mirror of
https://github.com/go-gitea/gitea.git
synced 2024-12-23 23:18:10 +08:00
935 lines
29 KiB
Go
Vendored
935 lines
29 KiB
Go
Vendored
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package openpgp
|
|
|
|
import (
|
|
"crypto/hmac"
|
|
"encoding/binary"
|
|
"io"
|
|
"time"
|
|
|
|
"github.com/keybase/go-crypto/openpgp/armor"
|
|
"github.com/keybase/go-crypto/openpgp/errors"
|
|
"github.com/keybase/go-crypto/openpgp/packet"
|
|
"github.com/keybase/go-crypto/rsa"
|
|
)
|
|
|
|
// PublicKeyType is the armor type for a PGP public key.
|
|
var PublicKeyType = "PGP PUBLIC KEY BLOCK"
|
|
|
|
// PrivateKeyType is the armor type for a PGP private key.
|
|
var PrivateKeyType = "PGP PRIVATE KEY BLOCK"
|
|
|
|
// An Entity represents the components of an OpenPGP key: a primary public key
|
|
// (which must be a signing key), one or more identities claimed by that key,
|
|
// and zero or more subkeys, which may be encryption keys.
|
|
type Entity struct {
|
|
PrimaryKey *packet.PublicKey
|
|
PrivateKey *packet.PrivateKey
|
|
Identities map[string]*Identity // indexed by Identity.Name
|
|
Revocations []*packet.Signature
|
|
// Revocations that are signed by designated revokers. Reading keys
|
|
// will not verify these revocations, because it won't have access to
|
|
// issuers' public keys, API consumers should do this instead (or
|
|
// not, and just assume that the key is probably revoked).
|
|
UnverifiedRevocations []*packet.Signature
|
|
Subkeys []Subkey
|
|
BadSubkeys []BadSubkey
|
|
}
|
|
|
|
// An Identity represents an identity claimed by an Entity and zero or more
|
|
// assertions by other entities about that claim.
|
|
type Identity struct {
|
|
Name string // by convention, has the form "Full Name (comment) <email@example.com>"
|
|
UserId *packet.UserId
|
|
SelfSignature *packet.Signature
|
|
Signatures []*packet.Signature
|
|
Revocation *packet.Signature
|
|
}
|
|
|
|
// A Subkey is an additional public key in an Entity. Subkeys can be used for
|
|
// encryption.
|
|
type Subkey struct {
|
|
PublicKey *packet.PublicKey
|
|
PrivateKey *packet.PrivateKey
|
|
Sig *packet.Signature
|
|
Revocation *packet.Signature
|
|
}
|
|
|
|
// BadSubkey is one that failed reconstruction, but we'll keep it around for
|
|
// informational purposes.
|
|
type BadSubkey struct {
|
|
Subkey
|
|
Err error
|
|
}
|
|
|
|
// A Key identifies a specific public key in an Entity. This is either the
|
|
// Entity's primary key or a subkey.
|
|
type Key struct {
|
|
Entity *Entity
|
|
PublicKey *packet.PublicKey
|
|
PrivateKey *packet.PrivateKey
|
|
SelfSignature *packet.Signature
|
|
KeyFlags packet.KeyFlagBits
|
|
}
|
|
|
|
// A KeyRing provides access to public and private keys.
|
|
type KeyRing interface {
|
|
|
|
// KeysById returns the set of keys that have the given key id.
|
|
// fp can be optionally supplied, which is the full key fingerprint.
|
|
// If it's provided, then it must match. This comes up in the case
|
|
// of GPG subpacket 33.
|
|
KeysById(id uint64, fp []byte) []Key
|
|
|
|
// KeysByIdAndUsage returns the set of keys with the given id
|
|
// that also meet the key usage given by requiredUsage.
|
|
// The requiredUsage is expressed as the bitwise-OR of
|
|
// packet.KeyFlag* values.
|
|
// fp can be optionally supplied, which is the full key fingerprint.
|
|
// If it's provided, then it must match. This comes up in the case
|
|
// of GPG subpacket 33.
|
|
KeysByIdUsage(id uint64, fp []byte, requiredUsage byte) []Key
|
|
|
|
// DecryptionKeys returns all private keys that are valid for
|
|
// decryption.
|
|
DecryptionKeys() []Key
|
|
}
|
|
|
|
// primaryIdentity returns the Identity marked as primary or the first identity
|
|
// if none are so marked.
