STM32F OTA support

This commit is contained in:
robert 2024-10-25 10:55:01 -04:00
parent d3ffe8c647
commit 3e55478b3b
4 changed files with 463 additions and 0 deletions

View File

@ -6042,6 +6042,237 @@ bool mg_ota_end(void) {
} }
#endif #endif
#ifdef MG_ENABLE_LINES
#line 1 "src/ota_stm32f.c"
#endif
#if MG_OTA == MG_OTA_STM32F
static bool mg_stm32f_write(void *, const void *, size_t);
static bool mg_stm32f_swap(void);
static struct mg_flash s_mg_flash_stm32f = {
(void *) 0x08000000, // Start
0, // Size, FLASH_SIZE_REG
0, // Irregular sector size
32, // Align, 256 bit
mg_stm32f_write,
mg_stm32f_swap,
};
#define MG_FLASH_BASE 0x40023c00
#define MG_FLASH_KEYR 0x04
#define MG_FLASH_SR 0x0c
#define MG_FLASH_CR 0x10
#define MG_FLASH_OPTCR 0x14
#define MG_FLASH_SIZE_REG_F7 0x1FF0F442
#define MG_FLASH_SIZE_REG_F4 0x1FFF7A22
#define STM_DBGMCU_IDCODE 0xE0042000
#define STM_DEV_ID (MG_REG(STM_DBGMCU_IDCODE) & (MG_BIT(12) - 1))
#define SYSCFG_MEMRMP 0x40013800
#define MG_FLASH_SIZE_REG_LOCATION \
((STM_DEV_ID >= 0x449) ? MG_FLASH_SIZE_REG_F7 : MG_FLASH_SIZE_REG_F4)
static size_t flash_size(void) {
return (MG_REG(MG_FLASH_SIZE_REG_LOCATION) & 0xFFFF) * 1024;
}
MG_IRAM static int is_dualbank(void) {
// only F42x/F43x series (0x419) support dual bank
return STM_DEV_ID == 0x419;
}
MG_IRAM static void flash_unlock(void) {
static bool unlocked = false;
if (unlocked == false) {
MG_REG(MG_FLASH_BASE + MG_FLASH_KEYR) = 0x45670123;
MG_REG(MG_FLASH_BASE + MG_FLASH_KEYR) = 0xcdef89ab;
unlocked = true;
}
}
#define MG_FLASH_CONFIG_16_64_128 1 // used by STM32F7
#define MG_FLASH_CONFIG_32_128_256 2 // used by STM32F4 and F2
MG_IRAM static bool flash_page_start(volatile uint32_t *dst) {
char *base = (char *) s_mg_flash_stm32f.start;
char *end = base + s_mg_flash_stm32f.size;
if (is_dualbank() && dst >= (uint32_t *) (base + (end - base) / 2)) {
dst = (uint32_t *) ((uint32_t) dst - (end - base) / 2);
}
uint32_t flash_config = MG_FLASH_CONFIG_16_64_128;
if (STM_DEV_ID >= 0x449) {
flash_config = MG_FLASH_CONFIG_32_128_256;
}
volatile char *p = (char *) dst;
if (p >= base && p < end) {
if (p < base + 16 * 1024 * 4 * flash_config) {
if ((p - base) % (16 * 1024 * flash_config) == 0) return true;
} else if (p == base + 16 * 1024 * 4 * flash_config) {
return true;
} else if ((p - base) % (128 * 1024 * flash_config) == 0)
return true;
}
return false;
}
MG_IRAM static int flash_sector(volatile uint32_t *addr) {
char *base = (char *) s_mg_flash_stm32f.start;
char *end = base + s_mg_flash_stm32f.size;
bool addr_in_bank_2 = false;
if (is_dualbank() && addr >= (uint32_t *) (base + (end - base) / 2)) {
addr = (uint32_t *) ((uint32_t) addr - (end - base) / 2);
addr_in_bank_2 = true;
}
volatile char *p = (char *) addr;
uint32_t flash_config = MG_FLASH_CONFIG_16_64_128;
if (STM_DEV_ID >= 0x449) {
flash_config = MG_FLASH_CONFIG_32_128_256;
}
int sector = -1;
if (p >= base && p < end) {
if (p < base + 16 * 1024 * 4 * flash_config) {
sector = (p - base) / (16 * 1024 * flash_config);
} else if (p >= base + 64 * 1024 * flash_config &&
p < base + 128 * 1024 * flash_config) {
sector = 4;
} else {
sector = (p - base) / (128 * 1024 * flash_config) + 4;
}
}
if (sector == -1) return -1;
if (addr_in_bank_2) sector += 12; // a bank has 12 sectors
return sector;
}
MG_IRAM static bool flash_is_err(void) {
return MG_REG(MG_FLASH_BASE + MG_FLASH_SR) & ((MG_BIT(7) - 1) << 1);
}
MG_IRAM static void flash_wait(void) {
while (MG_REG(MG_FLASH_BASE + MG_FLASH_SR) & (MG_BIT(16))) (void) 0;
}
MG_IRAM static void flash_clear_err(void) {
flash_wait(); // Wait until ready
MG_REG(MG_FLASH_BASE + MG_FLASH_SR) = 0xf2; // Clear all errors
}
