Merge pull request #2340 from cesanta/same54

SAME54 Ethernet driver
This commit is contained in:
Sergio R. Caprile 2023-08-10 19:26:50 -03:00 committed by GitHub
commit 5bb952260a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 1606 additions and 14 deletions

View File

@ -56,14 +56,14 @@ uint64_t mg_now(void) {
int ui_event_next(int no, struct ui_event *e) {
if (no < 0 || no >= MAX_EVENTS_NO) return 0;
srand(no);
srand((unsigned) no);
e->type = (uint8_t) rand() % 4;
e->prio = (uint8_t) rand() % 3;
e->timestamp =
(unsigned long) (mg_now() - 86400 * 1000 /* one day back */ +
(unsigned long) ((int64_t) mg_now() - 86400 * 1000 /* one day back */ +
no * 300 * 1000 /* 5 mins between alerts */ +
1000 * (rand() % 300) /* randomize event time */) /
1000;
1000UL;
mg_snprintf(e->text, MAX_EVENT_TEXT_SIZE, "event#%d", no);
return no + 1;
@ -163,7 +163,7 @@ static void handle_stats_get(struct mg_connection *c) {
static size_t print_events(void (*out)(char, void *), void *ptr, va_list *ap) {
size_t len = 0;
struct ui_event ev;
int pageno = va_arg(*ap, unsigned);
int pageno = va_arg(*ap, int);
int no = (pageno - 1) * EVENTS_PER_PAGE;
int end = no + EVENTS_PER_PAGE;

View File

@ -0,0 +1,56 @@
CFLAGS = -W -Wall -Wextra -Wundef -Wshadow -Wdouble-promotion
CFLAGS += -Wformat-truncation -fno-common -Wconversion
CFLAGS += -g -O2 -ffunction-sections -fdata-sections
CFLAGS += -I. -Icmsis_core/CMSIS/Core/Include
CFLAGS += -D__SAME54P20A__ -Icmsis_sam/include #-Icmsis_sam/xc32/include
#CFLAGS += -mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16
CFLAGS += -mcpu=cortex-m4 -mthumb -mfloat-abi=softfp -mfpu=fpv4-sp-d16
LDFLAGS ?= -Tlink.ld -nostartfiles -nostdlib --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c syscalls.c startup.c
#SOURCES += cmsis_sam/xc32/ATSAME54P20A/startup_atsame54p20a.c
SOURCES += mongoose.c net.c packed_fs.c
CFLAGS += -DMG_ENABLE_TCPIP=1 -DMG_ARCH=MG_ARCH_NEWLIB -DMG_ENABLE_CUSTOM_MILLIS=1 #-DMG_ENABLE_LINES=1
CFLAGS += -DMG_ENABLE_DRIVER_SAME54=1 -DMG_ENABLE_CUSTOM_RANDOM=1 -DMG_ENABLE_PACKED_FS=1 $(CFLAGS_EXTRA)
VCON_API_KEY=IBrJL5K4arSGMiAXbUKWdG6I2gM
ifeq ($(OS),Windows_NT)
RM = cmd /C del /Q /F
else
RM = rm -rf
endif
build: firmware.bin
firmware.elf: cmsis_core cmsis_sam hal.h link.ld Makefile $(SOURCES)
arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(CFLAGS_EXTRA) $(LDFLAGS) -o $@
firmware.bin: firmware.elf
arm-none-eabi-objcopy -O binary $< $@
flash: firmware.bin
bossac -p /dev/cu.usb* -w -v -b $<
cmsis_core:
git clone --depth 1 -b 5.9.0 https://github.com/ARM-software/CMSIS_5 $@
cmsis_sam:
curl -sL https://packs.download.microchip.com/Microchip.SAME54_DFP.3.8.234.pack -o $@.zip
mkdir $@ && cd $@ && unzip ../$@.zip
# git clone --depth 1 -b master https://github.com/modm-io/cmsis-header-sam $@
clean:
$(RM) firmware.* cmsis_* *.zip
# Automated test via https://vcon.io/automated-firmware-tests/. Set VCON_API_KEY and update DEVICE_URL
DEVICE_URL ?= https://dash.vcon.io/api/v3/devices/9
fota: CFLAGS += -DUART_DEBUG=USART1
fota: firmware.bin
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$<
test: fota
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt
egrep '^tick:.*CPU 180 MHz' /tmp/output.txt
watch: fota
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=999

