mongoose/examples/stm32/nucleo-f429zi-freertos-mip/mcu.h

153 lines
6.1 KiB
C
Raw Normal View History

2022-11-09 17:38:30 +08:00
// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
// https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
#pragma once
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include "stm32f429xx.h"
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((((bank) - 'A') << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
// 6.3.3: APB1 clock <= 45MHz; APB2 clock <= 90MHz
// 3.5.1, Table 11: configure flash latency (WS) in accordance to clock freq
// 33.4: The AHB clock must be at least 25 MHz when Ethernet is used
enum { APB1_PRE = 5 /* AHB clock / 4 */, APB2_PRE = 4 /* AHB clock / 2 */ };
enum { PLL_HSI = 16, PLL_M = 8, PLL_N = 180, PLL_P = 2 }; // Run at 180 Mhz
#define PLL_FREQ (PLL_HSI * PLL_N / PLL_M / PLL_P)
#define FLASH_LATENCY 5
#define FREQ (PLL_FREQ * 1000000) // CPU frequency
static inline void spin(volatile uint32_t count) {
while (count--) asm("nop");
}
static inline void systick_init(uint32_t ticks) {
if ((ticks - 1) > 0xffffff) return; // Systick timer is 24 bit
SysTick->LOAD = ticks - 1;
SysTick->VAL = 0;
SysTick->CTRL = BIT(0) | BIT(1) | BIT(2); // Enable systick
}
#define GPIO(bank) ((GPIO_TypeDef *) (GPIOA_BASE + 0x400 * (bank)))
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE };
enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN };
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull, uint8_t af) {
GPIO_TypeDef *gpio = GPIO(PINBANK(pin)); // GPIO bank
uint8_t n = (uint8_t) (PINNO(pin));
RCC->AHB1ENR |= BIT(PINBANK(pin)); // Enable GPIO clock
SETBITS(gpio->OTYPER, 1UL << n, ((uint32_t) type) << n);
SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2));
SETBITS(gpio->PUPDR, 3UL << (n * 2), ((uint32_t) pull) << (n * 2));
SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4),
((uint32_t) af) << ((n & 7) * 4));
SETBITS(gpio->MODER, 3UL << (n * 2), ((uint32_t) mode) << (n * 2));
}
#if 0
static inline void gpio_set_mode(uint16_t pin, uint8_t mode) {
GPIO_TypeDef *gpio = GPIO(PINBANK(pin)); // GPIO bank
int n = PINNO(pin); // Pin number
RCC->AHB1ENR |= BIT(PINBANK(pin)); // Enable GPIO clock
gpio->MODER &= ~(3U << (n * 2)); // Clear existing setting
gpio->MODER |= (mode & 3) << (n * 2); // Set new mode
}
static inline void gpio_set_speed(uint16_t pin, uint8_t speed) {
GPIO_TypeDef *gpio = GPIO(PINBANK(pin)); // GPIO bank
int n = PINNO(pin); // Pin number
//gpio->OSPEEDR &= ~(3UL << (n * 2));
//gpio->OSPEEDR |= ~(((uint32_t) speed) << (n * 2));
SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2));
}
static inline void gpio_set_af(uint16_t pin, uint8_t af) {
GPIO_TypeDef *gpio = GPIO(PINBANK(pin)); // GPIO bank
int n = PINNO(pin); // Pin number
//gpio->AFR[n >> 3] &= ~(15UL << ((n & 7) * 4));
//gpio->AFR[n >> 3] |= ((uint32_t) af_num) << ((n & 7) * 4);
SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4),
((uint32_t) af) << ((n & 7) * 4));
}
#endif
static inline void gpio_write(uint16_t pin, bool val) {
GPIO_TypeDef *gpio = GPIO(PINBANK(pin));
gpio->BSRR |= (1U << PINNO(pin)) << (val ? 0 : 16);
}
static inline void gpio_toggle(uint16_t pin) {
GPIO_TypeDef *gpio = GPIO(PINBANK(pin)); // GPIO bank
uint32_t mask = BIT(PINNO(pin));
gpio->BSRR |= mask << (gpio->ODR & mask ? 16 : 0);
}
#define UART1 USART1
#define UART2 USART2
#define UART3 USART3
static inline void uart_init(USART_TypeDef *uart, unsigned long baud) {
// https://www.st.com/resource/en/datasheet/stm32f429zi.pdf
uint8_t af = 0; // Alternate function
uint16_t rx = 0, tx = 0; // pins
if (uart == UART1) RCC->APB2ENR |= BIT(4);
if (uart == UART2) RCC->APB1ENR |= BIT(17);
if (uart == UART3) RCC->APB1ENR |= BIT(18);
if (uart == UART1) af = 4, tx = PIN('A', 9), rx = PIN('A', 10);
if (uart == UART2) af = 4, tx = PIN('A', 2), rx = PIN('A', 3);
if (uart == UART3) af = 7, tx = PIN('D', 8), rx = PIN('D', 9);
gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
uart->CR1 = 0; // Disable this UART
uart->BRR = FREQ / APB2_PRE / baud; // FREQ is a CPU frequency
uart->CR1 |= BIT(13) | BIT(2) | BIT(3); // Set UE, RE, TE
}
static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) {
uart->DR = byte;
while ((uart->SR & BIT(7)) == 0) spin(1);
}
static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline int uart_read_ready(USART_TypeDef *uart) {
return uart->SR & BIT(5); // If RXNE bit is set, data is ready
}
static inline uint8_t uart_read_byte(USART_TypeDef *uart) {
return (uint8_t) (uart->DR & 255);
}
static inline void clock_init(void) { // Set clock frequency
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
FLASH->ACR |= FLASH_LATENCY | BIT(8) |
BIT(9); // Flash latency, prefetch, Icache, Dcache
RCC->PLLCFGR &= ~((BIT(17) - 1)); // Clear PLL multipliers
RCC->PLLCFGR |= (((PLL_P - 2) / 2) & 3) << 16; // Set PLL_P
RCC->PLLCFGR |= PLL_M | (PLL_N << 6); // Set PLL_M and PLL_N
RCC->CR |= BIT(24); // Enable PLL
while ((RCC->CR & BIT(25)) == 0) spin(1); // Wait until done
RCC->CFGR = (APB1_PRE << 10) | (APB2_PRE << 13); // Set prescalers
RCC->CFGR |= 2; // Set clock source to PLL
while ((RCC->CFGR & 12) == 0) spin(1); // Wait until done
}