|
|
func (e *Entity) primaryIdentity() *Identity {
|
|
var firstIdentity *Identity
|
|
for _, ident := range e.Identities {
|
|
if firstIdentity == nil {
|
|
firstIdentity = ident
|
|
}
|
|
if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
|
|
return ident
|
|
}
|
|
}
|
|
return firstIdentity
|
|
}
|
|
|
|
// encryptionKey returns the best candidate Key for encrypting a message to the
|
|
// given Entity.
|
|
func (e *Entity) encryptionKey(now time.Time) (Key, bool) {
|
|
candidateSubkey := -1
|
|
|
|
// Iterate the keys to find the newest, non-revoked key that can
|
|
// encrypt.
|
|
var maxTime time.Time
|
|
for i, subkey := range e.Subkeys {
|
|
|
|
// NOTE(maxtaco)
|
|
// If there is a Flags subpacket, then we have to follow it, and only
|
|
// use keys that are marked for Encryption of Communication. If there
|
|
// isn't a Flags subpacket, and this is an Encrypt-Only key (right now only ElGamal
|
|
// suffices), then we implicitly use it. The check for primary below is a little
|
|
// more open-ended, but for now, let's be strict and potentially open up
|
|
// if we see bugs in the wild.
|
|
//
|
|
// One more note: old DSA/ElGamal keys tend not to have the Flags subpacket,
|
|
// so this sort of thing is pretty important for encrypting to older keys.
|
|
//
|
|
if ((subkey.Sig.FlagsValid && subkey.Sig.FlagEncryptCommunications) ||
|
|
(!subkey.Sig.FlagsValid && subkey.PublicKey.PubKeyAlgo == packet.PubKeyAlgoElGamal)) &&
|
|
subkey.PublicKey.PubKeyAlgo.CanEncrypt() &&
|
|
!subkey.Sig.KeyExpired(now) &&
|
|
subkey.Revocation == nil &&
|
|
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
|
|
candidateSubkey = i
|
|
maxTime = subkey.Sig.CreationTime
|
|
}
|
|
}
|
|
|
|
if candidateSubkey != -1 {
|
|
subkey := e.Subkeys[candidateSubkey]
|
|
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig, subkey.Sig.GetKeyFlags()}, true
|
|
}
|
|
|
|
// If we don't have any candidate subkeys for encryption and
|
|
// the primary key doesn't have any usage metadata then we
|
|
// assume that the primary key is ok. Or, if the primary key is
|
|
// marked as ok to encrypt to, then we can obviously use it.
|
|
//
|
|
// NOTE(maxtaco) - see note above, how this policy is a little too open-ended
|
|
// for my liking, but leave it for now.
|
|
i := e.primaryIdentity()
|
|
if (!i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications) &&
|
|
e.PrimaryKey.PubKeyAlgo.CanEncrypt() &&
|
|
!i.SelfSignature.KeyExpired(now) {
|
|
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature, i.SelfSignature.GetKeyFlags()}, true
|
|
}
|
|
|
|
// This Entity appears to be signing only.
|
|
return Key{}, false
|
|
}
|
|
|
|
// signingKey return the best candidate Key for signing a message with this
|
|
// Entity.
|
|
func (e *Entity) signingKey(now time.Time) (Key, bool) {
|
|
candidateSubkey := -1
|
|
|
|
// Iterate the keys to find the newest, non-revoked key that can
|
|
// sign.
|
|
var maxTime time.Time
|
|
for i, subkey := range e.Subkeys {
|
|
if (!subkey.Sig.FlagsValid || subkey.Sig.FlagSign) &&
|
|
subkey.PrivateKey.PrivateKey != nil &&
|
|
subkey.PublicKey.PubKeyAlgo.CanSign() &&
|
|
!subkey.Sig.KeyExpired(now) &&
|
|
subkey.Revocation == nil &&
|
|
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
|
|
candidateSubkey = i
|
|
maxTime = subkey.Sig.CreationTime
|
|
break
|
|
}
|
|
}
|
|
|
|
if candidateSubkey != -1 {
|
|
subkey := e.Subkeys[candidateSubkey]
|
|
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig, subkey.Sig.GetKeyFlags()}, true
|
|
}
|
|
|
|
// If we have no candidate subkey then we assume that it's ok to sign
|
|
// with the primary key.