View File

@ -0,0 +1,219 @@
// Copyright (c) 2022 Cesanta Software Limited
// SPDX-License-Identifier: MIT
//
// https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D5x-E5x-Family-Data-Sheet-DS60001507.pdf
// https://ww1.microchip.com/downloads/en/DeviceDoc/70005321A.pdf
#ifndef LED_PIN
#define LED_PIN PIN('C', 18)
#endif
#ifndef BUTTON_PIN
#define BUTTON_PIN PIN('B', 31)
#endif
#ifndef UART_DEBUG
#define UART_DEBUG USART1
#endif
#pragma once
#include <sam.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((((bank) - 'A') << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
static inline void spin(volatile uint32_t count) {
while (count--) (void) 0;
}
static inline uint32_t clock_sys_freq(void) {
return 48000000U;
}
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE };
enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN };
#define GPIO(N) ((port_group_registers_t *) (PORT_BASE_ADDRESS + 0x80 * (N)))
typedef port_group_registers_t GPIO_TypeDef;
static inline GPIO_TypeDef *gpio_bank(uint16_t pin) {
return GPIO(PINBANK(pin));
}
static inline void gpio_toggle(uint16_t pin) {
gpio_bank(pin)->PORT_OUTTGL = BIT(PINNO(pin));
}
static inline bool gpio_read(uint16_t pin) {
return gpio_bank(pin)->PORT_IN & BIT(PINNO(pin));
}
static inline void gpio_write(uint16_t pin, bool val) {
GPIO_TypeDef *gpio = gpio_bank(pin);
if (val) {
gpio->PORT_OUTSET = BIT(PINNO(pin));
} else {
gpio->PORT_OUTCLR = BIT(PINNO(pin));
}
}
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull, uint8_t af) {
(void) type, (void) speed, (void) pull, (void) af;
GPIO_TypeDef *gpio = gpio_bank(pin);
uint32_t mask = BIT(PINNO(pin));
MCLK_REGS->MCLK_APBBMASK |= MCLK_APBBMASK_PORT_Msk;
if (mode == GPIO_MODE_INPUT) {
gpio->PORT_DIRCLR = mask;
} else {
gpio->PORT_DIRSET = mask;
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_NONE, 0);
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_NONE, 0);
}
typedef sercom_usart_int_registers_t USART_TypeDef;
#define USART1 ((USART_TypeDef *) SERCOM0_BASE_ADDRESS)
#define USART2 ((USART_TypeDef *) SERCOM1_BASE_ADDRESS)
#define USART3 ((USART_TypeDef *) SERCOM2_BASE_ADDRESS)
static inline bool uart_init(USART_TypeDef *uart, unsigned long baud) {
uint16_t rx = 0, tx = 0; // Pins
uint8_t rx_mux = 0, tx_mux = 0;
if (uart == USART1) {