__attribute__((noinline)) MG_IRAM static bool mg_stm32f_erase(void *addr) {
bool ok = false;
if (flash_page_start(addr) == false) {
MG_ERROR(("%p is not on a sector boundary", addr));
} else {
int sector = flash_sector(addr);
if (sector < 0) return false;
uint32_t sector_reg = sector;
if (is_dualbank() && sector >= 12) {
// 3.9.8 Flash control register (FLASH_CR) for F42xxx and F43xxx
// BITS[7:3]
sector_reg -= 12;
sector_reg |= MG_BIT(4);
}
flash_unlock();
flash_wait();
uint32_t cr = MG_BIT(1); // SER
cr |= MG_BIT(16); // STRT
cr |= (sector_reg & 31) << 3; // sector
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) = cr;
ok = !flash_is_err();
MG_DEBUG(("Erase sector %lu @ %p %s. CR %#lx SR %#lx", sector, addr,
ok ? "ok" : "fail", MG_REG(MG_FLASH_BASE + MG_FLASH_CR),
MG_REG(MG_FLASH_BASE + MG_FLASH_SR)));
// After we have erased the sector, set CR flags for programming
// 2 << 8 is word write parallelism, bit(0) is PG. RM0385, section 3.7.5
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) = MG_BIT(0) | (2 << 8);
flash_clear_err();
}
return ok;
}
MG_IRAM static bool mg_stm32f_swap(void) {
// STM32 F42x/F43x support dual bank, however, the memory mapping
// change will not be carried through a hard reset. Therefore, we will use
// the single bank approach for this family as well.
return true;
}
static bool s_flash_irq_disabled;
__attribute__((noinline)) MG_IRAM static bool mg_stm32f_write(void *addr,
const void *buf,
size_t len) {
if ((len % s_mg_flash_stm32f.align) != 0) {
MG_ERROR(("%lu is not aligned to %lu", len, s_mg_flash_stm32f.align));
return false;
}
uint32_t *dst = (uint32_t *) addr;
uint32_t *src = (uint32_t *) buf;
uint32_t *end = (uint32_t *) ((char *) buf + len);
bool ok = true;
MG_ARM_DISABLE_IRQ();
flash_unlock();
flash_clear_err();
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) = MG_BIT(0) | MG_BIT(9); // PG, 32-bit
flash_wait();
MG_DEBUG(("Writing flash @ %p, %lu bytes", addr, len));
while (ok && src < end) {
if (flash_page_start(dst) && mg_stm32f_erase(dst) == false) break;
*(volatile uint32_t *) dst++ = *src++;
MG_DSB(); // ensure flash is written with no errors
flash_wait();
if (flash_is_err()) ok = false;
}
if (!s_flash_irq_disabled) MG_ARM_ENABLE_IRQ();
MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst,
ok ? "ok" : "fail", MG_REG(MG_FLASH_BASE + MG_FLASH_CR),
MG_REG(MG_FLASH_BASE + MG_FLASH_SR)));
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) &= ~MG_BIT(0); // Clear programming flag
return ok;
}
// just overwrite instead of swap
__attribute__((noinline)) MG_IRAM void single_bank_swap(char *p1, char *p2,
size_t size) {
// no stdlib calls here
mg_stm32f_write(p1, p2, size);
*(volatile unsigned long *) 0xe000ed0c = 0x5fa0004;
}
bool mg_ota_begin(size_t new_firmware_size) {
s_mg_flash_stm32f.size = flash_size();
return mg_ota_flash_begin(new_firmware_size, &s_mg_flash_stm32f);
}
bool mg_ota_write(const void *buf, size_t len) {
return mg_ota_flash_write(buf, len, &s_mg_flash_stm32f);
}
bool mg_ota_end(void) {
if (mg_ota_flash_end(&s_mg_flash_stm32f)) {
// Swap partitions. Pray power does not go away
MG_INFO(("Swapping partitions, size %u (%u sectors)",
s_mg_flash_stm32f.size, STM_DEV_ID == 0x449 ? 8 : 12));
MG_INFO(("Do NOT power off..."));
mg_log_level = MG_LL_NONE;
s_flash_irq_disabled = true;
char *p1 = (char *) s_mg_flash_stm32f.start;
char *p2 = p1 + s_mg_flash_stm32f.size / 2;
size_t size = s_mg_flash_stm32f.size / 2;
// Runs in RAM, will reset when finished
single_bank_swap(p1, p2, size);
}
return false;
}
#endif
#ifdef MG_ENABLE_LINES #ifdef MG_ENABLE_LINES
#line 1 "src/ota_stm32h5.c" #line 1 "src/ota_stm32h5.c"
#endif #endif

