|
|
result[r][c] = galExp(byte(c+1), r-dataShards)
|
|
}
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
func buildMatrixCauchy(dataShards, totalShards int) (matrix, error) {
|
|
result, err := newMatrix(totalShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for r, row := range result {
|
|
// The top portion of the matrix is the identity
|
|
// matrix, and the bottom is a transposed Cauchy matrix.
|
|
if r < dataShards {
|
|
result[r][r] = 1
|
|
} else {
|
|
for c := range row {
|
|
result[r][c] = invTable[(byte(r ^ c))]
|
|
}
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// New creates a new encoder and initializes it to
|
|
// the number of data shards and parity shards that
|
|
// you want to use. You can reuse this encoder.
|
|
// Note that the maximum number of total shards is 256.
|
|
// If no options are supplied, default options are used.
|
|
func New(dataShards, parityShards int, opts ...Option) (Encoder, error) {
|
|
r := reedSolomon{
|
|
DataShards: dataShards,
|
|
ParityShards: parityShards,
|
|
Shards: dataShards + parityShards,
|
|
o: defaultOptions,
|
|
}
|
|
|
|
for _, opt := range opts {
|
|
opt(&r.o)
|
|
}
|
|
if dataShards <= 0 || parityShards <= 0 {
|
|
return nil, ErrInvShardNum
|
|
}
|
|
|
|
if dataShards+parityShards > 256 {
|
|
return nil, ErrMaxShardNum
|
|
}
|
|
|
|
var err error
|
|
switch {
|
|
case r.o.useCauchy:
|
|
r.m, err = buildMatrixCauchy(dataShards, r.Shards)
|
|
case r.o.usePAR1Matrix:
|
|
r.m, err = buildMatrixPAR1(dataShards, r.Shards)
|
|
default:
|
|
r.m, err = buildMatrix(dataShards, r.Shards)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if r.o.shardSize > 0 {
|
|
cacheSize := cpuid.CPU.Cache.L2
|
|
if cacheSize <= 0 {
|
|
// Set to 128K if undetectable.
|
|
cacheSize = 128 << 10
|
|
}
|
|
p := runtime.NumCPU()
|
|
|
|
// 1 input + parity must fit in cache, and we add one more to be safer.
|
|
shards := 1 + parityShards
|
|
g := (r.o.shardSize * shards) / (cacheSize - (cacheSize >> 4))
|
|
|
|
if cpuid.CPU.ThreadsPerCore > 1 {
|
|
// If multiple threads per core, make sure they don't contend for cache.
|
|
g *= cpuid.CPU.ThreadsPerCore
|
|
}
|
|
g *= 2
|
|
if g < p {
|
|
g = p
|
|
}
|
|
|
|
// Have g be multiple of p
|
|
g += p - 1
|
|
g -= g % p
|
|
|
|
r.o.maxGoroutines = g
|
|
}
|
|
|
|
// Inverted matrices are cached in a tree keyed by the indices
|
|
// of the invalid rows of the data to reconstruct.
|
|
// The inversion root node will have the identity matrix as
|
|
// its inversion matrix because it implies there are no errors
|
|
// with the original data.
|
|
r.tree = newInversionTree(dataShards, parityShards)
|
|
|
|
r.parity = make([][]byte, parityShards)
|
|
for i := range r.parity {
|
|
r.parity[i] = r.m[dataShards+i]
|
|
}
|
|
|
|
return &r, err
|
|
}
|
|
|
|
// ErrTooFewShards is returned if too few shards where given to
|
|
// Encode/Verify/Reconstruct/Update. It will also be returned from Reconstruct
|
|
// if there were too few shards to reconstruct the missing data.
|
|
var ErrTooFewShards = errors.New("too few shards given")
|
|
|
|
// Encodes parity for a set of data shards.
|
|
// An array 'shards' containing data shards followed by parity shards.
|
|
// The number of shards must match the number given to New.