MCLK_REGS->MCLK_APBAMASK |= MCLK_APBAMASK_SERCOM0_Msk;
GCLK_REGS->GCLK_PCHCTRL[SERCOM0_GCLK_ID_CORE] =
GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN_Msk;
GCLK_REGS->GCLK_PCHCTRL[SERCOM0_GCLK_ID_SLOW] =
GCLK_PCHCTRL_GEN_GCLK3 | GCLK_PCHCTRL_CHEN_Msk;
tx = PIN('A', 4), rx = PIN('A', 5);
rx_mux = MUX_PA05D_SERCOM0_PAD1, tx_mux = MUX_PA04D_SERCOM0_PAD0;
} else if (uart == USART2) {
MCLK_REGS->MCLK_APBAMASK |= MCLK_APBAMASK_SERCOM1_Msk;
tx = PIN('C', 27), rx = PIN('C', 28);
} else if (uart == USART3) {
MCLK_REGS->MCLK_APBBMASK |= MCLK_APBBMASK_SERCOM2_Msk;
tx = PIN('A', 9), rx = PIN('A', 8);
} else {
return false;
}
gpio_bank(rx)->PORT_WRCONFIG =
PORT_WRCONFIG_PMUX(rx_mux) | PORT_WRCONFIG_WRPMUX(1) |
PORT_WRCONFIG_PMUXEN(1) | PORT_WRCONFIG_WRPINCFG(1) | BIT(PINNO(rx));
gpio_bank(tx)->PORT_WRCONFIG =
PORT_WRCONFIG_PMUX(tx_mux) | PORT_WRCONFIG_WRPMUX(1) |
PORT_WRCONFIG_PMUXEN(1) | PORT_WRCONFIG_WRPINCFG(1) | BIT(PINNO(tx));
uart->SERCOM_CTRLA = SERCOM_USART_INT_CTRLA_DORD(1) |
SERCOM_USART_INT_CTRLA_MODE(1 /* INT_CLK */) |
SERCOM_USART_INT_CTRLA_RXPO(1 /* PAD1 */) |
SERCOM_USART_INT_CTRLA_TXPO(0 /* PAD0 */) |
SERCOM_USART_INT_CTRLA_SAMPR(1);
uart->SERCOM_BAUD = (uint16_t) (clock_sys_freq() / (16 * baud));
uart->SERCOM_CTRLB = SERCOM_USART_INT_CTRLB_RXEN(1) |
SERCOM_USART_INT_CTRLB_TXEN(1) |
SERCOM_USART_INT_CTRLB_CHSIZE(0);
while (uart->SERCOM_SYNCBUSY & SERCOM_USART_INT_SYNCBUSY_CTRLB_Msk) spin(1);
uart->SERCOM_CTRLA |= SERCOM_USART_INT_CTRLA_ENABLE(1);
while (uart->SERCOM_SYNCBUSY & SERCOM_USART_INT_SYNCBUSY_ENABLE_Msk) spin(1);
return true;
}
static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) {
while (!(uart->SERCOM_INTFLAG & SERCOM_USART_INT_INTFLAG_DRE_Msk)) spin(1);
uart->SERCOM_DATA = byte;
}
static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline bool uart_read_ready(USART_TypeDef *uart) {
return (uart->SERCOM_INTFLAG & SERCOM_USART_EXT_INTFLAG_RXC_Msk);
}
static inline uint8_t uart_read_byte(USART_TypeDef *uart) {
return (uint8_t) (uart->SERCOM_DATA & 255U);
}
static inline void rng_init(void) {
MCLK_REGS->MCLK_APBCMASK |= MCLK_APBCMASK_TRNG_Msk;
TRNG_REGS->TRNG_CTRLA = TRNG_CTRLA_ENABLE_Msk;
}
static inline uint32_t rng_read(void) {
while ((TRNG_REGS->TRNG_INTFLAG & TRNG_INTFLAG_DATARDY_Msk) == 0) spin(1);
return TRNG_REGS->TRNG_DATA;
}
