mongoose/examples/rp2040/pico-rmii/driver_rp2040_rmii.c

367 lines
14 KiB
C
Raw Normal View History

2023-01-04 01:14:54 +08:00
// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "hardware/dma.h"
#include "hardware/pio.h"
#include "pico/stdlib.h"
#include "driver_rp2040_rmii.h"
#include "mongoose.h"
#define RXSM 0
#define TXSM 1
#define SMITXSM 2
#define SMIRXSM 0 // pio1
static uint smi_wr_addr, smi_rd_addr;
static int dma_rx;
static int dma_tx;
static dma_channel_config dmacfg_rx;
static dma_channel_config dmacfg_tx;
// Max frame size with VLAN tag + CRC and excluding preamble
#define ETH_PKT_SIZE 1522
static uint8_t s_rxbuf[2][ETH_PKT_SIZE]; // ping-pong buffer
static uint8_t s_txbuf[ETH_PKT_SIZE];
static struct mip_if *s_ifp; // MIP interface
#define rmii_tx_wrap_target 0
#define rmii_tx_wrap 8
static const uint16_t rmii_tx_program_instructions[] = {
// .wrap_target
0xe000, // 0: set pins, 0 side 0
0x80a0, // 1: pull block side 0
0xe03d, // 2: set x, 29 side 0
0xf101, // 3: set pins, 1 side 1 [1]
0x1144, // 4: jmp x--, 4 side 1 [1]
0xf103, // 5: set pins, 3 side 1 [1]
0x7002, // 6: out pins, 2 side 1
0x10e6, // 7: jmp !osre, 6 side 1
// .wrap
};
static const struct pio_program rmii_tx_program = {
.instructions = rmii_tx_program_instructions,
.length = 9,
.origin = -1,
};
static inline pio_sm_config rmii_tx_program_get_default_config(uint addr) {
pio_sm_config c = pio_get_default_sm_config();
sm_config_set_wrap(&c, addr + rmii_tx_wrap_target, addr + rmii_tx_wrap);
sm_config_set_sideset(&c, 1, false, false);
return c;
}
static inline void rmii_tx_init(PIO pio, uint sm, uint addr, uint gpio) {
pio_sm_config c = rmii_tx_program_get_default_config(addr);
pio_gpio_init(pio, gpio);
pio_gpio_init(pio, gpio + 1);
pio_gpio_init(pio, gpio + 2);
sm_config_set_out_pins(&c, gpio, 2);
sm_config_set_set_pins(&c, gpio, 2);
sm_config_set_sideset_pins(&c, gpio + 2);
pio_sm_set_consecutive_pindirs(pio, sm, gpio, 3, true);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
sm_config_set_out_shift(&c, true, true, 8); // pull bytes, LSB first, auto
sm_config_set_clkdiv(&c,
5); // Run at 50/5 = 10MHz (2x 2-bit nibble data rate)
pio_sm_init(pio, sm, addr, &c);
pio_sm_set_enabled(pio, sm, true);
}
#define rmii_rx_wrap_target 0
#define rmii_rx_wrap 10
static const uint16_t rmii_rx_program_instructions[] = {
// .wrap_target
0x2122, // 0: wait 0 pin, 2 [1]
0x21a2, // 1: wait 1 pin, 2 [1]
0x21a0, // 2: wait 1 pin, 0 [1]
0x2121, // 3: wait 0 pin, 1 [1]
0x21a1, // 4: wait 1 pin, 1 [1]
0x4002, // 5: in pins, 2
0x00c5, // 6: jmp pin, 5
0x4002, // 7: in pins, 2
0x00c5, // 8: jmp pin, 5
0xa0c3, // 9: mov isr, null
0xc020, // 10: irq wait 0
// .wrap
};
static const struct pio_program rmii_rx_program = {
.instructions = rmii_rx_program_instructions,
.length = 11,
.origin = -1,
};
static inline pio_sm_config rmii_rx_program_get_default_config(uint addr) {
pio_sm_config c = pio_get_default_sm_config();
sm_config_set_wrap(&c, addr + rmii_rx_wrap_target, addr + rmii_rx_wrap);
return c;
}
static inline void rmii_rx_init(PIO pio, uint sm, uint addr, uint gpio) {