|
|
// Each shard is a byte array, and they must all be the same size.
|
|
// The parity shards will always be overwritten and the data shards
|
|
// will remain the same.
|
|
func (r reedSolomon) Encode(shards [][]byte) error {
|
|
if len(shards) != r.Shards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
err := checkShards(shards, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Get the slice of output buffers.
|
|
output := shards[r.DataShards:]
|
|
|
|
// Do the coding.
|
|
r.codeSomeShards(r.parity, shards[0:r.DataShards], output, r.ParityShards, len(shards[0]))
|
|
return nil
|
|
}
|
|
|
|
// ErrInvalidInput is returned if invalid input parameter of Update.
|
|
var ErrInvalidInput = errors.New("invalid input")
|
|
|
|
func (r reedSolomon) Update(shards [][]byte, newDatashards [][]byte) error {
|
|
if len(shards) != r.Shards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
if len(newDatashards) != r.DataShards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
err := checkShards(shards, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
err = checkShards(newDatashards, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for i := range newDatashards {
|
|
if newDatashards[i] != nil && shards[i] == nil {
|
|
return ErrInvalidInput
|
|
}
|
|
}
|
|
for _, p := range shards[r.DataShards:] {
|
|
if p == nil {
|
|
return ErrInvalidInput
|
|
}
|
|
}
|
|
|
|
shardSize := shardSize(shards)
|
|
|
|
// Get the slice of output buffers.
|
|
output := shards[r.DataShards:]
|
|
|
|
// Do the coding.
|
|
r.updateParityShards(r.parity, shards[0:r.DataShards], newDatashards[0:r.DataShards], output, r.ParityShards, shardSize)
|
|
return nil
|
|
}
|
|
|
|
func (r reedSolomon) updateParityShards(matrixRows, oldinputs, newinputs, outputs [][]byte, outputCount, byteCount int) {
|
|
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
|
r.updateParityShardsP(matrixRows, oldinputs, newinputs, outputs, outputCount, byteCount)
|
|
return
|
|
}
|
|
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := newinputs[c]
|
|
if in == nil {
|
|
continue
|
|
}
|
|
oldin := oldinputs[c]
|
|
// oldinputs data will be change
|
|
sliceXor(in, oldin, r.o.useSSE2)
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], oldin, outputs[iRow], &r.o)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (r reedSolomon) updateParityShardsP(matrixRows, oldinputs, newinputs, outputs [][]byte, outputCount, byteCount int) {
|
|
var wg sync.WaitGroup
|
|
do := byteCount / r.o.maxGoroutines
|
|
if do < r.o.minSplitSize {
|
|
do = r.o.minSplitSize
|
|
}
|
|
start := 0
|
|
for start < byteCount {
|
|
if start+do > byteCount {
|
|
do = byteCount - start
|
|
}
|
|
wg.Add(1)
|
|
go func(start, stop int) {
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := newinputs[c]
|
|
if in == nil {
|
|
continue
|
|
}
|
|
oldin := oldinputs[c]
|
|
// oldinputs data will be change
|
|
sliceXor(in[start:stop], oldin[start:stop], r.o.useSSE2)
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], oldin[start:stop], outputs[iRow][start:stop], &r.o)
|
|
}
|
|
}
|
|
wg.Done()
|
|
}(start, start+do)
|
|
start += do
|
|
}
|
|
wg.Wait()
|
|
}
|
|
|
|
// Verify returns true if the parity shards contain the right data.
|
|
// The data is the same format as Encode. No data is modified.
|
|
func (r reedSolomon) Verify(shards [][]byte) (bool, error) {
|
|
if len(shards) != r.Shards {
|
|
return false, ErrTooFewShards
|
|
}
|
|
err := checkShards(shards, false)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
// Slice of buffers being checked.
|
|
toCheck := shards[r.DataShards:]
|
|
|
|
// Do the checking.