#define UID_BASE_W0 0x008061FC // Word 0 location of the 128-bit chip ID
#define UID_BASE_W1_3 0x00806010 // Words 1-3 location of the 128-bit chip ID
#define UUID(n) ((n >= 0 && n <= 3) ? \
(((uint8_t *) UID_BASE_W0)[n]) : \
(((uint8_t *) UID_BASE_W1_3)[n - 4]))
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
{ \
2, UUID(0) ^ UUID(1) ^ UUID(2), UUID(3) ^ UUID(4) ^ UUID(5), \
UUID(6) ^ UUID(7) ^ UUID(8), UUID(9) ^ UUID(10) ^ UUID(11), \
UUID(12) ^ UUID(13) ^ UUID(14) ^ UUID(15) \
}
static inline bool timer_expired(volatile uint64_t *t, uint64_t prd,
uint64_t now) {
if (now + prd < *t) *t = 0; // Time wrapped? Reset timer
if (*t == 0) *t = now + prd; // Firt poll? Set expiration
if (*t > now) return false; // Not expired yet, return
*t = (now - *t) > prd ? now + prd : *t + prd; // Next expiration time
return true; // Expired, return true
}
static inline void clock_init(void) {
SCB->CPACR |= (15U << 20); // Enable FPU
SysTick_Config(clock_sys_freq() / 1000); // Sys tick every 1ms
}
static inline void gpio_set_irq_handler(uint16_t pin, void (*fn)(void *),
void *arg) {
(void) pin, (void) fn, (void) arg;
}
static inline void ethernet_init(void) {
uint16_t pins[] = {PIN('A', 12), PIN('A', 13), PIN('A', 14), PIN('A', 15),
PIN('A', 17), PIN('A', 18), PIN('A', 19), PIN('C', 11),
PIN('C', 12), PIN('C', 20)};
uint32_t af[] = {MUX_PA12L_GMAC_GRX1, MUX_PA13L_GMAC_GRX0,
MUX_PA14L_GMAC_GTXCK, MUX_PA15L_GMAC_GRXER,
MUX_PA17L_GMAC_GTXEN, MUX_PA18L_GMAC_GTX0,
MUX_PA19L_GMAC_GTX1, MUX_PC11L_GMAC_GMDC,
MUX_PC12L_GMAC_GMDIO, MUX_PC20L_GMAC_GRXDV};
MCLK_REGS->MCLK_APBBMASK |= MCLK_APBBMASK_PORT_Msk;
for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) {
int bank = PINBANK(pins[i]), no = PINNO(pins[i]);
PORT_REGS->GROUP[bank].PORT_PINCFG[no] |= PORT_PINCFG_PMUXEN_Msk;
volatile uint8_t *m = &PORT_REGS->GROUP[bank].PORT_PMUX[no / 2], v = m[0];
if (no & 1) {
m[0] = (uint8_t) ((v & ~0xf0) | PORT_PMUX_PMUXO(af[i]));
} else {
m[0] = (uint8_t) ((v & ~0x0f) | PORT_PMUX_PMUXE(af[i]));
}
}
PORT_REGS->GROUP[0].PORT_PINCFG[17] |= PORT_PINCFG_DRVSTR_Msk;
PORT_REGS->GROUP[0].PORT_PINCFG[18] |= PORT_PINCFG_DRVSTR_Msk;
PORT_REGS->GROUP[0].PORT_PINCFG[19] |= PORT_PINCFG_DRVSTR_Msk;
// Reset PHY
uint16_t phy_pin = PIN('C', 21);
gpio_output(phy_pin);
gpio_write(phy_pin, false);
spin(999);
gpio_write(phy_pin, true);
spin(999);
}