pio_sm_config c = rmii_rx_program_get_default_config(addr);
pio_gpio_init(pio, gpio);
pio_gpio_init(pio, gpio + 1);
pio_gpio_init(pio, gpio + 2);
sm_config_set_in_pins(&c, gpio);
pio_sm_set_consecutive_pindirs(pio, sm, gpio, 3, false);
sm_config_set_jmp_pin(&c, gpio + 2);
sm_config_set_in_shift(&c, true, true, 8); // push bytes, LSB first, auto
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
sm_config_set_clkdiv(&c,
5); // Run at 50/5 = 10MHz (2x 2-bit nibble data rate)
pio_sm_init(pio, sm, addr, &c);
pio_sm_set_enabled(pio, sm, true);
}
#define smi_wr_wrap_target 0
#define smi_wr_wrap 4
static const uint16_t smi_wr_program_instructions[] = {
// .wrap_target
0xe03f, // 0: set x, 31 side 0
0xe101, // 1: set pins, 1 side 0 [1]
0x1141, // 2: jmp x--, 1 side 1 [1]
0x6101, // 3: out pins, 1 side 0 [1]
0x1103, // 4: jmp 3 side 1 [1]
// .wrap
};
static const struct pio_program smi_wr_program = {
.instructions = smi_wr_program_instructions,
.length = 5,
.origin = -1,
};
static inline pio_sm_config smi_wr_program_get_default_config(uint addr) {
pio_sm_config c = pio_get_default_sm_config();
sm_config_set_wrap(&c, addr + smi_wr_wrap_target, addr + smi_wr_wrap);
sm_config_set_sideset(&c, 1, false, false);
return c;
}
#define smi_rd_wrap_target 13
#define smi_rd_wrap 13
static const uint16_t smi_rd_program_instructions[] = {
0xe03f, // 0: set x, 31 side 0
0xe101, // 1: set pins, 1 side 0 [1]
0x1141, // 2: jmp x--, 1 side 1 [1]
0xf02d, // 3: set x, 13 side 1
0x6101, // 4: out pins, 1 side 0 [1]
0x1144, // 5: jmp x--, 4 side 1 [1]
0xe180, // 6: set pindirs, 0 side 0 [1]
0xf101, // 7: set pins, 1 side 1 [1]
0xa142, // 8: nop side 0 [1]
0xf12f, // 9: set x, 15 side 1 [1]
0xa042, // 10: nop side 0
0x4001, // 11: in pins, 1 side 0
0x114a, // 12: jmp x--, 10 side 1 [1]
// .wrap_target
0xf081, // 13: set pindirs, 1 side 1
// .wrap
};
static const struct pio_program smi_rd_program = {
.instructions = smi_rd_program_instructions,
.length = 14,
.origin = -1,
};
static inline pio_sm_config smi_rd_program_get_default_config(uint addr) {
pio_sm_config c = pio_get_default_sm_config();
sm_config_set_wrap(&c, addr + smi_rd_wrap_target, addr + smi_rd_wrap);
sm_config_set_sideset(&c, 1, false, false);
return c;
}
static inline void smi_wr_init(PIO pio, uint sm, uint addr, uint gpio) {
pio_gpio_init(pio, gpio);
pio_gpio_init(pio, gpio + 1);
pio_sm_config c = smi_wr_program_get_default_config(addr);
sm_config_set_out_pins(&c, gpio, 1);
sm_config_set_set_pins(&c, gpio, 1);
sm_config_set_sideset_pins(&c, gpio + 1);
pio_sm_set_consecutive_pindirs(pio, sm, gpio, 2, true);
sm_config_set_out_shift(&c, false, true,
16); // pull half-words, MSB first, auto
sm_config_set_clkdiv(&c, 6); // Run at 50/6 = <10MHz (4x data rate)
pio_sm_init(pio, sm, addr, &c);
}
static inline void smi_rd_init(PIO pio, uint sm, uint addr, uint gpio) {
pio_gpio_init(pio, gpio);
pio_gpio_init(pio, gpio + 1);
pio_sm_config c = smi_rd_program_get_default_config(addr);
sm_config_set_in_pins(&c, gpio);
sm_config_set_out_pins(&c, gpio, 1);