|
|
i := e.primaryIdentity()
|
|
if (!i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign) &&
|
|
e.PrimaryKey.PubKeyAlgo.CanSign() &&
|
|
!i.SelfSignature.KeyExpired(now) &&
|
|
e.PrivateKey.PrivateKey != nil {
|
|
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature, i.SelfSignature.GetKeyFlags()}, true
|
|
}
|
|
|
|
return Key{}, false
|
|
}
|
|
|
|
// An EntityList contains one or more Entities.
|
|
type EntityList []*Entity
|
|
|
|
func keyMatchesIdAndFingerprint(key *packet.PublicKey, id uint64, fp []byte) bool {
|
|
if key.KeyId != id {
|
|
return false
|
|
}
|
|
if fp == nil {
|
|
return true
|
|
}
|
|
return hmac.Equal(fp, key.Fingerprint[:])
|
|
}
|
|
|
|
// KeysById returns the set of keys that have the given key id.
|
|
// fp can be optionally supplied, which is the full key fingerprint.
|
|
// If it's provided, then it must match. This comes up in the case
|
|
// of GPG subpacket 33.
|
|
func (el EntityList) KeysById(id uint64, fp []byte) (keys []Key) {
|
|
for _, e := range el {
|
|
if keyMatchesIdAndFingerprint(e.PrimaryKey, id, fp) {
|
|
var selfSig *packet.Signature
|
|
for _, ident := range e.Identities {
|
|
if selfSig == nil {
|
|
selfSig = ident.SelfSignature
|
|
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
|
|
selfSig = ident.SelfSignature
|
|
break
|
|
}
|
|
}
|
|
|
|
var keyFlags packet.KeyFlagBits
|
|
for _, ident := range e.Identities {
|
|
keyFlags.Merge(ident.SelfSignature.GetKeyFlags())
|
|
}
|
|
|
|
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig, keyFlags})
|
|
}
|
|
|
|
for _, subKey := range e.Subkeys {
|
|
if keyMatchesIdAndFingerprint(subKey.PublicKey, id, fp) {
|
|
|
|
// If there's both a a revocation and a sig, then take the
|
|
// revocation. Otherwise, we can proceed with the sig.
|
|
sig := subKey.Revocation
|
|
if sig == nil {
|
|
sig = subKey.Sig
|
|
}
|
|
|
|
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, sig, sig.GetKeyFlags()})
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// KeysByIdAndUsage returns the set of keys with the given id that also meet
|
|
// the key usage given by requiredUsage. The requiredUsage is expressed as
|
|
// the bitwise-OR of packet.KeyFlag* values.
|
|
// fp can be optionally supplied, which is the full key fingerprint.
|
|
// If it's provided, then it must match. This comes up in the case
|
|
// of GPG subpacket 33.
|
|
func (el EntityList) KeysByIdUsage(id uint64, fp []byte, requiredUsage byte) (keys []Key) {
|
|
for _, key := range el.KeysById(id, fp) {
|
|
if len(key.Entity.Revocations) > 0 {
|
|
continue
|
|
}
|
|
|
|
if key.SelfSignature.RevocationReason != nil {
|
|
continue
|
|
}
|
|
|
|
if requiredUsage != 0 {
|
|
var usage byte
|
|
|
|
switch {
|
|
case key.KeyFlags.Valid:
|
|
usage = key.KeyFlags.BitField
|
|
|
|
case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoElGamal:
|
|
// We also need to handle the case where, although the sig's
|
|
// flags aren't valid, the key can is implicitly usable for
|
|
// encryption by virtue of being ElGamal. See also the comment
|
|
// in encryptionKey() above.
|
|
usage |= packet.KeyFlagEncryptCommunications
|
|
usage |= packet.KeyFlagEncryptStorage
|
|
|
|
case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoDSA ||
|
|
key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoECDSA ||
|
|
key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoEdDSA:
|
|
usage |= packet.KeyFlagSign
|
|
|
|
// For a primary RSA key without any key flags, be as permissiable
|
|
// as possible.
|
|
case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoRSA &&
|
|
keyMatchesIdAndFingerprint(key.Entity.PrimaryKey, id, fp):
|
|
usage = (packet.KeyFlagCertify | packet.KeyFlagSign |
|
|
packet.KeyFlagEncryptCommunications | packet.KeyFlagEncryptStorage)
|
|
}
|
|
|
|
if usage&requiredUsage != requiredUsage {
|
|
continue
|
|
}
|
|
}
|
|
|
|
keys = append(keys, key)
|
|
}
|
|
return
|
|
}
|
|
|
|
// DecryptionKeys returns all private keys that are valid for decryption.