View File

@ -0,0 +1,25 @@
ENTRY(Reset_Handler);
MEMORY {
flash(rx) : ORIGIN = 0x00000000, LENGTH = 1024k
sram(rwx) : ORIGIN = 0x20000000, LENGTH = 256k
}
_estack = ORIGIN(sram) + LENGTH(sram);
SECTIONS {
.vectors : { FILL(256) KEEP(*(.vectors)) } > flash
.text : { *(.text*) } > flash
.rodata : { *(.rodata*) } > flash
.data : {
_sdata = .;
*(.first_data)
*(.data SORT(.data.*))
_edata = .;
} > sram AT > flash
_sidata = LOADADDR(.data);
.bss : { _sbss = .; *(.bss SORT(.bss.*) COMMON) _ebss = .; } > sram
. = ALIGN(8);
_end = .;
}

View File

@ -0,0 +1,78 @@
// SPDX-FileCopyrightText: 2022-2023 Cesanta Software Limited
// SPDX-License-Identifier: MIT
#include "hal.h"
#include "mongoose.h"
#include "net.h"
#define BLINK_PERIOD_MS 500 // LED blinking period in millis
#define LOG_PERIOD_MS 1000 // Info log period in millis
void SystemInit(void) { // Called automatically by startup code
clock_init();
rng_init();
}
static volatile uint64_t s_ticks; // Milliseconds since boot
void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms
s_ticks++;
}
uint64_t mg_millis(void) { // Let Mongoose use our uptime function
return s_ticks; // Return number of milliseconds since boot
}
void mg_random(void *buf, size_t len) { // Use on-board RNG
for (size_t n = 0; n < len; n += sizeof(uint32_t)) {
uint32_t r = rng_read();
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
static void timer_fn(void *arg) {
struct mg_tcpip_if *ifp = arg; // show network stats
const char *names[] = {"down", "up", "req", "ready"};
MG_INFO(("Ethernet: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
ifp->ndrop, ifp->nerr));
}
int main(void) {
gpio_input(BUTTON_PIN);
gpio_output(LED_PIN);
uart_init(UART_DEBUG, 115200);
ethernet_init();
MG_INFO(("Starting, CPU freq %g MHz", (double) clock_sys_freq() / 1000000));
struct mg_mgr mgr; // Initialise
mg_mgr_init(&mgr); // Mongoose event manager
mg_log_set(MG_LL_DEBUG); // Set log level
// Initialise Mongoose network stack
struct mg_tcpip_driver_same54_data driver_data = {.mdc_cr = 5};
struct mg_tcpip_if mif = {.mac = GENERATE_LOCALLY_ADMINISTERED_MAC()/*{2, 3, 4, 5, 6, 7}*/,
// Uncomment below for static configuration:
// .ip = mg_htonl(MG_U32(192, 168, 0, 223)),
// .mask = mg_htonl(MG_U32(255, 255, 255, 0)),
// .gw = mg_htonl(MG_U32(192, 168, 0, 1)),
.driver = &mg_tcpip_driver_same54,
.driver_data = &driver_data};
mg_tcpip_init(&mgr, &mif);
mg_timer_add(&mgr, LOG_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, &mif);
MG_INFO(("MAC: %M. Waiting for IP...", mg_print_mac, mif.mac));
while (mif.state != MG_TCPIP_STATE_READY) {
mg_mgr_poll(&mgr, 0);
}
MG_INFO(("Initialising application..."));
web_init(&mgr);
MG_INFO(("Starting event loop"));
for (;;) {
mg_mgr_poll(&mgr, 0);
}
return 0;
}

