mirror of
https://github.com/go-gitea/gitea.git
synced 2024-12-15 09:47:39 +08:00
376 lines
10 KiB
Go
Vendored
376 lines
10 KiB
Go
Vendored
package unsnap
|
|
|
|
// copyright (c) 2014, Jason E. Aten
|
|
// license: MIT
|
|
|
|
// Some text from the Golang standard library doc is adapted and
|
|
// reproduced in fragments below to document the expected behaviors
|
|
// of the interface functions Read()/Write()/ReadFrom()/WriteTo() that
|
|
// are implemented here. Those descriptions (see
|
|
// http://golang.org/pkg/io/#Reader for example) are
|
|
// copyright 2010 The Go Authors.
|
|
|
|
import "io"
|
|
|
|
// FixedSizeRingBuf:
|
|
//
|
|
// a fixed-size circular ring buffer. Yes, just what is says.
|
|
//
|
|
// We keep a pair of ping/pong buffers so that we can linearize
|
|
// the circular buffer into a contiguous slice if need be.
|
|
//
|
|
// For efficiency, a FixedSizeRingBuf may be vastly preferred to
|
|
// a bytes.Buffer. The ReadWithoutAdvance(), Advance(), and Adopt()
|
|
// methods are all non-standard methods written for speed.
|
|
//
|
|
// For an I/O heavy application, I have replaced bytes.Buffer with
|
|
// FixedSizeRingBuf and seen memory consumption go from 8GB to 25MB.
|
|
// Yes, that is a 300x reduction in memory footprint. Everything ran
|
|
// faster too.
|
|
//
|
|
// Note that Bytes(), while inescapable at times, is expensive: avoid
|
|
// it if possible. Instead it is better to use the FixedSizeRingBuf.Readable
|
|
// member to get the number of bytes available. Bytes() is expensive because
|
|
// it may copy the back and then the front of a wrapped buffer A[Use]
|
|
// into A[1-Use] in order to get a contiguous slice. If possible use ContigLen()
|
|
// first to get the size that can be read without copying, Read() that
|
|
// amount, and then Read() a second time -- to avoid the copy.
|
|
|
|
type FixedSizeRingBuf struct {
|
|
A [2][]byte // a pair of ping/pong buffers. Only one is active.
|
|
Use int // which A buffer is in active use, 0 or 1
|
|
N int // MaxViewInBytes, the size of A[0] and A[1] in bytes.
|
|
Beg int // start of data in A[Use]
|
|
Readable int // number of bytes available to read in A[Use]
|
|
|
|
OneMade bool // lazily instantiate the [1] buffer. If we never call Bytes(),
|
|
// we may never need it. If OneMade is false, the Use must be = 0.
|
|
}
|
|
|
|
func (b *FixedSizeRingBuf) Make2ndBuffer() {
|
|
if b.OneMade {
|
|
return
|
|
}
|
|
b.A[1] = make([]byte, b.N, b.N)
|
|
b.OneMade = true
|
|
}
|
|
|
|
// get the length of the largest read that we can provide to a contiguous slice
|
|
// without an extra linearizing copy of all bytes internally.
|
|
func (b *FixedSizeRingBuf) ContigLen() int {
|
|
extent := b.Beg + b.Readable
|
|
firstContigLen := intMin(extent, b.N) - b.Beg
|
|
return firstContigLen
|
|
}
|
|
|
|
func NewFixedSizeRingBuf(maxViewInBytes int) *FixedSizeRingBuf {
|
|
n := maxViewInBytes
|
|
r := &FixedSizeRingBuf{
|
|
Use: 0, // 0 or 1, whichever is actually in use at the moment.
|
|
// If we are asked for Bytes() and we wrap, linearize into the other.
|
|
|
|
N: n,
|
|
Beg: 0,
|
|
Readable: 0,
|
|
OneMade: false,
|
|
}
|
|
r.A[0] = make([]byte, n, n)
|
|
|
|
// r.A[1] initialized lazily now.
|
|
|
|
return r
|
|
}
|
|
|
|
// from the standard library description of Bytes():
|
|
// Bytes() returns a slice of the contents of the unread portion of the buffer.
|
|
// If the caller changes the contents of the
|
|
// returned slice, the contents of the buffer will change provided there
|
|
// are no intervening method calls on the Buffer.
|
|
//
|
|
func (b *FixedSizeRingBuf) Bytes() []byte {
|
|
|
|
extent := b.Beg + b.Readable
|
|
if extent <= b.N {
|
|
// we fit contiguously in this buffer without wrapping to the other
|
|
return b.A[b.Use][b.Beg:(b.Beg + b.Readable)]
|
|
}
|
|
|
|
// wrap into the other buffer
|
|
b.Make2ndBuffer()
|
|
|
|
src := b.Use
|
|
dest := 1 - b.Use
|
|
|
|
n := copy(b.A[dest], b.A[src][b.Beg:])
|
|
n += copy(b.A[dest][n:], b.A[src][0:(extent%b.N)])
|
|
|
|
b.Use = dest
|
|
b.Beg = 0
|
|
|
|
return b.A[b.Use][:n]
|
|
}
|
|
|
|
// Read():
|
|
//
|
|
// from bytes.Buffer.Read(): Read reads the next len(p) bytes
|
|
// from the buffer or until the buffer is drained. The return
|
|
// value n is the number of bytes read. If the buffer has no data
|
|
// to return, err is io.EOF (unless len(p) is zero); otherwise it is nil.
