mirror of
https://github.com/cesanta/mongoose.git
synced 2024-12-24 00:07:49 +08:00
175 lines
6.8 KiB
C
175 lines
6.8 KiB
C
|
// Copyright (c) 2022-2023 Cesanta Software Limited
|
||
|
// All rights reserved
|
||
|
//
|
||
|
// Datasheet: RM0481, devboard manual: UM3115
|
||
|
// https://www.st.com/resource/en/reference_manual/rm0481-stm32h563h573-and-stm32h562-armbased-32bit-mcus-stmicroelectronics.pdf
|
||
|
// Alternate functions: https://www.st.com/resource/en/datasheet/stm32h563vi.pdf
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <stm32h563xx.h>
|
||
|
|
||
|
#include <stdbool.h>
|
||
|
#include <stdint.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#define BIT(x) (1UL << (x))
|
||
|
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
|
||
|
#define PIN(bank, num) ((((bank) - 'A') << 8) | (num))
|
||
|
#define PINNO(pin) (pin & 255)
|
||
|
#define PINBANK(pin) (pin >> 8)
|
||
|
|
||
|
#define LED1 PIN('B', 0) // On-board LED pin (green)
|
||
|
#define LED2 PIN('F', 4) // On-board LED pin (yellow)
|
||
|
#define LED3 PIN('G', 4) // On-board LED pin (red)
|
||
|
|
||
|
#define LED LED2 // Use yellow LED for blinking
|
||
|
|
||
|
// System clock (11.4, Figure 48; 11.4.5, Figure 51; 11.4.8
|
||
|
// CPU_FREQUENCY <= 250 MHz; (SYS_FREQUENCY / HPRE) ; hclk = CPU_FREQUENCY
|
||
|
// APB clocks <= 250 MHz. Configure flash latency (WS) in accordance to hclk
|
||
|
// freq (7.3.4, Table 37)
|
||
|
enum {
|
||
|
HPRE = 7, // register value, divisor value = BIT(value - 7) = / 1
|
||
|
PPRE1 = 4, // register values, divisor value = BIT(value - 3) = / 2
|
||
|
PPRE2 = 4,
|
||
|
PPRE3 = 4,
|
||
|
};
|
||
|
// Make sure your chip package uses the internal LDO, otherwise set PLL1_N = 200
|
||
|
enum { PLL1_HSI = 64, PLL1_M = 32, PLL1_N = 250, PLL1_P = 2 };
|
||
|
#define FLASH_LATENCY 0x25 // WRHIGHFREQ LATENCY
|
||
|
#define CPU_FREQUENCY ((PLL1_HSI * PLL1_N / PLL1_M / PLL1_P / (BIT(HPRE - 7))) * 1000000)
|
||
|
#define AHB_FREQUENCY CPU_FREQUENCY
|
||
|
#define APB2_FREQUENCY (AHB_FREQUENCY / (BIT(PPRE2 - 3)))
|
||
|
#define APB1_FREQUENCY (AHB_FREQUENCY / (BIT(PPRE1 - 3)))
|
||
|
|
||
|
static inline void spin(volatile uint32_t n) {
|
||
|
while (n--) (void) 0;
|
||
|
}
|
||
|
|
||
|
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
|
||
|
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
|
||
|
enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE };
|
||
|
enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN };
|
||
|
|
||
|
#define GPIO(N) ((GPIO_TypeDef *) ((GPIOA_BASE_NS) + 0x400 * (N)))
|
||
|
|
||
|
static GPIO_TypeDef *gpio_bank(uint16_t pin) {
|
||
|
return GPIO(PINBANK(pin));
|
||
|
}
|
||
|
static inline void gpio_toggle(uint16_t pin) {
|
||
|
GPIO_TypeDef *gpio = gpio_bank(pin);
|
||
|
uint32_t mask = BIT(PINNO(pin));
|
||
|
gpio->BSRR = mask << (gpio->ODR & mask ? 16 : 0);
|
||
|
}
|
||
|
static inline int gpio_read(uint16_t pin) {
|
||
|
return gpio_bank(pin)->IDR & BIT(PINNO(pin)) ? 1 : 0;
|
||
|
}
|
||
|
static inline void gpio_write(uint16_t pin, bool val) {
|
||
|
GPIO_TypeDef *gpio = gpio_bank(pin);
|
||
|
gpio->BSRR = BIT(PINNO(pin)) << (val ? 0 : 16);
|
||
|
}
|
||
|
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
|
||
|
uint8_t speed, uint8_t pull, uint8_t af) {
|
||
|
GPIO_TypeDef *gpio = gpio_bank(pin);
|
||
|
uint8_t n = (uint8_t) (PINNO(pin));
|
||
|
RCC->AHB2ENR |= BIT(PINBANK(pin)); // Enable GPIO clock
|
||
|
SETBITS(gpio->OTYPER, 1UL << n, ((uint32_t) type) << n);
|
||
|
SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2));
|
||
|
SETBITS(gpio->PUPDR, 3UL << (n * 2), ((uint32_t) pull) << (n * 2));
|
||
|
SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4),
|
||
|
((uint32_t) af) << ((n & 7) * 4));
|
