// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package openpgp import ( "crypto/rsa" "io" "time" "golang.org/x/crypto/openpgp/armor" "golang.org/x/crypto/openpgp/errors" "golang.org/x/crypto/openpgp/packet" ) // PublicKeyType is the armor type for a PGP public key. var PublicKeyType = "PGP PUBLIC KEY BLOCK" // PrivateKeyType is the armor type for a PGP private key. var PrivateKeyType = "PGP PRIVATE KEY BLOCK" // An Entity represents the components of an OpenPGP key: a primary public key // (which must be a signing key), one or more identities claimed by that key, // and zero or more subkeys, which may be encryption keys. type Entity struct { PrimaryKey *packet.PublicKey PrivateKey *packet.PrivateKey Identities map[string]*Identity // indexed by Identity.Name Revocations []*packet.Signature Subkeys []Subkey } // An Identity represents an identity claimed by an Entity and zero or more // assertions by other entities about that claim. type Identity struct { Name string // by convention, has the form "Full Name (comment) <email@example.com>" UserId *packet.UserId SelfSignature *packet.Signature Signatures []*packet.Signature } // A Subkey is an additional public key in an Entity. Subkeys can be used for // encryption. type Subkey struct { PublicKey *packet.PublicKey PrivateKey *packet.PrivateKey Sig *packet.Signature } // A Key identifies a specific public key in an Entity. This is either the // Entity's primary key or a subkey. type Key struct { Entity *Entity PublicKey *packet.PublicKey PrivateKey *packet.PrivateKey SelfSignature *packet.Signature } // A KeyRing provides access to public and private keys. type KeyRing interface { // KeysById returns the set of keys that have the given key id. KeysById(id uint64) []Key // KeysByIdAndUsage returns the set of keys with the given id // that also meet the key usage given by requiredUsage. // The requiredUsage is expressed as the bitwise-OR of // packet.KeyFlag* values. KeysByIdUsage(id uint64, requiredUsage byte) []Key // DecryptionKeys returns all private keys that are valid for // decryption. DecryptionKeys() []Key } // primaryIdentity returns the Identity marked as primary or the first identity // if none are so marked. func (e *Entity) primaryIdentity() *Identity { var firstIdentity *Identity for _, ident := range e.Identities { if firstIdentity == nil { firstIdentity = ident } if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { return ident } } return firstIdentity } // encryptionKey returns the best candidate Key for encrypting a message to the // given Entity. func (e *Entity) encryptionKey(now time.Time) (Key, bool) { candidateSubkey := -1 // Iterate the keys to find the newest key var maxTime time.Time for i, subkey := range e.Subkeys { if subkey.Sig.FlagsValid && subkey.Sig.FlagEncryptCommunications && subkey.PublicKey.PubKeyAlgo.CanEncrypt() && !subkey.Sig.KeyExpired(now) && (maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) { candidateSubkey = i maxTime = subkey.Sig.CreationTime } } if candidateSubkey != -1 { subkey := e.Subkeys[candidateSubkey] return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true } // If we don't have any candidate subkeys for encryption and // the primary key doesn't have any usage metadata then we // assume that the primary key is ok. Or, if the primary key is // marked as ok to encrypt to, then we can obviously use it. i := e.primaryIdentity() if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications && e.PrimaryKey.PubKeyAlgo.CanEncrypt() && !i.SelfSignature.KeyExpired(now) { return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true } // This Entity appears to be signing only. return Key{}, false } // signingKey return the best candidate Key for signing a message with this // Entity. func (e *Entity) signingKey(now time.Time) (Key, bool) { candidateSubkey := -1 for i, subkey := range e.Subkeys { if subkey.Sig.FlagsValid && subkey.Sig.FlagSign && subkey.PublicKey.PubKeyAlgo.CanSign() && !subkey.Sig.KeyExpired(now) { candidateSubkey = i break } } if candidateSubkey != -1 { subkey := e.Subkeys[candidateSubkey] return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true } // If we have no candidate subkey then we assume that it's ok to sign // with the primary key. i := e.primaryIdentity() if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign && !i.SelfSignature.KeyExpired(now) { return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true } return Key{}, false } // An EntityList contains one or more Entities. type EntityList []*Entity // KeysById returns the set of keys that have the given key id. func (el EntityList) KeysById(id uint64) (keys []Key) { for _, e := range el { if e.PrimaryKey.KeyId == id { var selfSig *packet.Signature for _, ident := range e.Identities { if selfSig == nil { selfSig = ident.SelfSignature } else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { selfSig = ident.SelfSignature break } } keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig}) } for _, subKey := range e.Subkeys { if subKey.PublicKey.KeyId == id { keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) } } } return } // KeysByIdAndUsage returns the set of keys with the given id that also meet // the key usage given by requiredUsage. The requiredUsage is expressed as // the bitwise-OR of packet.KeyFlag* values. func (el EntityList) KeysByIdUsage(id uint64, requiredUsage byte) (keys []Key) { for _, key := range el.KeysById(id) { if len(key.Entity.Revocations) > 0 { continue } if key.SelfSignature.RevocationReason != nil { continue } if key.SelfSignature.FlagsValid && requiredUsage != 0 { var usage byte if key.SelfSignature.FlagCertify { usage |= packet.KeyFlagCertify } if key.SelfSignature.FlagSign { usage |= packet.KeyFlagSign } if key.SelfSignature.FlagEncryptCommunications { usage |= packet.KeyFlagEncryptCommunications } if key.SelfSignature.FlagEncryptStorage { usage |= packet.KeyFlagEncryptStorage } if usage&requiredUsage != requiredUsage { continue } } keys = append(keys, key) } return } // DecryptionKeys returns all private keys that are valid for decryption. func (el EntityList) DecryptionKeys() (keys []Key) { for _, e := range el { for _, subKey := range e.Subkeys { if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) { keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) } } } return } // ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file. func ReadArmoredKeyRing(r io.Reader) (EntityList, error) { block, err := armor.Decode(r) if err == io.EOF { return nil, errors.InvalidArgumentError("no armored data found") } if err != nil { return nil, err } if block.Type != PublicKeyType && block.Type != PrivateKeyType { return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type) } return ReadKeyRing(block.Body) } // ReadKeyRing reads one or more public/private keys. Unsupported keys are // ignored as long as at least a single valid key is found. func ReadKeyRing(r io.Reader) (el EntityList, err error) { packets := packet.NewReader(r) var lastUnsupportedError error for { var e *Entity e, err = ReadEntity(packets) if err != nil { // TODO: warn about skipped unsupported/unreadable keys if _, ok := err.(errors.UnsupportedError); ok { lastUnsupportedError = err err = readToNextPublicKey(packets) } else if _, ok := err.(errors.StructuralError); ok { // Skip unreadable, badly-formatted keys lastUnsupportedError = err err = readToNextPublicKey(packets) } if err == io.EOF { err = nil break } if err != nil { el = nil break } } else { el = append(el, e) } } if len(el) == 0 && err == nil { err = lastUnsupportedError } return } // readToNextPublicKey reads packets until the start of the entity and leaves // the first packet of the new entity in the Reader. func readToNextPublicKey(packets *packet.Reader) (err error) { var p packet.Packet for { p, err = packets.Next() if err == io.EOF { return } else if err != nil { if _, ok := err.(errors.UnsupportedError); ok { err = nil continue } return } if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey { packets.Unread(p) return } } } // ReadEntity reads an entity (public key, identities, subkeys etc) from the // given Reader. func ReadEntity(packets *packet.Reader) (*Entity, error) { e := new(Entity) e.Identities = make(map[string]*Identity) p, err := packets.Next() if err != nil { return nil, err } var ok bool if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok { if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok { packets.Unread(p) return nil, errors.StructuralError("first packet was not a public/private key") } e.PrimaryKey = &e.PrivateKey.PublicKey } if !e.PrimaryKey.PubKeyAlgo.CanSign() { return nil, errors.StructuralError("primary key cannot be used for signatures") } var revocations []*packet.Signature EachPacket: for { p, err := packets.Next() if err == io.EOF { break } else if err != nil { return nil, err } switch pkt := p.