|
|
return r.checkSomeShards(r.parity, shards[0:r.DataShards], toCheck, r.ParityShards, len(shards[0])), nil
|
|
}
|
|
|
|
// Multiplies a subset of rows from a coding matrix by a full set of
|
|
// input shards to produce some output shards.
|
|
// 'matrixRows' is The rows from the matrix to use.
|
|
// 'inputs' An array of byte arrays, each of which is one input shard.
|
|
// The number of inputs used is determined by the length of each matrix row.
|
|
// outputs Byte arrays where the computed shards are stored.
|
|
// The number of outputs computed, and the
|
|
// number of matrix rows used, is determined by
|
|
// outputCount, which is the number of outputs to compute.
|
|
func (r reedSolomon) codeSomeShards(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
|
if r.o.useAVX512 && len(inputs) >= 4 && len(outputs) >= 2 {
|
|
r.codeSomeShardsAvx512(matrixRows, inputs, outputs, outputCount, byteCount)
|
|
return
|
|
} else if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
|
r.codeSomeShardsP(matrixRows, inputs, outputs, outputCount, byteCount)
|
|
return
|
|
}
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := inputs[c]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
if c == 0 {
|
|
galMulSlice(matrixRows[iRow][c], in, outputs[iRow], &r.o)
|
|
} else {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], &r.o)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform the same as codeSomeShards, but split the workload into
|
|
// several goroutines.
|
|
func (r reedSolomon) codeSomeShardsP(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
|
var wg sync.WaitGroup
|
|
do := byteCount / r.o.maxGoroutines
|
|
if do < r.o.minSplitSize {
|
|
do = r.o.minSplitSize
|
|
}
|
|
// Make sizes divisible by 32
|
|
do = (do + 31) & (^31)
|
|
start := 0
|
|
for start < byteCount {
|
|
if start+do > byteCount {
|
|
do = byteCount - start
|
|
}
|
|
wg.Add(1)
|
|
go func(start, stop int) {
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := inputs[c][start:stop]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
if c == 0 {
|
|
galMulSlice(matrixRows[iRow][c], in, outputs[iRow][start:stop], &r.o)
|
|
} else {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow][start:stop], &r.o)
|
|
}
|
|
}
|
|
}
|
|
wg.Done()
|
|
}(start, start+do)
|
|
start += do
|
|
}
|
|
wg.Wait()
|
|
}
|
|
|
|
// checkSomeShards is mostly the same as codeSomeShards,
|
|
// except this will check values and return
|
|
// as soon as a difference is found.
|
|
func (r reedSolomon) checkSomeShards(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
|
|
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
|
return r.checkSomeShardsP(matrixRows, inputs, toCheck, outputCount, byteCount)
|
|
}
|
|
outputs := make([][]byte, len(toCheck))
|
|
for i := range outputs {
|
|
outputs[i] = make([]byte, byteCount)
|
|
}
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := inputs[c]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], &r.o)
|
|
}
|
|
}
|
|
|
|
for i, calc := range outputs {
|
|
if !bytes.Equal(calc, toCheck[i]) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (r reedSolomon) checkSomeShardsP(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
|
|
same := true
|
|
var mu sync.RWMutex // For above
|
|
|
|
var wg sync.WaitGroup
|
|
do := byteCount / r.o.maxGoroutines
|
|
if do < r.o.minSplitSize {
|
|
do = r.o.minSplitSize
|
|
}
|
|
// Make sizes divisible by 32
|
|
do = (do + 31) & (^31)
|
|
start := 0
|
|
for start < byteCount {
|
|
if start+do > byteCount {
|
|
do = byteCount - start
|
|
}
|
|
wg.Add(1)
|
|
go func(start, do int) {
|
|
defer wg.Done()
|
|
outputs := make([][]byte, len(toCheck))
|
|
for i := range outputs {
|
|
outputs[i] = make([]byte, do)
|
|
}
|
|
for c := 0; c < r.DataShards; c++ {
|
|
mu.RLock()
|
|
if !same {
|
|
mu.RUnlock()
|
|
return
|
|
}
|
|
mu.RUnlock()
|
|
in := inputs[c][start : start+do]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], &r.o)
|
|
}
|
|
}
|
|
|
|
for i, calc := range outputs {
|
|
if !bytes.Equal(calc, toCheck[i][start:start+do]) {
|
|
mu.Lock()
|
|
same = false
|
|
mu.Unlock()
|
|
return
|
|
}
|
|
}
|
|
}(start, do)
|
|
start += do
|
|
}
|
|
wg.Wait()
|
|
return same
|
|
}
|
|
|
|
// ErrShardNoData will be returned if there are no shards,
|
|
// or if the length of all shards is zero.