||
|
SETBITS(gpio->MODER, 3UL << (n * 2), ((uint32_t) mode) << (n * 2));
|
||
|
}
|
||
|
static inline void gpio_input(uint16_t pin) {
|
||
|
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
|
||
|
GPIO_PULL_NONE, 0);
|
||
|
}
|
||
|
static inline void gpio_output(uint16_t pin) {
|
||
|
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
|
||
|
GPIO_PULL_NONE, 0);
|
||
|
}
|
||
|
|
||
|
#ifndef UART_DEBUG
|
||
|
#define UART_DEBUG USART3
|
||
|
#endif
|
||
|
|
||
|
static inline bool uart_init(USART_TypeDef *uart, unsigned long baud) {
|
||
|
uint8_t af = 7; // Alternate function
|
||
|
uint16_t rx = 0, tx = 0; // pins
|
||
|
uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1
|
||
|
|
||
|
if (uart == USART1) {
|
||
|
freq = APB2_FREQUENCY, RCC->APB2ENR |= RCC_APB2ENR_USART1EN;
|
||
|
tx = PIN('A', 9), rx = PIN('A', 10);
|
||
|
} else if (uart == USART2) {
|
||
|
freq = APB1_FREQUENCY, RCC->APB1LENR |= RCC_APB1LENR_USART2EN;
|
||
|
tx = PIN('A', 2), rx = PIN('A', 3);
|
||
|
} else if (uart == USART3) {
|
||
|
freq = APB1_FREQUENCY, RCC->APB1LENR |= RCC_APB1LENR_USART3EN;
|
||
|
tx = PIN('D', 8), rx = PIN('D', 9);
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
|
||
|
gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
|
||
|
uart->CR1 = 0; // Disable UART
|
||
|
uart->BRR = freq / baud; // Set baud rate
|
||
|
uart->CR1 = USART_CR1_RE | USART_CR1_TE; // Set mode to TX & RX
|
||
|
uart->CR1 |= USART_CR1_UE; // Enable UART
|
||
|
return true;
|
||
|
}
|
||
|
static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) {
|
||
|
uart->TDR = byte;
|
||
|
while ((uart->ISR & BIT(7)) == 0) spin(1);
|
||
|
}
|
||
|
static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) {
|
||
|
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
|
||
|
}
|
||
|
static inline int uart_read_ready(USART_TypeDef *uart) {
|
||
|
return uart->ISR & BIT(5); // If RXNE bit is set, data is ready
|
||
|
}
|
||
|
static inline uint8_t uart_read_byte(USART_TypeDef *uart) {
|
||
|
return (uint8_t) (uart->RDR & 255);
|
||
|
}
|
||
|
|
||
|
static inline void rng_init(void) {
|
||
|
RCC->CCIPR5 |= RCC_CCIPR5_RNGSEL_0; // RNG clock source pll1_q_ck
|
||
|
RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN; // Enable RNG clock
|
||
|
RNG->CR |= RNG_CR_RNGEN; // Enable RNG
|
||
|
}
|
||
|
static inline uint32_t rng_read(void) {
|
||
|
while ((RNG->SR & RNG_SR_DRDY) == 0) spin(1);
|
||
|
return RNG->DR;
|
||
|
}
|
||
|
|
||
|
static inline bool ldo_is_on(void) {
|
||
|
return (PWR->SCCR & PWR_SCCR_LDOEN) == PWR_SCCR_LDOEN;
|
||
|
}
|
||
|
|
||
|
static inline void ethernet_init(void) {
|
||
|
// Initialise Ethernet. Enable MAC GPIO pins, see UM3115 section 10.7
|
||
|
uint16_t pins[] = {PIN('A', 1), PIN('A', 2), PIN('A', 7),
|
||
|
PIN('B', 15), PIN('C', 1), PIN('C', 4),
|
||
|
PIN('C', 5), PIN('G', 11), PIN('G', 13)};
|
||
|
for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) {
|
||
|
gpio_init(pins[i], GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_INSANE,
|
||
|
GPIO_PULL_NONE, 11); // 11 is the Ethernet function
|
||
|
}
|
||
|
NVIC_EnableIRQ(ETH_IRQn); // Setup Ethernet IRQ handler
|
||
|
RCC->APB3ENR |= RCC_APB3ENR_SBSEN; // Enable SBS clock
|
||
|
SETBITS(SBS->PMCR, SBS_PMCR_ETH_SEL_PHY, SBS_PMCR_ETH_SEL_PHY_2); // RMII
|
||
|
RCC->AHB1ENR |= RCC_AHB1ENR_ETHEN | RCC_AHB1ENR_ETHRXEN | RCC_AHB1ENR_ETHTXEN;
|
||
|
}
|
||
|
|
||
|
#define UUID ((uint32_t *) UID_BASE) // Unique 96-bit chip ID. TRM 59.1
|
||
|
|
||
|
// Helper macro for MAC generation, byte reads not allowed
|
||
|
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
|
||
|
{ \
|
||
|
2, UUID[0] & 255, (UUID[0] >> 10) & 255, (UUID[0] >> 19) & 255, \
|
||
|
UUID[1] & 255, UUID[2] & 255 \
|
||
|
}
|