|
|
func (el EntityList) DecryptionKeys() (keys []Key) {
|
|
for _, e := range el {
|
|
for _, subKey := range e.Subkeys {
|
|
if subKey.PrivateKey != nil && subKey.PrivateKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
|
|
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig, subKey.Sig.GetKeyFlags()})
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
|
|
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) {
|
|
block, err := armor.Decode(r)
|
|
if err == io.EOF {
|
|
return nil, errors.InvalidArgumentError("no armored data found")
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if block.Type != PublicKeyType && block.Type != PrivateKeyType {
|
|
return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type)
|
|
}
|
|
|
|
return ReadKeyRing(block.Body)
|
|
}
|
|
|
|
// ReadKeyRing reads one or more public/private keys. Unsupported keys are
|
|
// ignored as long as at least a single valid key is found.
|
|
func ReadKeyRing(r io.Reader) (el EntityList, err error) {
|
|
packets := packet.NewReader(r)
|
|
var lastUnsupportedError error
|
|
|
|
for {
|
|
var e *Entity
|
|
e, err = ReadEntity(packets)
|
|
if err != nil {
|
|
// TODO: warn about skipped unsupported/unreadable keys
|
|
if _, ok := err.(errors.UnsupportedError); ok {
|
|
lastUnsupportedError = err
|
|
err = readToNextPublicKey(packets)
|
|
} else if _, ok := err.(errors.StructuralError); ok {
|
|
// Skip unreadable, badly-formatted keys
|
|
lastUnsupportedError = err
|
|
err = readToNextPublicKey(packets)
|
|
}
|
|
if err == io.EOF {
|
|
err = nil
|
|
break
|
|
}
|
|
if err != nil {
|
|
el = nil
|
|
break
|
|
}
|
|
} else {
|
|
el = append(el, e)
|
|
}
|
|
}
|
|
|
|
if len(el) == 0 && err == nil {
|
|
err = lastUnsupportedError
|
|
}
|
|
return
|
|
}
|
|
|
|
// readToNextPublicKey reads packets until the start of the entity and leaves
|
|
// the first packet of the new entity in the Reader.
|
|
func readToNextPublicKey(packets *packet.Reader) (err error) {
|
|
var p packet.Packet
|
|
for {
|
|
p, err = packets.Next()
|
|
if err == io.EOF {
|
|
return
|
|
} else if err != nil {
|
|
if _, ok := err.(errors.UnsupportedError); ok {
|
|
err = nil
|
|
continue
|
|
}
|
|
return
|
|
}
|
|
|
|
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
|
|
packets.Unread(p)
|
|
return
|
|
}
|
|
}
|
|
|
|
panic("unreachable")
|
|
}
|
|
|
|
// ReadEntity reads an entity (public key, identities, subkeys etc) from the
|
|
// given Reader.
|
|
func ReadEntity(packets *packet.Reader) (*Entity, error) {
|
|
e := new(Entity)
|
|
e.Identities = make(map[string]*Identity)
|
|
|
|
p, err := packets.Next()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var ok bool
|
|
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
|
|
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
|
|
packets.Unread(p)
|
|
return nil, errors.StructuralError("first packet was not a public/private key")
|
|
} else {
|
|
e.PrimaryKey = &e.PrivateKey.PublicKey
|
|
}
|
|
}
|
|
|
|
if !e.PrimaryKey.PubKeyAlgo.CanSign() {
|
|
return nil, errors.StructuralError("primary key cannot be used for signatures")
|
|
}
|
|
|
|
var current *Identity
|
|
var revocations []*packet.Signature
|
|
|
|
designatedRevokers := make(map[uint64]bool)
|
|
EachPacket:
|
|
for {
|
|
p, err := packets.Next()
|
|
if err == io.EOF {
|
|
break
|
|
} else if err != nil {
|
|
return nil, err
|
|
}
|
|
switch pkt := p.(type) {
|
|
case *packet.UserId:
|
|
|
|
// Make a new Identity object, that we might wind up throwing away.
|
|
// We'll only add it if we get a valid self-signature over this
|
|
// userID.
|
|
current = new(Identity)
|
|
current.Name = pkt.Id
|
|
current.UserId = pkt
|
|
case *packet.Signature:
|
|
if pkt.SigType == packet.SigTypeKeyRevocation {
|
|
// These revocations won't revoke UIDs (see
|
|
// SigTypeIdentityRevocation). Handle these first,
|
|
// because key might have revocation coming from
|
|
// another key (designated revoke).