View File

@ -0,0 +1 @@
../../../mongoose.c

View File

@ -0,0 +1 @@
../../../mongoose.h

View File

@ -0,0 +1 @@
../../device-dashboard/net.c

View File

@ -0,0 +1 @@
../../device-dashboard/net.h

View File

@ -0,0 +1 @@
../../device-dashboard/packed_fs.c

View File

@ -0,0 +1,332 @@
// SPDX-FileCopyrightText: 2022-2023 Cesanta Software Limited
// SPDX-License-Identifier: MIT
#include "hal.h"
void Reset_Handler(void); // Defined below
void Dummy_Handler(void); // Defined below
void SysTick_Handler(void); // Defined in main.c
void SystemInit(void); // Defined in main.c, called by reset handler
void _estack(void); // Defined in link.ld
#define WEAK_ALIAS __attribute__((weak, alias("Default_Handler")))
WEAK_ALIAS void NMI_Handler(void);
WEAK_ALIAS void HardFault_Handler(void);
WEAK_ALIAS void MemoryManagement_Handler(void);
WEAK_ALIAS void BusFault_Handler(void);
WEAK_ALIAS void UsageFault_Handler(void);
WEAK_ALIAS void SVCall_Handler(void);
WEAK_ALIAS void DebugMonitor_Handler(void);
WEAK_ALIAS void PendSV_Handler(void);
WEAK_ALIAS void SysTick_Handler(void);
WEAK_ALIAS void PM_Handler(void);
WEAK_ALIAS void MCLK_Handler(void);
WEAK_ALIAS void OSCCTRL_XOSC0_Handler(void);
WEAK_ALIAS void OSCCTRL_XOSC1_Handler(void);
WEAK_ALIAS void OSCCTRL_DFLL_Handler(void);
WEAK_ALIAS void OSCCTRL_DPLL0_Handler(void);
WEAK_ALIAS void OSCCTRL_DPLL1_Handler(void);
WEAK_ALIAS void OSC32KCTRL_Handler(void);
WEAK_ALIAS void SUPC_OTHER_Handler(void);
WEAK_ALIAS void SUPC_BODDET_Handler(void);
WEAK_ALIAS void WDT_Handler(void);
WEAK_ALIAS void RTC_Handler(void);
WEAK_ALIAS void EIC_EXTINT_0_Handler(void);
WEAK_ALIAS void EIC_EXTINT_1_Handler(void);
WEAK_ALIAS void EIC_EXTINT_2_Handler(void);
WEAK_ALIAS void EIC_EXTINT_3_Handler(void);
WEAK_ALIAS void EIC_EXTINT_4_Handler(void);
WEAK_ALIAS void EIC_EXTINT_5_Handler(void);
WEAK_ALIAS void EIC_EXTINT_6_Handler(void);
WEAK_ALIAS void EIC_EXTINT_7_Handler(void);
WEAK_ALIAS void EIC_EXTINT_8_Handler(void);
WEAK_ALIAS void EIC_EXTINT_9_Handler(void);
WEAK_ALIAS void EIC_EXTINT_10_Handler(void);
WEAK_ALIAS void EIC_EXTINT_11_Handler(void);
WEAK_ALIAS void EIC_EXTINT_12_Handler(void);
WEAK_ALIAS void EIC_EXTINT_13_Handler(void);
WEAK_ALIAS void EIC_EXTINT_14_Handler(void);
WEAK_ALIAS void EIC_EXTINT_15_Handler(void);
WEAK_ALIAS void FREQM_Handler(void);
WEAK_ALIAS void NVMCTRL_0_Handler(void);
WEAK_ALIAS void NVMCTRL_1_Handler(void);
WEAK_ALIAS void DMAC_0_Handler(void);
WEAK_ALIAS void DMAC_1_Handler(void);
WEAK_ALIAS void DMAC_2_Handler(void);
WEAK_ALIAS void DMAC_3_Handler(void);
WEAK_ALIAS void DMAC_OTHER_Handler(void);
WEAK_ALIAS void EVSYS_0_Handler(void);