(type) { case *packet.UserId: if err := addUserID(e, packets, pkt); err != nil { return nil, err } case *packet.Signature: if pkt.SigType == packet.SigTypeKeyRevocation { revocations = append(revocations, pkt) } else if pkt.SigType == packet.SigTypeDirectSignature { // TODO: RFC4880 5.2.1 permits signatures // directly on keys (eg. to bind additional // revocation keys). } // Else, ignoring the signature as it does not follow anything // we would know to attach it to. case *packet.PrivateKey: if pkt.IsSubkey == false { packets.Unread(p) break EachPacket } err = addSubkey(e, packets, &pkt.PublicKey, pkt) if err != nil { return nil, err } case *packet.PublicKey: if pkt.IsSubkey == false { packets.Unread(p) break EachPacket } err = addSubkey(e, packets, pkt, nil) if err != nil { return nil, err } default: // we ignore unknown packets } } if len(e.Identities) == 0 { return nil, errors.StructuralError("entity without any identities") } for _, revocation := range revocations { err = e.PrimaryKey.VerifyRevocationSignature(revocation) if err == nil { e.Revocations = append(e.Revocations, revocation) } else { // TODO: RFC 4880 5.2.3.15 defines revocation keys. return nil, errors.StructuralError("revocation signature signed by alternate key") } } return e, nil } func addUserID(e *Entity, packets *packet.Reader, pkt *packet.UserId) error { // Make a new Identity object, that we might wind up throwing away. // We'll only add it if we get a valid self-signature over this // userID. identity := new(Identity) identity.Name = pkt.Id identity.UserId = pkt for { p, err := packets.Next() if err == io.EOF { break } else if err != nil { return err } sig, ok := p.(*packet.Signature) if !ok { packets.Unread(p) break } if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId { if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil { return errors.StructuralError("user ID self-signature invalid: " + err.Error()) } identity.SelfSignature = sig e.Identities[pkt.Id] = identity } else { identity.Signatures = append(identity.Signatures, sig) } } return nil } func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error { var subKey Subkey subKey.PublicKey = pub subKey.PrivateKey = priv for { p, err := packets.Next() if err == io.EOF { break } else if err != nil { return errors.StructuralError("subkey signature invalid: " + err.Error()) } sig, ok := p.(*packet.Signature) if !ok { packets.Unread(p) break } if sig.SigType != packet.SigTypeSubkeyBinding && sig.SigType != packet.SigTypeSubkeyRevocation { return errors.StructuralError("subkey signature with wrong type") } if err := e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig); err != nil { return errors.StructuralError("subkey signature invalid: " + err.Error()) } switch sig.SigType { case packet.SigTypeSubkeyRevocation: subKey.Sig = sig case packet.SigTypeSubkeyBinding: if shouldReplaceSubkeySig(subKey.Sig, sig) { subKey.Sig = sig } } } if subKey.Sig == nil { return errors.StructuralError("subkey packet not followed by signature") } e.Subkeys = append(e.Subkeys, subKey) return nil } func shouldReplaceSubkeySig(existingSig, potentialNewSig *packet.Signature) bool { if potentialNewSig == nil { return false } if existingSig == nil { return true } if existingSig.SigType == packet.SigTypeSubkeyRevocation { return false // never override a revocation signature } return potentialNewSig.CreationTime.After(existingSig.CreationTime) } const defaultRSAKeyBits = 2048 // NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a // single identity composed of the given full name, comment and email, any of // which may be empty but must not contain any of "()<>\x00". // If config is nil, sensible defaults will be used. func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) { creationTime := config.Now() bits := defaultRSAKeyBits if config != nil && config.RSABits != 0 { bits = config.RSABits } uid := packet.NewUserId(name, comment, email) if uid == nil { return nil, errors.InvalidArgumentError("user id field contained invalid characters") } signingPriv, err := rsa.GenerateKey(config.Random(), bits) if err != nil { return nil, err } encryptingPriv, err := rsa.GenerateKey(config.Random(), bits) if err != nil { return nil, err } e := &Entity{ PrimaryKey: packet.NewRSAPublicKey(creationTime, &signingPriv.PublicKey), PrivateKey: packet.NewRSAPrivateKey(creationTime, signingPriv), Identities: make(map[string]*Identity), } isPrimaryId := true e.Identities[uid.Id] = &Identity{ Name: uid.Id, UserId: uid, SelfSignature: &packet.Signature{ CreationTime: creationTime, SigType: packet.SigTypePositiveCert, PubKeyAlgo: packet.PubKeyAlgoRSA, Hash: config.Hash(), IsPrimaryId: &isPrimaryId, FlagsValid: true, FlagSign: true, FlagCertify: true, IssuerKeyId: &e.PrimaryKey.KeyId, }, } err = e.Identities[uid.Id].SelfSignature.SignUserId(uid.Id, e.PrimaryKey, e.PrivateKey, config) if err != nil { return nil, err } // If the user passes in a DefaultHash via packet.Config, // set the PreferredHash for the SelfSignature. if config != nil && config.DefaultHash != 0 { e.Identities[uid.Id].SelfSignature.PreferredHash = []uint8{hashToHashId(config.DefaultHash)} } // Likewise for DefaultCipher. if config != nil && config.DefaultCipher != 0 { e.Identities[uid.Id].SelfSignature.PreferredSymmetric = []uint8{uint8(config.DefaultCipher)} } e.Subkeys = make([]Subkey, 1) e.Subkeys[0] = Subkey{ PublicKey: packet.NewRSAPublicKey(creationTime, &encryptingPriv.PublicKey), PrivateKey: packet.NewRSAPrivateKey(creationTime, encryptingPriv), Sig: &packet.Signature{ CreationTime: creationTime, SigType: packet.SigTypeSubkeyBinding, PubKeyAlgo: packet.PubKeyAlgoRSA, Hash: config.Hash(), FlagsValid: true, FlagEncryptStorage: true, FlagEncryptCommunications: true, IssuerKeyId: &e.PrimaryKey.KeyId, }, } e.Subkeys[0].PublicKey.IsSubkey = true e.Subkeys[0].PrivateKey.IsSubkey = true err = e.Subkeys[0].Sig.SignKey(e.Subkeys[0].PublicKey, e.PrivateKey, config) if err != nil { return nil, err } return e, nil } // SerializePrivate serializes an Entity, including private key material, but // excluding signatures from other entities, to the given Writer. // Identities and subkeys are re-signed in case they changed since NewEntry. // If config is nil, sensible defaults will be used. func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) { err = e.PrivateKey.Serialize(w) if err != nil { return } for _, ident := range e.Identities { err = ident.UserId.Serialize(w) if err != nil { return } err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config) if err != nil { return } err = ident.SelfSignature.Serialize(w) if err != nil { return } } for _, subkey := range e.Subkeys { err = subkey.PrivateKey.Serialize(w) if err != nil { return } err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config) if err != nil { return } err = subkey.Sig.Serialize(w) if err != nil { return } } return nil } // Serialize writes the public part of the given Entity to w, including // signatures from other entities. No private key material will be output. func (e *Entity) Serialize(w io.Writer) error { err := e.PrimaryKey.Serialize(w) if err != nil { return err } for _, ident := range e.Identities { err = ident.UserId.Serialize(w) if err != nil { return err } err = ident.SelfSignature.Serialize(w) if err != nil { return err } for _, sig := range ident.Signatures { err = sig.Serialize(w) if err != nil { return err } } } for _, subkey := range e.Subkeys { err = subkey.PublicKey.Serialize(w) if err != nil { return err } err = subkey.Sig.Serialize(w) if err != nil { return err } } return nil } // SignIdentity adds a signature to e, from signer, attesting that identity is // associated with e. The provided identity must already be an element of // e.Identities and the private key of signer must have been decrypted if // necessary. // If config is nil, sensible defaults will be used. func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error { if signer.PrivateKey == nil { return errors.InvalidArgumentError("signing Entity must have a private key") } if signer.PrivateKey.Encrypted { return errors.InvalidArgumentError("signing Entity's private key must be decrypted") } ident, ok := e.Identities[identity] if !ok { return errors.InvalidArgumentError("given identity string not found in Entity") } sig := &packet.Signature{ SigType: packet.SigTypeGenericCert, PubKeyAlgo: signer.PrivateKey.PubKeyAlgo, Hash: config.Hash(), CreationTime: config.Now(), IssuerKeyId: &signer.PrivateKey.KeyId, } if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil { return err } ident.Signatures = append(ident.Signatures, sig) return nil }