|
|
revocations = append(revocations, pkt)
|
|
continue
|
|
}
|
|
|
|
// These are signatures by other people on this key. Let's just ignore them
|
|
// from the beginning, since they shouldn't affect our key decoding one way
|
|
// or the other.
|
|
if pkt.IssuerKeyId != nil && *pkt.IssuerKeyId != e.PrimaryKey.KeyId {
|
|
continue
|
|
}
|
|
|
|
// If this is a signature made by the keyholder, and the signature has stubbed out
|
|
// critical packets, then *now* we need to bail out.
|
|
if e := pkt.StubbedOutCriticalError; e != nil {
|
|
return nil, e
|
|
}
|
|
|
|
// Next handle the case of a self-signature. According to RFC8440,
|
|
// Section 5.2.3.3, if there are several self-signatures,
|
|
// we should take the newer one. If they were both created
|
|
// at the same time, but one of them has keyflags specified and the
|
|
// other doesn't, keep the one with the keyflags. We have actually
|
|
// seen this in the wild (see the 'Yield' test in read_test.go).
|
|
// If there is a tie, and both have the same value for FlagsValid,
|
|
// then "last writer wins."
|
|
//
|
|
// HOWEVER! We have seen yet more keys in the wild (see the 'Spiros'
|
|
// test in read_test.go), in which the later self-signature is a bunch
|
|
// of junk, and doesn't even specify key flags. Does it really make
|
|
// sense to overwrite reasonable key flags with the empty set? I'm not
|
|
// sure what that would be trying to achieve, and plus GPG seems to be
|
|
// ok with this situation, and ignores the later (empty) keyflag set.
|
|
// So further tighten our overwrite rules, and only allow the later
|
|
// signature to overwrite the earlier signature if so doing won't
|
|
// trash the key flags.
|
|
if current != nil &&
|
|
(current.SelfSignature == nil ||
|
|
(!pkt.CreationTime.Before(current.SelfSignature.CreationTime) &&
|
|
(pkt.FlagsValid || !current.SelfSignature.FlagsValid))) &&
|
|
(pkt.SigType == packet.SigTypePositiveCert || pkt.SigType == packet.SigTypeGenericCert) &&
|
|
pkt.IssuerKeyId != nil &&
|
|
*pkt.IssuerKeyId == e.PrimaryKey.KeyId {
|
|
|
|
if err = e.PrimaryKey.VerifyUserIdSignature(current.Name, e.PrimaryKey, pkt); err == nil {
|
|
|
|
current.SelfSignature = pkt
|
|
|
|
// NOTE(maxtaco) 2016.01.11
|
|
// Only register an identity once we've gotten a valid self-signature.
|
|
// It's possible therefore for us to throw away `current` in the case
|
|
// no valid self-signatures were found. That's OK as long as there are
|
|
// other identities that make sense.
|
|
//
|
|
// NOTE! We might later see a revocation for this very same UID, and it
|
|
// won't be undone. We've preserved this feature from the original
|
|
// Google OpenPGP we forked from.
|
|
e.Identities[current.Name] = current
|
|
} else {
|
|
// We really should warn that there was a failure here. Not raise an error
|
|
// since this really shouldn't be a fail-stop error.
|
|
}
|
|
} else if current != nil && pkt.SigType == packet.SigTypeIdentityRevocation {
|
|
if err = e.PrimaryKey.VerifyUserIdSignature(current.Name, e.PrimaryKey, pkt); err == nil {
|
|
// Note: we are not removing the identity from
|
|
// e.Identities. Caller can always filter by Revocation
|
|
// field to ignore revoked identities.
|
|
current.Revocation = pkt
|
|
}
|
|
} else if pkt.SigType == packet.SigTypeDirectSignature {
|
|
if err = e.PrimaryKey.VerifyRevocationSignature(e.PrimaryKey, pkt); err == nil {
|
|
if desig := pkt.DesignatedRevoker; desig != nil {
|
|
// If it's a designated revoker signature, take last 8 octects
|
|
// of fingerprint as Key ID and save it to designatedRevokers
|
|
// map. We consult this map later to see if a foreign
|
|
// revocation should be added to UnverifiedRevocations.
