mirror of
https://github.com/google/leveldb.git
synced 2025-01-23 01:53:22 +08:00
528c2bc6ad
The approximate RAM usage of the database is calculated from the memory allocated for write buffers and the block cache. This is to give an estimate of memory usage to leveldb clients. ------------- Created by MOE: https://github.com/google/moe MOE_MIGRATED_REVID=104222307
356 lines
9.1 KiB
C++
356 lines
9.1 KiB
C++
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "leveldb/cache.h"
|
|
#include "port/port.h"
|
|
#include "util/hash.h"
|
|
#include "util/mutexlock.h"
|
|
|
|
namespace leveldb {
|
|
|
|
Cache::~Cache() {
|
|
}
|
|
|
|
namespace {
|
|
|
|
// LRU cache implementation
|
|
|
|
// An entry is a variable length heap-allocated structure. Entries
|
|
// are kept in a circular doubly linked list ordered by access time.
|
|
struct LRUHandle {
|
|
void* value;
|
|
void (*deleter)(const Slice&, void* value);
|
|
LRUHandle* next_hash;
|
|
LRUHandle* next;
|
|
LRUHandle* prev;
|
|
size_t charge; // TODO(opt): Only allow uint32_t?
|
|
size_t key_length;
|
|
uint32_t refs;
|
|
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
|
|
char key_data[1]; // Beginning of key
|
|
|
|
Slice key() const {
|
|
// For cheaper lookups, we allow a temporary Handle object
|
|
// to store a pointer to a key in "value".
|
|
if (next == this) {
|
|
return *(reinterpret_cast<Slice*>(value));
|
|
} else {
|
|
return Slice(key_data, key_length);
|
|
}
|
|
}
|
|
};
|
|
|
|
// We provide our own simple hash table since it removes a whole bunch
|
|
// of porting hacks and is also faster than some of the built-in hash
|
|
// table implementations in some of the compiler/runtime combinations
|
|
// we have tested. E.g., readrandom speeds up by ~5% over the g++
|
|
// 4.4.3's builtin hashtable.
|
|
class HandleTable {
|
|
public:
|
|
HandleTable() : length_(0), elems_(0), list_(NULL) { Resize(); }
|
|
~HandleTable() { delete[] list_; }
|
|
|
|
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
|
|
return *FindPointer(key, hash);
|
|
}
|
|
|
|
LRUHandle* Insert(LRUHandle* h) {
|
|
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
|
LRUHandle* old = *ptr;
|
|
h->next_hash = (old == NULL ? NULL : old->next_hash);
|
|
*ptr = h;
|
|
if (old == NULL) {
|
|
++elems_;
|
|
if (elems_ > length_) {
|
|
// Since each cache entry is fairly large, we aim for a small
|
|
// average linked list length (<= 1).
|
|
Resize();
|
|
}
|
|
}
|
|
return old;
|
|
}
|
|
|
|
LRUHandle* Remove(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = FindPointer(key, hash);
|
|
LRUHandle* result = *ptr;
|
|
if (result != NULL) {
|
|
*ptr = result->next_hash;
|
|
--elems_;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
// The table consists of an array of buckets where each bucket is
|
|
// a linked list of cache entries that hash into the bucket.
|
|
uint32_t length_;
|
|
uint32_t elems_;
|
|
LRUHandle** list_;
|
|
|
|
// Return a pointer to slot that points to a cache entry that
|
|
// matches key/hash. If there is no such cache entry, return a
|
|
// pointer to the trailing slot in the corresponding linked list.
|
|
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = &list_[hash & (length_ - 1)];
|
|
while (*ptr != NULL &&
|
|
((*ptr)->hash != hash || key != (*ptr)->key())) {
|
|
ptr = &(*ptr)->next_hash;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void Resize() {
|
|
uint32_t new_length = 4;
|
|
while (new_length < elems_) {
|
|
new_length *= 2;
|
|
}
|
|
LRUHandle** new_list = new LRUHandle*[new_length];
|
|
memset(new_list, 0, sizeof(new_list[0]) * new_length);
|
|
uint32_t count = 0;
|
|
for (uint32_t i = 0; i < length_; i++) {
|
|
LRUHandle* h = list_[i];
|
|
while (h != NULL) {
|
|
LRUHandle* next = h->next_hash;
|
|
uint32_t hash = h->hash;
|
|
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
|
|
h->next_hash = *ptr;
|
|
*ptr = h;
|
|
h = next;
|
|
count++;
|
|
}
|
|
}
|
|
assert(elems_ == count);
|
|
delete[] list_;
|
|
list_ = new_list;
|
|
length_ = new_length;
|
|
}
|
|
};
|
|
|
|
// A single shard of sharded cache.