sm_config_set_set_pins(&c, gpio, 1);
sm_config_set_sideset_pins(&c, gpio + 1);
pio_sm_set_consecutive_pindirs(pio, sm, gpio, 2, true);
sm_config_set_out_shift(&c, false, true,
16); // pull half-words, MSB first, auto
sm_config_set_in_shift(&c, false, true,
16); // push half-words, MSB first, auto
sm_config_set_clkdiv(&c, 6); // Run at 50/6 = <10MHz (4x data rate)
pio_sm_init(pio, sm, addr, &c);
}
static inline uint32_t crc_calc(const uint8_t *data, int length) {
static const uint32_t crclut[16] = {
// table for polynomial 0xEDB88320 (reflected)
0x00000000, 0x1DB71064, 0x3B6E20C8, 0x26D930AC, 0x76DC4190, 0x6B6B51F4,
0x4DB26158, 0x5005713C, 0xEDB88320, 0xF00F9344, 0xD6D6A3E8, 0xCB61B38C,
0x9B64C2B0, 0x86D3D2D4, 0xA00AE278, 0xBDBDF21C};
uint32_t crc = 0xFFFFFFFF;
while (--length >= 0) {
uint8_t byte = *data++;
crc = crclut[(crc ^ byte) & 0x0F] ^ (crc >> 4);
crc = crclut[(crc ^ (byte >> 4)) & 0x0F] ^ (crc >> 4);
}
return ~crc;
}
static void eth_write_phy(int addr, int reg, int val, uint8_t gpio) {
uint16_t op = 0x5002 | (addr << 7) | (reg << 2); // b0101aaaaarrrrr10
smi_wr_init(pio0, SMITXSM, smi_wr_addr, gpio);
pio_sm_put(pio0, SMITXSM, op << 16);
pio_sm_put(pio0, SMITXSM, (uint16_t) val << 16);
pio_sm_set_enabled(pio0, SMITXSM, true);
}
static uint16_t eth_read_phy(uint addr, uint reg, uint8_t gpio) {
uint16_t op = 0x6000 | (addr << 7) | (reg << 2); // b0110aaaaarrrrr00
smi_rd_init(pio1, SMIRXSM, smi_rd_addr, gpio);
pio_sm_put(pio1, SMIRXSM, op << 16);
pio_sm_set_enabled(pio1, SMIRXSM, true);
uint16_t val = (uint16_t) pio_sm_get_blocking(pio1, SMIRXSM);
pio_sm_set_enabled(pio1, SMIRXSM, false);
return val;
}
static void rx_irq(void);
static bool mip_driver_rp2040_rmii_init(struct mip_if *ifp) {
struct mip_driver_rp2040_rmii_data *d =
(struct mip_driver_rp2040_rmii_data *) ifp->driver_data;
uint rx_sm_addr, tx_sm_addr;
s_ifp = ifp;
if (ifp->queue.len == 0) ifp->queue.len = 8192;
rx_sm_addr = pio_add_program(pio0, &rmii_rx_program);
tx_sm_addr = pio_add_program(pio0, &rmii_tx_program);
smi_wr_addr = pio_add_program(pio0, &smi_wr_program);
smi_rd_addr = pio_add_program(pio1, &smi_rd_program);
dma_tx = dma_claim_unused_channel(true);
dmacfg_tx = dma_channel_get_default_config(dma_tx);
channel_config_set_read_increment(&dmacfg_tx, true); // read from memory
channel_config_set_write_increment(&dmacfg_tx, false); // write to FIFO
channel_config_set_dreq(&dmacfg_tx, pio_get_dreq(pio0, TXSM, true));
channel_config_set_transfer_data_size(&dmacfg_tx,
DMA_SIZE_8); // transfer bytes
rmii_tx_init(pio0, TXSM, tx_sm_addr, d->tx0);
eth_write_phy(d->phy_addr, 4, 0x61,
d->mdio); // Auto Negotiation Advertisement Register: enable
// only 10BASE-T full and half duplex (two-pair), use
// IEEE 802.3 format
sleep_us(31); // give some time for PIO to work (64 bits @2.5MHz = 25.6 us)
eth_write_phy(d->phy_addr, 0, 0x1000,
d->mdio); // Basic Control Register: enable Auto-Negotiation
sleep_us(31);
dma_rx = dma_claim_unused_channel(true);
dmacfg_rx = dma_channel_get_default_config(dma_rx);