|
|
var ErrShardNoData = errors.New("no shard data")
|
|
|
|
// ErrShardSize is returned if shard length isn't the same for all
|
|
// shards.
|
|
var ErrShardSize = errors.New("shard sizes do not match")
|
|
|
|
// checkShards will check if shards are the same size
|
|
// or 0, if allowed. An error is returned if this fails.
|
|
// An error is also returned if all shards are size 0.
|
|
func checkShards(shards [][]byte, nilok bool) error {
|
|
size := shardSize(shards)
|
|
if size == 0 {
|
|
return ErrShardNoData
|
|
}
|
|
for _, shard := range shards {
|
|
if len(shard) != size {
|
|
if len(shard) != 0 || !nilok {
|
|
return ErrShardSize
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// shardSize return the size of a single shard.
|
|
// The first non-zero size is returned,
|
|
// or 0 if all shards are size 0.
|
|
func shardSize(shards [][]byte) int {
|
|
for _, shard := range shards {
|
|
if len(shard) != 0 {
|
|
return len(shard)
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// Reconstruct will recreate the missing shards, if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// ones that don't have data.
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// The reconstructed shard set is complete, but integrity is not verified.
|
|
// Use the Verify function to check if data set is ok.
|
|
func (r reedSolomon) Reconstruct(shards [][]byte) error {
|
|
return r.reconstruct(shards, false)
|
|
}
|
|
|
|
// ReconstructData will recreate any missing data shards, if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// data shards that don't have data.
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// As the reconstructed shard set may contain missing parity shards,
|
|
// calling the Verify function is likely to fail.
|
|
func (r reedSolomon) ReconstructData(shards [][]byte) error {
|
|
return r.reconstruct(shards, true)
|
|
}
|
|
|
|
// reconstruct will recreate the missing data shards, and unless
|
|
// dataOnly is true, also the missing parity shards
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
func (r reedSolomon) reconstruct(shards [][]byte, dataOnly bool) error {
|
|
if len(shards) != r.Shards {
|
|
return ErrTooFewShards
|
|
}
|
|
// Check arguments.
|
|
err := checkShards(shards, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
shardSize := shardSize(shards)
|
|
|
|
// Quick check: are all of the shards present? If so, there's
|
|
// nothing to do.
|
|
numberPresent := 0
|
|
for i := 0; i < r.Shards; i++ {
|
|
if len(shards[i]) != 0 {
|
|
numberPresent++
|
|
}
|
|
}
|
|
if numberPresent == r.Shards {
|
|
// Cool. All of the shards data data. We don't
|
|
// need to do anything.
|
|
return nil
|
|
}
|
|
|
|
// More complete sanity check
|
|
if numberPresent < r.DataShards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
// Pull out an array holding just the shards that
|
|
// correspond to the rows of the submatrix. These shards
|
|
// will be the input to the decoding process that re-creates
|
|
// the missing data shards.
|
|
//
|
|
// Also, create an array of indices of the valid rows we do have
|
|
// and the invalid rows we don't have up until we have enough valid rows.