|
|
class LRUCache {
|
|
public:
|
|
LRUCache();
|
|
~LRUCache();
|
|
|
|
// Separate from constructor so caller can easily make an array of LRUCache
|
|
void SetCapacity(size_t capacity) { capacity_ = capacity; }
|
|
|
|
// Like Cache methods, but with an extra "hash" parameter.
|
|
Cache::Handle* Insert(const Slice& key, uint32_t hash,
|
|
void* value, size_t charge,
|
|
void (*deleter)(const Slice& key, void* value));
|
|
Cache::Handle* Lookup(const Slice& key, uint32_t hash);
|
|
void Release(Cache::Handle* handle);
|
|
void Erase(const Slice& key, uint32_t hash);
|
|
void Prune();
|
|
size_t TotalCharge() const {
|
|
MutexLock l(&mutex_);
|
|
return usage_;
|
|
}
|
|
|
|
private:
|
|
void LRU_Remove(LRUHandle* e);
|
|
void LRU_Append(LRUHandle* e);
|
|
void Unref(LRUHandle* e);
|
|
|
|
// Initialized before use.
|
|
size_t capacity_;
|
|
|
|
// mutex_ protects the following state.
|
|
mutable port::Mutex mutex_;
|
|
size_t usage_;
|
|
|
|
// Dummy head of LRU list.
|
|
// lru.prev is newest entry, lru.next is oldest entry.
|
|
LRUHandle lru_;
|
|
|
|
HandleTable table_;
|
|
};
|
|
|
|
LRUCache::LRUCache()
|
|
: usage_(0) {
|
|
// Make empty circular linked list
|
|
lru_.next = &lru_;
|
|
lru_.prev = &lru_;
|
|
}
|
|
|
|
LRUCache::~LRUCache() {
|
|
for (LRUHandle* e = lru_.next; e != &lru_; ) {
|
|
LRUHandle* next = e->next;
|
|
assert(e->refs == 1); // Error if caller has an unreleased handle
|
|
Unref(e);
|
|
e = next;
|
|
}
|
|
}
|
|
|
|
void LRUCache::Unref(LRUHandle* e) {
|
|
assert(e->refs > 0);
|
|
e->refs--;
|
|
if (e->refs <= 0) {
|
|
usage_ -= e->charge;
|
|
(*e->deleter)(e->key(), e->value);
|
|
free(e);
|
|
}
|
|
}
|
|
|
|
void LRUCache::LRU_Remove(LRUHandle* e) {
|
|
e->next->prev = e->prev;
|
|
e->prev->next = e->next;
|
|
}
|
|
|
|
void LRUCache::LRU_Append(LRUHandle* e) {
|
|
// Make "e" newest entry by inserting just before lru_
|
|
e->next = &lru_;
|
|
e->prev = lru_.prev;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
}
|
|
|
|
Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
|
|
MutexLock l(&mutex_);
|
|
LRUHandle* e = table_.Lookup(key, hash);
|
|
if (e != NULL) {
|
|
e->refs++;
|
|
LRU_Remove(e);
|
|
LRU_Append(e);
|
|
}
|
|
return reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
|
|
void LRUCache::Release(Cache::Handle* handle) {
|
|
MutexLock l(&mutex_);
|
|
Unref(reinterpret_cast<LRUHandle*>(handle));
|
|
}
|
|
|
|
Cache::Handle* LRUCache::Insert(
|
|
const Slice& key, uint32_t hash, void* value, size_t charge,
|
|
void (*deleter)(const Slice& key, void* value)) {
|
|
MutexLock l(&mutex_);
|
|
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(
|
|
malloc(sizeof(LRUHandle)-1 + key.size()));
|
|
e->value = value;
|
|
e->deleter = deleter;
|
|
e->charge = charge;
|
|
e->key_length = key.size();
|
|
e->hash = hash;
|
|
e->refs = 2; // One from LRUCache, one for the returned handle
|
|
memcpy(e->key_data, key.data(), key.size());