WEAK_ALIAS void EVSYS_1_Handler(void);
WEAK_ALIAS void EVSYS_2_Handler(void);
WEAK_ALIAS void EVSYS_3_Handler(void);
WEAK_ALIAS void EVSYS_OTHER_Handler(void);
WEAK_ALIAS void PAC_Handler(void);
WEAK_ALIAS void RAMECC_Handler(void);
WEAK_ALIAS void SERCOM0_0_Handler(void);
WEAK_ALIAS void SERCOM0_1_Handler(void);
WEAK_ALIAS void SERCOM0_2_Handler(void);
WEAK_ALIAS void SERCOM0_OTHER_Handler(void);
WEAK_ALIAS void SERCOM1_0_Handler(void);
WEAK_ALIAS void SERCOM1_1_Handler(void);
WEAK_ALIAS void SERCOM1_2_Handler(void);
WEAK_ALIAS void SERCOM1_OTHER_Handler(void);
WEAK_ALIAS void SERCOM2_0_Handler(void);
WEAK_ALIAS void SERCOM2_1_Handler(void);
WEAK_ALIAS void SERCOM2_2_Handler(void);
WEAK_ALIAS void SERCOM2_OTHER_Handler(void);
WEAK_ALIAS void SERCOM3_0_Handler(void);
WEAK_ALIAS void SERCOM3_1_Handler(void);
WEAK_ALIAS void SERCOM3_2_Handler(void);
WEAK_ALIAS void SERCOM3_OTHER_Handler(void);
WEAK_ALIAS void SERCOM4_0_Handler(void);
WEAK_ALIAS void SERCOM4_1_Handler(void);
WEAK_ALIAS void SERCOM4_2_Handler(void);
WEAK_ALIAS void SERCOM4_OTHER_Handler(void);
WEAK_ALIAS void SERCOM5_0_Handler(void);
WEAK_ALIAS void SERCOM5_1_Handler(void);
WEAK_ALIAS void SERCOM5_2_Handler(void);
WEAK_ALIAS void SERCOM5_OTHER_Handler(void);
WEAK_ALIAS void SERCOM6_0_Handler(void);
WEAK_ALIAS void SERCOM6_1_Handler(void);
WEAK_ALIAS void SERCOM6_2_Handler(void);
WEAK_ALIAS void SERCOM6_OTHER_Handler(void);
WEAK_ALIAS void SERCOM7_0_Handler(void);
WEAK_ALIAS void SERCOM7_1_Handler(void);
WEAK_ALIAS void SERCOM7_2_Handler(void);
WEAK_ALIAS void SERCOM7_OTHER_Handler(void);
WEAK_ALIAS void CAN0_Handler(void);
WEAK_ALIAS void CAN1_Handler(void);
WEAK_ALIAS void USB_OTHER_Handler(void);
WEAK_ALIAS void USB_SOF_HSOF_Handler(void);
WEAK_ALIAS void USB_TRCPT0_Handler(void);
WEAK_ALIAS void USB_TRCPT1_Handler(void);
WEAK_ALIAS void GMAC_Handler(void);
WEAK_ALIAS void TCC0_OTHER_Handler(void);
WEAK_ALIAS void TCC0_MC0_Handler(void);
WEAK_ALIAS void TCC0_MC1_Handler(void);
WEAK_ALIAS void TCC0_MC2_Handler(void);
WEAK_ALIAS void TCC0_MC3_Handler(void);
WEAK_ALIAS void TCC0_MC4_Handler(void);
WEAK_ALIAS void TCC0_MC5_Handler(void);
WEAK_ALIAS void TCC1_OTHER_Handler(void);
WEAK_ALIAS void TCC1_MC0_Handler(void);
WEAK_ALIAS void TCC1_MC1_Handler(void);
WEAK_ALIAS void TCC1_MC2_Handler(void);
WEAK_ALIAS void TCC1_MC3_Handler(void);
WEAK_ALIAS void TCC2_OTHER_Handler(void);
WEAK_ALIAS void TCC2_MC0_Handler(void);
WEAK_ALIAS void TCC2_MC1_Handler(void);
WEAK_ALIAS void TCC2_MC2_Handler(void);
WEAK_ALIAS void TCC3_OTHER_Handler(void);
WEAK_ALIAS void TCC3_MC0_Handler(void);
WEAK_ALIAS void TCC3_MC1_Handler(void);
WEAK_ALIAS void TCC4_OTHER_Handler(void);