View File

@ -2643,6 +2643,7 @@ void mg_rpc_list(struct mg_rpc_req *r);
#define MG_OTA_NONE 0 // No OTA support #define MG_OTA_NONE 0 // No OTA support
#define MG_OTA_STM32H5 1 // STM32 H5 #define MG_OTA_STM32H5 1 // STM32 H5
#define MG_OTA_STM32H7 2 // STM32 H7 #define MG_OTA_STM32H7 2 // STM32 H7
#define MG_OTA_STM32F 3 // STM32 F7/F4/F2
#define MG_OTA_CH32V307 100 // WCH CH32V307 #define MG_OTA_CH32V307 100 // WCH CH32V307
#define MG_OTA_U2A 200 // Renesas U2A16, U2A8, U2A6 #define MG_OTA_U2A 200 // Renesas U2A16, U2A8, U2A6
#define MG_OTA_RT1020 300 // IMXRT1020 #define MG_OTA_RT1020 300 // IMXRT1020
@ -2670,6 +2671,7 @@ bool mg_ota_write(const void *buf, size_t len); // Write chunk, aligned to 1k
bool mg_ota_end(void); // Stop writing bool mg_ota_end(void); // Stop writing
#if MG_OTA != MG_OTA_NONE && MG_OTA != MG_OTA_CUSTOM #if MG_OTA != MG_OTA_NONE && MG_OTA != MG_OTA_CUSTOM
struct mg_flash { struct mg_flash {

View File

@ -8,6 +8,7 @@
#define MG_OTA_NONE 0 // No OTA support #define MG_OTA_NONE 0 // No OTA support
#define MG_OTA_STM32H5 1 // STM32 H5 #define MG_OTA_STM32H5 1 // STM32 H5
#define MG_OTA_STM32H7 2 // STM32 H7 #define MG_OTA_STM32H7 2 // STM32 H7
#define MG_OTA_STM32F 3 // STM32 F7/F4/F2
#define MG_OTA_CH32V307 100 // WCH CH32V307 #define MG_OTA_CH32V307 100 // WCH CH32V307
#define MG_OTA_U2A 200 // Renesas U2A16, U2A8, U2A6 #define MG_OTA_U2A 200 // Renesas U2A16, U2A8, U2A6
#define MG_OTA_RT1020 300 // IMXRT1020 #define MG_OTA_RT1020 300 // IMXRT1020