|
|
keyID := binary.BigEndian.Uint64(desig.Fingerprint[len(desig.Fingerprint)-8:])
|
|
designatedRevokers[keyID] = true
|
|
}
|
|
}
|
|
} else if current == nil {
|
|
// NOTE(maxtaco)
|
|
//
|
|
// See https://github.com/keybase/client/issues/2666
|
|
//
|
|
// There might have been a user attribute picture before this signature,
|
|
// in which case this is still a valid PGP key. In the future we might
|
|
// not ignore user attributes (like picture). But either way, it doesn't
|
|
// make sense to bail out here. Keep looking for other valid signatures.
|
|
//
|
|
// Used to be:
|
|
// return nil, errors.StructuralError("signature packet found before user id packet")
|
|
} else {
|
|
current.Signatures = append(current.Signatures, pkt)
|
|
}
|
|
case *packet.PrivateKey:
|
|
if pkt.IsSubkey == false {
|
|
packets.Unread(p)
|
|
break EachPacket
|
|
}
|
|
err = addSubkey(e, packets, &pkt.PublicKey, pkt)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
case *packet.PublicKey:
|
|
if pkt.IsSubkey == false {
|
|
packets.Unread(p)
|
|
break EachPacket
|
|
}
|
|
err = addSubkey(e, packets, pkt, nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
default:
|
|
// we ignore unknown packets
|
|
}
|
|
}
|
|
|
|
if len(e.Identities) == 0 {
|
|
return nil, errors.StructuralError("entity without any identities")
|
|
}
|
|
|
|
for _, revocation := range revocations {
|
|
if revocation.IssuerKeyId == nil || *revocation.IssuerKeyId == e.PrimaryKey.KeyId {
|
|
// Key revokes itself, something that we can verify.
|
|
err = e.PrimaryKey.VerifyRevocationSignature(e.PrimaryKey, revocation)
|
|
if err == nil {
|
|
e.Revocations = append(e.Revocations, revocation)
|
|
} else {
|
|
return nil, errors.StructuralError("revocation signature signed by alternate key")
|
|
}
|
|
} else if revocation.IssuerKeyId != nil {
|
|
if _, ok := designatedRevokers[*revocation.IssuerKeyId]; ok {
|
|
// Revocation is done by certified designated revoker,
|
|
// but we can't verify the revocation.
|
|
e.UnverifiedRevocations = append(e.UnverifiedRevocations, revocation)
|
|
}
|
|
}
|
|
}
|
|
|
|
return e, nil
|
|
}
|
|
|
|
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
|
|
var subKey Subkey
|
|
subKey.PublicKey = pub
|
|
subKey.PrivateKey = priv
|
|
var lastErr error
|
|
for {
|
|
p, err := packets.Next()
|
|
if err == io.EOF {
|
|
break
|
|
}
|
|
if err != nil {
|
|
return errors.StructuralError("subkey signature invalid: " + err.Error())
|
|
}
|
|
sig, ok := p.(*packet.Signature)
|
|
if !ok {
|
|
// Hit a non-signature packet, so assume we're up to the next key
|
|
packets.Unread(p)
|
|
break
|
|
}
|
|
if st := sig.SigType; st != packet.SigTypeSubkeyBinding && st != packet.SigTypeSubkeyRevocation {
|
|
|
|
// Note(maxtaco):
|
|
// We used to error out here, but instead, let's fast-forward past
|
|
// packets that are in the wrong place (like misplaced 0x13 signatures)
|
|
// until we get to one that works. For a test case,
|
|
// see TestWithBadSubkeySignaturePackets.
|
|
|
|
continue
|
|
}
|
|
err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig)
|
|
if err != nil {
|
|
// Non valid signature, so again, no need to abandon all hope, just continue;
|
|
// make a note of the error we hit.
|
|
lastErr = errors.StructuralError("subkey signature invalid: " + err.Error())
|
|
continue
|
|
}
|
|
switch sig.SigType {
|
|
case packet.SigTypeSubkeyBinding:
|
|
// Does the "new" sig set expiration to later date than
|
|
// "previous" sig?
|
|
if subKey.Sig == nil || subKey.Sig.ExpiresBeforeOther(sig) {
|
|
subKey.Sig = sig
|
|
}
|
|
case packet.SigTypeSubkeyRevocation:
|
|
// First writer wins
|
|
if subKey.Revocation == nil {
|
|
subKey.Revocation = sig
|
|
}
|
|
}
|
|
}
|
|
|
|
if subKey.Sig != nil {
|
|
if err := subKey.PublicKey.ErrorIfDeprecated(); err != nil {
|
|
// Key passed signature check but is deprecated.