|
|
LRU_Append(e);
|
|
usage_ += charge;
|
|
|
|
LRUHandle* old = table_.Insert(e);
|
|
if (old != NULL) {
|
|
LRU_Remove(old);
|
|
Unref(old);
|
|
}
|
|
|
|
while (usage_ > capacity_ && lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
LRU_Remove(old);
|
|
table_.Remove(old->key(), old->hash);
|
|
Unref(old);
|
|
}
|
|
|
|
return reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
|
|
void LRUCache::Erase(const Slice& key, uint32_t hash) {
|
|
MutexLock l(&mutex_);
|
|
LRUHandle* e = table_.Remove(key, hash);
|
|
if (e != NULL) {
|
|
LRU_Remove(e);
|
|
Unref(e);
|
|
}
|
|
}
|
|
|
|
void LRUCache::Prune() {
|
|
MutexLock l(&mutex_);
|
|
for (LRUHandle* e = lru_.next; e != &lru_; ) {
|
|
LRUHandle* next = e->next;
|
|
if (e->refs == 1) {
|
|
table_.Remove(e->key(), e->hash);
|
|
LRU_Remove(e);
|
|
Unref(e);
|
|
}
|
|
e = next;
|
|
}
|
|
}
|
|
|
|
static const int kNumShardBits = 4;
|
|
static const int kNumShards = 1 << kNumShardBits;
|
|
|
|
class ShardedLRUCache : public Cache {
|
|
private:
|
|
LRUCache shard_[kNumShards];
|
|
port::Mutex id_mutex_;
|
|
uint64_t last_id_;
|
|
|
|
static inline uint32_t HashSlice(const Slice& s) {
|
|
return Hash(s.data(), s.size(), 0);
|
|
}
|
|
|
|
static uint32_t Shard(uint32_t hash) {
|
|
return hash >> (32 - kNumShardBits);
|
|
}
|
|
|
|
public:
|
|
explicit ShardedLRUCache(size_t capacity)
|
|
: last_id_(0) {
|
|
const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards;
|
|
for (int s = 0; s < kNumShards; s++) {
|
|
shard_[s].SetCapacity(per_shard);
|
|
}
|
|
}
|
|
virtual ~ShardedLRUCache() { }
|
|
virtual Handle* Insert(const Slice& key, void* value, size_t charge,
|
|
void (*deleter)(const Slice& key, void* value)) {
|
|
const uint32_t hash = HashSlice(key);
|
|
return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter);
|
|
}
|
|
virtual Handle* Lookup(const Slice& key) {
|
|
const uint32_t hash = HashSlice(key);
|
|
return shard_[Shard(hash)].Lookup(key, hash);
|
|
}
|
|
virtual void Release(Handle* handle) {
|
|
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
|
|
shard_[Shard(h->hash)].Release(handle);
|
|
}
|
|
virtual void Erase(const Slice& key) {
|
|
const uint32_t hash = HashSlice(key);
|
|
shard_[Shard(hash)].Erase(key, hash);
|
|
}
|
|
virtual void* Value(Handle* handle) {
|
|
return reinterpret_cast<LRUHandle*>(handle)->value;
|
|
}
|
|
virtual uint64_t NewId() {
|
|
MutexLock l(&id_mutex_);
|
|
return ++(last_id_);
|
|
}
|
|
virtual void Prune() {
|
|
for (int s = 0; s < kNumShards; s++) {
|
|
shard_[s].Prune();
|
|
}
|
|
}
|
|
virtual size_t TotalCharge() const {
|
|
size_t total = 0;
|
|
for (int s = 0; s < kNumShards; s++) {
|
|
total += shard_[s].TotalCharge();
|
|
}
|
|
return total;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Cache* NewLRUCache(size_t capacity) {
|
|
return new ShardedLRUCache(capacity);
|
|
}
|
|
|
|
} // namespace leveldb
|