|
|
//
|
|
// from the description of the Reader interface,
|
|
// http://golang.org/pkg/io/#Reader
|
|
//
|
|
/*
|
|
Reader is the interface that wraps the basic Read method.
|
|
|
|
Read reads up to len(p) bytes into p. It returns the number
|
|
of bytes read (0 <= n <= len(p)) and any error encountered.
|
|
Even if Read returns n < len(p), it may use all of p as scratch
|
|
space during the call. If some data is available but not
|
|
len(p) bytes, Read conventionally returns what is available
|
|
instead of waiting for more.
|
|
|
|
When Read encounters an error or end-of-file condition after
|
|
successfully reading n > 0 bytes, it returns the number of bytes
|
|
read. It may return the (non-nil) error from the same call or
|
|
return the error (and n == 0) from a subsequent call. An instance
|
|
of this general case is that a Reader returning a non-zero number
|
|
of bytes at the end of the input stream may return
|
|
either err == EOF or err == nil. The next Read should
|
|
return 0, EOF regardless.
|
|
|
|
Callers should always process the n > 0 bytes returned before
|
|
considering the error err. Doing so correctly handles I/O errors
|
|
that happen after reading some bytes and also both of the
|
|
allowed EOF behaviors.
|
|
|
|
Implementations of Read are discouraged from returning a zero
|
|
byte count with a nil error, and callers should treat that
|
|
situation as a no-op.
|
|
*/
|
|
//
|
|
|
|
func (b *FixedSizeRingBuf) Read(p []byte) (n int, err error) {
|
|
return b.ReadAndMaybeAdvance(p, true)
|
|
}
|
|
|
|
// if you want to Read the data and leave it in the buffer, so as
|
|
// to peek ahead for example.
|
|
func (b *FixedSizeRingBuf) ReadWithoutAdvance(p []byte) (n int, err error) {
|
|
return b.ReadAndMaybeAdvance(p, false)
|
|
}
|
|
|
|
func (b *FixedSizeRingBuf) ReadAndMaybeAdvance(p []byte, doAdvance bool) (n int, err error) {
|
|
if len(p) == 0 {
|
|
return 0, nil
|
|
}
|
|
if b.Readable == 0 {
|
|
return 0, io.EOF
|
|
}
|
|
extent := b.Beg + b.Readable
|
|
if extent <= b.N {
|
|
n += copy(p, b.A[b.Use][b.Beg:extent])
|
|
} else {
|
|
n += copy(p, b.A[b.Use][b.Beg:b.N])
|
|
if n < len(p) {
|
|
n += copy(p[n:], b.A[b.Use][0:(extent%b.N)])
|
|
}
|
|
}
|
|
if doAdvance {
|
|
b.Advance(n)
|
|
}
|
|
return
|
|
}
|
|
|
|
//
|
|
// Write writes len(p) bytes from p to the underlying data stream.
|
|
// It returns the number of bytes written from p (0 <= n <= len(p))
|
|
// and any error encountered that caused the write to stop early.
|
|
// Write must return a non-nil error if it returns n < len(p).
|
|
//
|
|
func (b *FixedSizeRingBuf) Write(p []byte) (n int, err error) {
|
|
for {
|
|
if len(p) == 0 {
|
|
// nothing (left) to copy in; notice we shorten our
|
|
// local copy p (below) as we read from it.
|
|
return
|
|
}
|
|
|
|
writeCapacity := b.N - b.Readable
|
|
if writeCapacity <= 0 {
|
|
// we are all full up already.
|
|
return n, io.ErrShortWrite
|
|
}
|
|
if len(p) > writeCapacity {
|
|
err = io.ErrShortWrite
|
|
// leave err set and
|
|
// keep going, write what we can.
|
|
}
|
|
|
|
writeStart := (b.Beg + b.Readable) % b.N
|
|
|
|
upperLim := intMin(writeStart+writeCapacity, b.N)
|
|
|
|
k := copy(b.A[b.Use][writeStart:upperLim], p)
|
|
|
|
n += k
|
|
b.Readable += k
|
|
p = p[k:]
|
|
|
|
// we can fill from b.A[b.Use][0:something] from
|
|
// p's remainder, so loop
|
|
}
|
|
}
|
|
|
|
// WriteTo and ReadFrom avoid intermediate allocation and copies.
|
|
|
|
// WriteTo writes data to w until there's no more data to write
|
|
// or when an error occurs. The return value n is the number of
|
|
// bytes written. Any error encountered during the write is also returned.