|
|
subKey.Sig = nil
|
|
lastErr = err
|
|
}
|
|
}
|
|
|
|
if subKey.Sig != nil {
|
|
e.Subkeys = append(e.Subkeys, subKey)
|
|
} else {
|
|
if lastErr == nil {
|
|
lastErr = errors.StructuralError("Subkey wasn't signed; expected a 'binding' signature")
|
|
}
|
|
e.BadSubkeys = append(e.BadSubkeys, BadSubkey{Subkey: subKey, Err: lastErr})
|
|
}
|
|
return nil
|
|
}
|
|
|
|
const defaultRSAKeyBits = 2048
|
|
|
|
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
|
|
// single identity composed of the given full name, comment and email, any of
|
|
// which may be empty but must not contain any of "()<>\x00".
|
|
// If config is nil, sensible defaults will be used.
|
|
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
|
|
currentTime := config.Now()
|
|
|
|
bits := defaultRSAKeyBits
|
|
if config != nil && config.RSABits != 0 {
|
|
bits = config.RSABits
|
|
}
|
|
|
|
uid := packet.NewUserId(name, comment, email)
|
|
if uid == nil {
|
|
return nil, errors.InvalidArgumentError("user id field contained invalid characters")
|
|
}
|
|
signingPriv, err := rsa.GenerateKey(config.Random(), bits)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
e := &Entity{
|
|
PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey),
|
|
PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv),
|
|
Identities: make(map[string]*Identity),
|
|
}
|
|
isPrimaryId := true
|
|
e.Identities[uid.Id] = &Identity{
|
|
Name: uid.Id,
|
|
UserId: uid,
|
|
SelfSignature: &packet.Signature{
|
|
CreationTime: currentTime,
|
|
SigType: packet.SigTypePositiveCert,
|
|
PubKeyAlgo: packet.PubKeyAlgoRSA,
|
|
Hash: config.Hash(),
|
|
IsPrimaryId: &isPrimaryId,
|
|
FlagsValid: true,
|
|
FlagSign: true,
|
|
FlagCertify: true,
|
|
IssuerKeyId: &e.PrimaryKey.KeyId,
|
|
},
|
|
}
|
|
|
|
// If the user passes in a DefaultHash via packet.Config, set the
|
|
// PreferredHash for the SelfSignature.
|
|
if config != nil && config.DefaultHash != 0 {
|
|
e.Identities[uid.Id].SelfSignature.PreferredHash = []uint8{hashToHashId(config.DefaultHash)}
|
|
}
|
|
|
|
// Likewise for DefaultCipher.
|
|
if config != nil && config.DefaultCipher != 0 {
|
|
e.Identities[uid.Id].SelfSignature.PreferredSymmetric = []uint8{uint8(config.DefaultCipher)}
|
|
}
|
|
|
|
e.Subkeys = make([]Subkey, 1)
|
|
e.Subkeys[0] = Subkey{
|
|
PublicKey: packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey),
|
|
PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv),
|
|
Sig: &packet.Signature{
|
|
CreationTime: currentTime,
|
|
SigType: packet.SigTypeSubkeyBinding,
|
|
PubKeyAlgo: packet.PubKeyAlgoRSA,
|
|
Hash: config.Hash(),
|
|
FlagsValid: true,
|
|
FlagEncryptStorage: true,
|
|
FlagEncryptCommunications: true,
|
|
IssuerKeyId: &e.PrimaryKey.KeyId,
|
|
},
|
|
}
|
|
e.Subkeys[0].PublicKey.IsSubkey = true
|
|
e.Subkeys[0].PrivateKey.IsSubkey = true
|
|
|
|
return e, nil
|
|
}
|
|
|
|
// SerializePrivate serializes an Entity, including private key material, to
|
|
// the given Writer. For now, it must only be used on an Entity returned from
|
|
// NewEntity.
|
|
// If config is nil, sensible defaults will be used.
|
|
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
|
|
err = e.PrivateKey.Serialize(w)
|
|
if err != nil {
|
|
return
|
|
}
|
|
for _, ident := range e.Identities {
|
|
err = ident.UserId.Serialize(w)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if e.PrivateKey.PrivateKey != nil {
|
|
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
err = ident.SelfSignature.Serialize(w)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
for _, subkey := range e.Subkeys {
|
|
err = subkey.PrivateKey.Serialize(w)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if e.PrivateKey.PrivateKey != nil && !config.ReuseSignatures() {
|
|
// If not reusing existing signatures, sign subkey using private key
|
|
// (subkey binding), but also sign primary key using subkey (primary
|
|
// key binding) if subkey is used for signing.