|
|
subShards := make([][]byte, r.DataShards)
|
|
validIndices := make([]int, r.DataShards)
|
|
invalidIndices := make([]int, 0)
|
|
subMatrixRow := 0
|
|
for matrixRow := 0; matrixRow < r.Shards && subMatrixRow < r.DataShards; matrixRow++ {
|
|
if len(shards[matrixRow]) != 0 {
|
|
subShards[subMatrixRow] = shards[matrixRow]
|
|
validIndices[subMatrixRow] = matrixRow
|
|
subMatrixRow++
|
|
} else {
|
|
invalidIndices = append(invalidIndices, matrixRow)
|
|
}
|
|
}
|
|
|
|
// Attempt to get the cached inverted matrix out of the tree
|
|
// based on the indices of the invalid rows.
|
|
dataDecodeMatrix := r.tree.GetInvertedMatrix(invalidIndices)
|
|
|
|
// If the inverted matrix isn't cached in the tree yet we must
|
|
// construct it ourselves and insert it into the tree for the
|
|
// future. In this way the inversion tree is lazily loaded.
|
|
if dataDecodeMatrix == nil {
|
|
// Pull out the rows of the matrix that correspond to the
|
|
// shards that we have and build a square matrix. This
|
|
// matrix could be used to generate the shards that we have
|
|
// from the original data.
|
|
subMatrix, _ := newMatrix(r.DataShards, r.DataShards)
|
|
for subMatrixRow, validIndex := range validIndices {
|
|
for c := 0; c < r.DataShards; c++ {
|
|
subMatrix[subMatrixRow][c] = r.m[validIndex][c]
|
|
}
|
|
}
|
|
// Invert the matrix, so we can go from the encoded shards
|
|
// back to the original data. Then pull out the row that
|
|
// generates the shard that we want to decode. Note that
|
|
// since this matrix maps back to the original data, it can
|
|
// be used to create a data shard, but not a parity shard.
|
|
dataDecodeMatrix, err = subMatrix.Invert()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Cache the inverted matrix in the tree for future use keyed on the
|
|
// indices of the invalid rows.
|
|
err = r.tree.InsertInvertedMatrix(invalidIndices, dataDecodeMatrix, r.Shards)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Re-create any data shards that were missing.
|
|
//
|
|
// The input to the coding is all of the shards we actually
|
|
// have, and the output is the missing data shards. The computation
|
|
// is done using the special decode matrix we just built.
|
|
outputs := make([][]byte, r.ParityShards)
|
|
matrixRows := make([][]byte, r.ParityShards)
|
|
outputCount := 0
|
|
|
|
for iShard := 0; iShard < r.DataShards; iShard++ {
|
|
if len(shards[iShard]) == 0 {
|
|
if cap(shards[iShard]) >= shardSize {
|
|
shards[iShard] = shards[iShard][0:shardSize]
|
|
} else {
|
|
shards[iShard] = make([]byte, shardSize)
|
|
}
|
|
outputs[outputCount] = shards[iShard]
|
|
matrixRows[outputCount] = dataDecodeMatrix[iShard]
|
|
outputCount++
|
|
}
|
|
}
|
|
r.codeSomeShards(matrixRows, subShards, outputs[:outputCount], outputCount, shardSize)
|
|
|
|
if dataOnly {
|
|
// Exit out early if we are only interested in the data shards
|
|
return nil
|
|
}
|
|
|
|
// Now that we have all of the data shards intact, we can
|
|
// compute any of the parity that is missing.
|
|
//
|
|
// The input to the coding is ALL of the data shards, including
|
|
// any that we just calculated. The output is whichever of the
|
|
// data shards were missing.