|
|
func (b *FixedSizeRingBuf) WriteTo(w io.Writer) (n int64, err error) {
|
|
|
|
if b.Readable == 0 {
|
|
return 0, io.EOF
|
|
}
|
|
|
|
extent := b.Beg + b.Readable
|
|
firstWriteLen := intMin(extent, b.N) - b.Beg
|
|
secondWriteLen := b.Readable - firstWriteLen
|
|
if firstWriteLen > 0 {
|
|
m, e := w.Write(b.A[b.Use][b.Beg:(b.Beg + firstWriteLen)])
|
|
n += int64(m)
|
|
b.Advance(m)
|
|
|
|
if e != nil {
|
|
return n, e
|
|
}
|
|
// all bytes should have been written, by definition of
|
|
// Write method in io.Writer
|
|
if m != firstWriteLen {
|
|
return n, io.ErrShortWrite
|
|
}
|
|
}
|
|
if secondWriteLen > 0 {
|
|
m, e := w.Write(b.A[b.Use][0:secondWriteLen])
|
|
n += int64(m)
|
|
b.Advance(m)
|
|
|
|
if e != nil {
|
|
return n, e
|
|
}
|
|
// all bytes should have been written, by definition of
|
|
// Write method in io.Writer
|
|
if m != secondWriteLen {
|
|
return n, io.ErrShortWrite
|
|
}
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
// ReadFrom() reads data from r until EOF or error. The return value n
|
|
// is the number of bytes read. Any error except io.EOF encountered
|
|
// during the read is also returned.
|
|
func (b *FixedSizeRingBuf) ReadFrom(r io.Reader) (n int64, err error) {
|
|
for {
|
|
writeCapacity := b.N - b.Readable
|
|
if writeCapacity <= 0 {
|
|
// we are all full
|
|
return n, nil
|
|
}
|
|
writeStart := (b.Beg + b.Readable) % b.N
|
|
upperLim := intMin(writeStart+writeCapacity, b.N)
|
|
|
|
m, e := r.Read(b.A[b.Use][writeStart:upperLim])
|
|
n += int64(m)
|
|
b.Readable += m
|
|
if e == io.EOF {
|
|
return n, nil
|
|
}
|
|
if e != nil {
|
|
return n, e
|
|
}
|
|
}
|
|
}
|
|
|
|
func (b *FixedSizeRingBuf) Reset() {
|
|
b.Beg = 0
|
|
b.Readable = 0
|
|
b.Use = 0
|
|
}
|
|
|
|
// Advance(): non-standard, but better than Next(),
|
|
// because we don't have to unwrap our buffer and pay the cpu time
|
|
// for the copy that unwrapping may need.
|
|
// Useful in conjuction/after ReadWithoutAdvance() above.
|
|
func (b *FixedSizeRingBuf) Advance(n int) {
|
|
if n <= 0 {
|
|
return
|
|
}
|
|
if n > b.Readable {
|
|
n = b.Readable
|
|
}
|
|
b.Readable -= n
|
|
b.Beg = (b.Beg + n) % b.N
|
|
}
|
|
|
|
// Adopt(): non-standard.
|
|
//
|
|
// For efficiency's sake, (possibly) take ownership of
|
|
// already allocated slice offered in me.
|
|
//
|
|
// If me is large we will adopt it, and we will potentially then
|
|
// write to the me buffer.
|
|
// If we already have a bigger buffer, copy me into the existing
|
|
// buffer instead.
|
|
func (b *FixedSizeRingBuf) Adopt(me []byte) {
|
|
n := len(me)
|
|
if n > b.N {
|
|
b.A[0] = me
|
|
b.OneMade = false
|
|
b.N = n
|
|
b.Use = 0
|
|
b.Beg = 0
|
|
b.Readable = n
|
|
} else {
|
|
// we already have a larger buffer, reuse it.
|
|
copy(b.A[0], me)
|
|
b.Use = 0
|
|
b.Beg = 0
|
|
b.Readable = n
|
|
}
|
|
}
|
|
|
|
func intMax(a, b int) int {
|
|
if a > b {
|
|
return a
|
|
} else {
|
|
return b
|
|
}
|
|
}
|
|
|
|
func intMin(a, b int) int {
|
|
if a < b {
|
|
return a
|
|
} else {
|
|
return b
|
|
}
|
|
}
|
|
|
|
// Get the (beg, end] indices of the tailing empty buffer of bytes slice that from that is free for writing.
|
|
// Note: not guaranteed to be zeroed. At all.
|
|
func (b *FixedSizeRingBuf) GetEndmostWritable() (beg int, end int) {
|
|
extent := b.Beg + b.Readable
|
|
if extent < b.N {
|
|
return extent, b.N
|
|
}
|
|
|
|
return extent % b.N, b.Beg
|
|
}
|
|
|
|
// Note: not guaranteed to be zeroed.
|
|
func (b *FixedSizeRingBuf) GetEndmostWritableSlice() []byte {
|
|
beg, e := b.GetEndmostWritable()
|
|
return b.A[b.Use][beg:e]
|
|
}
|