|
|
if subkey.Sig.FlagSign {
|
|
err = subkey.Sig.CrossSignKey(e.PrimaryKey, subkey.PrivateKey, config)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
if subkey.Revocation != nil {
|
|
err = subkey.Revocation.Serialize(w)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
err = subkey.Sig.Serialize(w)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Serialize writes the public part of the given Entity to w. (No private
|
|
// key material will be output).
|
|
func (e *Entity) Serialize(w io.Writer) error {
|
|
err := e.PrimaryKey.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
for _, ident := range e.Identities {
|
|
err = ident.UserId.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
err = ident.SelfSignature.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
for _, sig := range ident.Signatures {
|
|
err = sig.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
for _, subkey := range e.Subkeys {
|
|
err = subkey.PublicKey.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if subkey.Revocation != nil {
|
|
err = subkey.Revocation.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
err = subkey.Sig.Serialize(w)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SignIdentity adds a signature to e, from signer, attesting that identity is
|
|
// associated with e. The provided identity must already be an element of
|
|
// e.Identities and the private key of signer must have been decrypted if
|
|
// necessary.
|
|
// If config is nil, sensible defaults will be used.
|
|
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
|
|
if signer.PrivateKey == nil {
|
|
return errors.InvalidArgumentError("signing Entity must have a private key")
|
|
}
|
|
if signer.PrivateKey.Encrypted {
|
|
return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
|
|
}
|
|
ident, ok := e.Identities[identity]
|
|
if !ok {
|
|
return errors.InvalidArgumentError("given identity string not found in Entity")
|
|
}
|
|
|
|
sig := &packet.Signature{
|
|
SigType: packet.SigTypeGenericCert,
|
|
PubKeyAlgo: signer.PrivateKey.PubKeyAlgo,
|
|
Hash: config.Hash(),
|
|
CreationTime: config.Now(),
|
|
IssuerKeyId: &signer.PrivateKey.KeyId,
|
|
}
|
|
if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
|
|
return err
|
|
}
|
|
ident.Signatures = append(ident.Signatures, sig)
|
|
return nil
|
|
}
|
|
|
|
// CopySubkeyRevocations copies subkey revocations from the src Entity over
|
|
// to the receiver entity. We need this because `gpg --export-secret-key` does
|
|
// not appear to output subkey revocations. In this case we need to manually
|
|
// merge with the output of `gpg --export`.
|
|
func (e *Entity) CopySubkeyRevocations(src *Entity) {
|
|
m := make(map[[20]byte]*packet.Signature)
|
|
for _, subkey := range src.Subkeys {
|
|
if subkey.Revocation != nil {
|
|
m[subkey.PublicKey.Fingerprint] = subkey.Revocation
|
|
}
|
|
}
|
|
for i, subkey := range e.Subkeys {
|
|
if r := m[subkey.PublicKey.Fingerprint]; r != nil {
|
|
e.Subkeys[i].Revocation = r
|
|
}
|
|
}
|
|
}
|
|
|
|
// CheckDesignatedRevokers will try to confirm any of designated
|
|
// revocation of entity. For this function to work, revocation
|
|
// issuer's key should be found in keyring. First successfully
|
|
// verified designated revocation is returned along with the key that
|
|
// verified it.
|
|
func FindVerifiedDesignatedRevoke(keyring KeyRing, entity *Entity) (*packet.Signature, *Key) {
|
|
for _, sig := range entity.UnverifiedRevocations {
|
|
if sig.IssuerKeyId == nil {
|
|
continue
|
|
}
|
|
|
|
issuerKeyId := *sig.IssuerKeyId
|
|
issuerFingerprint := sig.IssuerFingerprint
|
|
keys := keyring.KeysByIdUsage(issuerKeyId, issuerFingerprint, packet.KeyFlagSign)
|
|
if len(keys) == 0 {
|
|
continue
|
|
}
|
|
for _, key := range keys {
|
|
err := key.PublicKey.VerifyRevocationSignature(entity.PrimaryKey, sig)
|
|
if err == nil {
|
|
return sig, &key
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil, nil
|
|
}
|