|
|
outputCount = 0
|
|
for iShard := r.DataShards; iShard < r.Shards; iShard++ {
|
|
if len(shards[iShard]) == 0 {
|
|
if cap(shards[iShard]) >= shardSize {
|
|
shards[iShard] = shards[iShard][0:shardSize]
|
|
} else {
|
|
shards[iShard] = make([]byte, shardSize)
|
|
}
|
|
outputs[outputCount] = shards[iShard]
|
|
matrixRows[outputCount] = r.parity[iShard-r.DataShards]
|
|
outputCount++
|
|
}
|
|
}
|
|
r.codeSomeShards(matrixRows, shards[:r.DataShards], outputs[:outputCount], outputCount, shardSize)
|
|
return nil
|
|
}
|
|
|
|
// ErrShortData will be returned by Split(), if there isn't enough data
|
|
// to fill the number of shards.
|
|
var ErrShortData = errors.New("not enough data to fill the number of requested shards")
|
|
|
|
// Split a data slice into the number of shards given to the encoder,
|
|
// and create empty parity shards if necessary.
|
|
//
|
|
// The data will be split into equally sized shards.
|
|
// If the data size isn't divisible by the number of shards,
|
|
// the last shard will contain extra zeros.
|
|
//
|
|
// There must be at least 1 byte otherwise ErrShortData will be
|
|
// returned.
|
|
//
|
|
// The data will not be copied, except for the last shard, so you
|
|
// should not modify the data of the input slice afterwards.
|
|
func (r reedSolomon) Split(data []byte) ([][]byte, error) {
|
|
if len(data) == 0 {
|
|
return nil, ErrShortData
|
|
}
|
|
// Calculate number of bytes per data shard.
|
|
perShard := (len(data) + r.DataShards - 1) / r.DataShards
|
|
|
|
if cap(data) > len(data) {
|
|
data = data[:cap(data)]
|
|
}
|
|
|
|
// Only allocate memory if necessary
|
|
if len(data) < (r.Shards * perShard) {
|
|
// Pad data to r.Shards*perShard.
|
|
padding := make([]byte, (r.Shards*perShard)-len(data))
|
|
data = append(data, padding...)
|
|
}
|
|
|
|
// Split into equal-length shards.
|
|
dst := make([][]byte, r.Shards)
|
|
for i := range dst {
|
|
dst[i] = data[:perShard]
|
|
data = data[perShard:]
|
|
}
|
|
|
|
return dst, nil
|
|
}
|
|
|
|
// ErrReconstructRequired is returned if too few data shards are intact and a
|
|
// reconstruction is required before you can successfully join the shards.
|
|
var ErrReconstructRequired = errors.New("reconstruction required as one or more required data shards are nil")
|
|
|
|
// Join the shards and write the data segment to dst.
|
|
//
|
|
// Only the data shards are considered.
|
|
// You must supply the exact output size you want.
|
|
//
|
|
// If there are to few shards given, ErrTooFewShards will be returned.
|
|
// If the total data size is less than outSize, ErrShortData will be returned.
|
|
// If one or more required data shards are nil, ErrReconstructRequired will be returned.
|
|
func (r reedSolomon) Join(dst io.Writer, shards [][]byte, outSize int) error {
|
|
// Do we have enough shards?
|
|
if len(shards) < r.DataShards {
|
|
return ErrTooFewShards
|
|
}
|
|
shards = shards[:r.DataShards]
|
|
|
|
// Do we have enough data?
|
|
size := 0
|
|
for _, shard := range shards {
|
|
if shard == nil {
|
|
return ErrReconstructRequired
|
|
}
|
|
size += len(shard)
|
|
|
|
// Do we have enough data already?
|
|
if size >= outSize {
|
|
break
|
|
}
|
|
}
|
|
if size < outSize {
|
|
return ErrShortData
|
|
}
|
|
|
|
// Copy data to dst
|
|
write := outSize
|
|
for _, shard := range shards {
|
|
if write < len(shard) {
|
|
_, err := dst.Write(shard[:write])
|
|
return err
|
|
}
|
|
n, err := dst.Write(shard)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
write -= n
|
|
}
|
|
return nil
|
|
}
|