channel_config_set_read_increment(&dmacfg_rx, false); // read from FIFO
channel_config_set_write_increment(&dmacfg_rx,
true); // write to memory, increment
channel_config_set_dreq(&dmacfg_rx, pio_get_dreq(pio0, RXSM, false));
channel_config_set_transfer_data_size(&dmacfg_rx,
DMA_SIZE_8); // transfer bytes
dma_channel_configure(dma_rx, &dmacfg_rx, s_rxbuf[0],
((uint8_t *) &pio0->rxf[RXSM]) + 3, ETH_PKT_SIZE, true);
pio_set_irq0_source_enabled(pio0, pis_interrupt0,
true); // enable SM0 on PIO0_IRQ_0
irq_set_exclusive_handler(7, rx_irq); // set handler for PIO0_IRQ_0
irq_set_enabled(7, true); // enable it
rmii_rx_init(pio0, RXSM, rx_sm_addr, d->rx0);
return true;
}
static size_t mip_driver_rp2040_rmii_tx(const void *buf, size_t len,
struct mip_if *ifp) {
dma_channel_wait_for_finish_blocking(dma_tx);
memset(s_txbuf, 0, 60); // pre-pad
memcpy(s_txbuf, buf, len);
if (len < 60) len = 60; // pad
uint32_t crc = crc_calc(s_txbuf, len); // host is little-endian
memcpy(s_txbuf + len, (uint8_t *) &crc, 4);
len += 4;
sleep_us(10); // enforce IFG in case software has been lightning fast...
dma_channel_configure(dma_tx, &dmacfg_tx, ((uint8_t *) &pio0->txf[TXSM]) + 3,
s_txbuf, len, true);
return len;
}
static uint32_t s_rxno;
// The max amount of time we should keep the PIO state machine stopped is the
// IFG time (10us) and that includes irq latency
static void rx_irq(void) {
dma_channel_hw_t *hw = dma_channel_hw_addr(dma_rx);
uint32_t rxno =
(s_rxno + 1) &
1; // 2 buffers, switch to the available one as fast as possible
size_t len = ETH_PKT_SIZE - hw->transfer_count;
dma_channel_abort(dma_rx);
dma_channel_set_write_addr(dma_rx, s_rxbuf[rxno], true); // restart DMA
pio_interrupt_clear(pio0,
0); // ACK PIO IRQ so the state machine resumes receiving
// NOTE(scaprile) Here we could check addressing to avoid queuing frames not
// for us, or we can defer that for later as we do with CRC The max amount of
// time we can linger here is what it takes for the other buffer to fill
// (<8us) and that includes irq chaining
if (len >= 64 && len <= ETH_PKT_SIZE)
mip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
s_rxno = rxno;
}
static size_t mip_driver_rp2040_rmii_rx(void *buf, size_t buflen, struct mip_if *ifp) {
size_t len = mip_qread(buf, ifp);
if (len == 0) return 0;
len -= 4; // exclude CRC from frame length
uint32_t crc = crc_calc(buf, len); // calculate CRC and compare
// NOTE(scaprile) Here we could check addressing to avoid delivering frames
// not for us, though MIP already does that (now ?)
if (memcmp(&((uint8_t *) buf)[len], &crc,
sizeof(crc))) // host is little-endian
return 0;
return len;
}
static bool mip_driver_rp2040_rmii_up(struct mip_if *ifp) {
struct mip_driver_rp2040_rmii_data *d =
(struct mip_driver_rp2040_rmii_data *) ifp->driver_data;
uint32_t bsr =
eth_read_phy(d->phy_addr, 1, d->mdio); // Basic Status Register
return (bsr & (1 << 2)) ? 1 : 0; // check Link Status flag
}
struct mip_driver mip_driver_rp2040_rmii = {
mip_driver_rp2040_rmii_init,
mip_driver_rp2040_rmii_tx,
mip_driver_rp2040_rmii_rx,
mip_driver_rp2040_rmii_up,
};