229
src/ota_stm32f.c Normal file
View File

@ -0,0 +1,229 @@
#include "flash.h"
#include "log.h"
#include "ota.h"
#if MG_OTA == MG_OTA_STM32F
static bool mg_stm32f_write(void *, const void *, size_t);
static bool mg_stm32f_swap(void);
static struct mg_flash s_mg_flash_stm32f = {
(void *) 0x08000000, // Start
0, // Size, FLASH_SIZE_REG
0, // Irregular sector size
32, // Align, 256 bit
mg_stm32f_write,
mg_stm32f_swap,
};
#define MG_FLASH_BASE 0x40023c00
#define MG_FLASH_KEYR 0x04
#define MG_FLASH_SR 0x0c
#define MG_FLASH_CR 0x10
#define MG_FLASH_OPTCR 0x14
#define MG_FLASH_SIZE_REG_F7 0x1FF0F442
#define MG_FLASH_SIZE_REG_F4 0x1FFF7A22
#define STM_DBGMCU_IDCODE 0xE0042000
#define STM_DEV_ID (MG_REG(STM_DBGMCU_IDCODE) & (MG_BIT(12) - 1))
#define SYSCFG_MEMRMP 0x40013800
#define MG_FLASH_SIZE_REG_LOCATION \
((STM_DEV_ID >= 0x449) ? MG_FLASH_SIZE_REG_F7 : MG_FLASH_SIZE_REG_F4)
static size_t flash_size(void) {
return (MG_REG(MG_FLASH_SIZE_REG_LOCATION) & 0xFFFF) * 1024;
}
MG_IRAM static int is_dualbank(void) {
// only F42x/F43x series (0x419) support dual bank
return STM_DEV_ID == 0x419;
}
MG_IRAM static void flash_unlock(void) {
static bool unlocked = false;
if (unlocked == false) {
MG_REG(MG_FLASH_BASE + MG_FLASH_KEYR) = 0x45670123;
MG_REG(MG_FLASH_BASE + MG_FLASH_KEYR) = 0xcdef89ab;
unlocked = true;
}
}
#define MG_FLASH_CONFIG_16_64_128 1 // used by STM32F7
#define MG_FLASH_CONFIG_32_128_256 2 // used by STM32F4 and F2
MG_IRAM static bool flash_page_start(volatile uint32_t *dst) {
char *base = (char *) s_mg_flash_stm32f.start;
char *end = base + s_mg_flash_stm32f.size;
if (is_dualbank() && dst >= (uint32_t *) (base + (end - base) / 2)) {
dst = (uint32_t *) ((uint32_t) dst - (end - base) / 2);
}
uint32_t flash_config = MG_FLASH_CONFIG_16_64_128;
if (STM_DEV_ID >= 0x449) {
flash_config = MG_FLASH_CONFIG_32_128_256;
}
volatile char *p = (char *) dst;
if (p >= base && p < end) {
if (p < base + 16 * 1024 * 4 * flash_config) {
if ((p - base) % (16 * 1024 * flash_config) == 0) return true;
} else if (p == base + 16 * 1024 * 4 * flash_config) {
return true;
} else if ((p - base) % (128 * 1024 * flash_config) == 0) {
return true;
}
}
return false;
}
MG_IRAM static int flash_sector(volatile uint32_t *addr) {
char *base = (char *) s_mg_flash_stm32f.start;
char *end = base + s_mg_flash_stm32f.size;
bool addr_in_bank_2 = false;
if (is_dualbank() && addr >= (uint32_t *) (base + (end - base) / 2)) {
addr = (uint32_t *) ((uint32_t) addr - (end - base) / 2);
addr_in_bank_2 = true;
}
volatile char *p = (char *) addr;
uint32_t flash_config = MG_FLASH_CONFIG_16_64_128;
if (STM_DEV_ID >= 0x449) {
flash_config = MG_FLASH_CONFIG_32_128_256;
}
int sector = -1;
if (p >= base && p < end) {
if (p < base + 16 * 1024 * 4 * flash_config) {
sector = (p - base) / (16 * 1024 * flash_config);
} else if (p >= base + 64 * 1024 * flash_config &&
p < base + 128 * 1024 * flash_config) {
sector = 4;
} else {
sector = (p - base) / (128 * 1024 * flash_config) + 4;
}
}
if (sector == -1) return -1;
if (addr_in_bank_2) sector += 12; // a bank has 12 sectors
return sector;
}
MG_IRAM static bool flash_is_err(void) {
return MG_REG(MG_FLASH_BASE + MG_FLASH_SR) & ((MG_BIT(7) - 1) << 1);
}
MG_IRAM static void flash_wait(void) {
while (MG_REG(MG_FLASH_BASE + MG_FLASH_SR) & (MG_BIT(16))) (void) 0;
}
MG_IRAM static void flash_clear_err(void) {
flash_wait(); // Wait until ready
MG_REG(MG_FLASH_BASE + MG_FLASH_SR) = 0xf2; // Clear all errors
}
__attribute__((noinline)) MG_IRAM static bool mg_stm32f_erase(void *addr) {
bool ok = false;
if (flash_page_start(addr) == false) {
MG_ERROR(("%p is not on a sector boundary", addr));
} else {
int sector = flash_sector(addr);
if (sector < 0) return false;
uint32_t sector_reg = sector;
if (is_dualbank() && sector >= 12) {
// 3.9.8 Flash control register (FLASH_CR) for F42xxx and F43xxx
// BITS[7:3]
sector_reg -= 12;
sector_reg |= MG_BIT(4);
}
flash_unlock();
flash_wait();
uint32_t cr = MG_BIT(1); // SER
cr |= MG_BIT(16); // STRT
cr |= (sector_reg & 31) << 3; // sector
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) = cr;
ok = !flash_is_err();
MG_DEBUG(("Erase sector %lu @ %p %s. CR %#lx SR %#lx", sector, addr,
ok ? "ok" : "fail", MG_REG(MG_FLASH_BASE + MG_FLASH_CR),
MG_REG(MG_FLASH_BASE + MG_FLASH_SR)));
// After we have erased the sector, set CR flags for programming
// 2 << 8 is word write parallelism, bit(0) is PG. RM0385, section 3.7.5
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) = MG_BIT(0) | (2 << 8);
flash_clear_err();
}
return ok;
}
MG_IRAM static bool mg_stm32f_swap(void) {
// STM32 F42x/F43x support dual bank, however, the memory mapping
// change will not be carried through a hard reset. Therefore, we will use
// the single bank approach for this family as well.
return true;
}
static bool s_flash_irq_disabled;
__attribute__((noinline)) MG_IRAM static bool mg_stm32f_write(void *addr,
const void *buf,
size_t len) {
if ((len % s_mg_flash_stm32f.align) != 0) {
MG_ERROR(("%lu is not aligned to %lu", len, s_mg_flash_stm32f.align));
return false;
}
uint32_t *dst = (uint32_t *) addr;
uint32_t *src = (uint32_t *) buf;
uint32_t *end = (uint32_t *) ((char *) buf + len);
bool ok = true;
MG_ARM_DISABLE_IRQ();
flash_unlock();
flash_clear_err();
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) = MG_BIT(0) | MG_BIT(9); // PG, 32-bit
flash_wait();
MG_DEBUG(("Writing flash @ %p, %lu bytes", addr, len));
while (ok && src < end) {
if (flash_page_start(dst) && mg_stm32f_erase(dst) == false) break;
*(volatile uint32_t *) dst++ = *src++;
MG_DSB(); // ensure flash is written with no errors
flash_wait();
if (flash_is_err()) ok = false;
}
if (!s_flash_irq_disabled) MG_ARM_ENABLE_IRQ();
MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst,
ok ? "ok" : "fail", MG_REG(MG_FLASH_BASE + MG_FLASH_CR),
MG_REG(MG_FLASH_BASE + MG_FLASH_SR)));
MG_REG(MG_FLASH_BASE + MG_FLASH_CR) &= ~MG_BIT(0); // Clear programming flag
return ok;
}
// just overwrite instead of swap
__attribute__((noinline)) MG_IRAM void single_bank_swap(char *p1, char *p2,
size_t size) {
// no stdlib calls here
mg_stm32f_write(p1, p2, size);
*(volatile unsigned long *) 0xe000ed0c = 0x5fa0004;
}
bool mg_ota_begin(size_t new_firmware_size) {
s_mg_flash_stm32f.size = flash_size();
return mg_ota_flash_begin(new_firmware_size, &s_mg_flash_stm32f);
}
bool mg_ota_write(const void *buf, size_t len) {
return mg_ota_flash_write(buf, len, &s_mg_flash_stm32f);
}
bool mg_ota_end(void) {
if (mg_ota_flash_end(&s_mg_flash_stm32f)) {
// Swap partitions. Pray power does not go away
MG_INFO(("Swapping partitions, size %u (%u sectors)",
s_mg_flash_stm32f.size, STM_DEV_ID == 0x449 ? 8 : 12));
MG_INFO(("Do NOT power off..."));
mg_log_level = MG_LL_NONE;
s_flash_irq_disabled = true;
char *p1 = (char *) s_mg_flash_stm32f.start;
char *p2 = p1 + s_mg_flash_stm32f.size / 2;
size_t size = s_mg_flash_stm32f.size / 2;
// Runs in RAM, will reset when finished
single_bank_swap(p1, p2, size);
}
return false;
}
#endif