WEAK_ALIAS void TCC4_MC0_Handler(void);
WEAK_ALIAS void TCC4_MC1_Handler(void);
WEAK_ALIAS void TC0_Handler(void);
WEAK_ALIAS void TC1_Handler(void);
WEAK_ALIAS void TC2_Handler(void);
WEAK_ALIAS void TC3_Handler(void);
WEAK_ALIAS void TC4_Handler(void);
WEAK_ALIAS void TC5_Handler(void);
WEAK_ALIAS void TC6_Handler(void);
WEAK_ALIAS void TC7_Handler(void);
WEAK_ALIAS void PDEC_OTHER_Handler(void);
WEAK_ALIAS void PDEC_MC0_Handler(void);
WEAK_ALIAS void PDEC_MC1_Handler(void);
WEAK_ALIAS void ADC0_OTHER_Handler(void);
WEAK_ALIAS void ADC0_RESRDY_Handler(void);
WEAK_ALIAS void ADC1_OTHER_Handler(void);
WEAK_ALIAS void ADC1_RESRDY_Handler(void);
WEAK_ALIAS void AC_Handler(void);
WEAK_ALIAS void DAC_OTHER_Handler(void);
WEAK_ALIAS void DAC_EMPTY_0_Handler(void);
WEAK_ALIAS void DAC_EMPTY_1_Handler(void);
WEAK_ALIAS void DAC_RESRDY_0_Handler(void);
WEAK_ALIAS void DAC_RESRDY_1_Handler(void);
WEAK_ALIAS void I2S_Handler(void);
WEAK_ALIAS void PCC_Handler(void);
WEAK_ALIAS void AES_Handler(void);
WEAK_ALIAS void TRNG_Handler(void);
WEAK_ALIAS void ICM_Handler(void);
WEAK_ALIAS void PUKCC_Handler(void);
WEAK_ALIAS void QSPI_Handler(void);
WEAK_ALIAS void SDHC0_Handler(void);
WEAK_ALIAS void SDHC1_Handler(void);
__attribute__((section(".vectors"))) void (*const tab[16 + 138])(void) = {
_estack,
Reset_Handler,
NMI_Handler,
HardFault_Handler,
MemoryManagement_Handler,
BusFault_Handler,
UsageFault_Handler,
NULL,
NULL,
NULL,
NULL,
SVCall_Handler,
DebugMonitor_Handler,
NULL,
PendSV_Handler,
SysTick_Handler,
PM_Handler, // 0 Power
MCLK_Handler, // 1 Main
OSCCTRL_XOSC0_Handler, // 2 Oscillators
OSCCTRL_XOSC1_Handler, // 3 Oscillators
OSCCTRL_DFLL_Handler, // 4 Oscillators
OSCCTRL_DPLL0_Handler, // 5 Oscillators
OSCCTRL_DPLL1_Handler, // 6 Oscillators
OSC32KCTRL_Handler, // 7 32kHz
SUPC_OTHER_Handler, // 8 Supply
SUPC_BODDET_Handler, // 9 Supply
WDT_Handler, // 10 Watchdog
RTC_Handler, // 11 Real-Time
EIC_EXTINT_0_Handler, // 12 External
EIC_EXTINT_1_Handler, // 13 External
EIC_EXTINT_2_Handler, // 14 External
EIC_EXTINT_3_Handler, // 15 External
EIC_EXTINT_4_Handler, // 16 External
EIC_EXTINT_5_Handler, // 17 External
EIC_EXTINT_6_Handler, // 18 External
EIC_EXTINT_7_Handler, // 19 External
EIC_EXTINT_8_Handler, // 20 External
EIC_EXTINT_9_Handler, // 21 External
EIC_EXTINT_10_Handler, // 22 External
EIC_EXTINT_11_Handler, // 23 External
EIC_EXTINT_12_Handler, // 24 External
EIC_EXTINT_13_Handler, // 25 External
EIC_EXTINT_14_Handler, // 26 External
EIC_EXTINT_15_Handler, // 27 External
FREQM_Handler, // 28 Frequency
NVMCTRL_0_Handler, // 29 Non-Volatile
NVMCTRL_1_Handler, // 30 Non-Volatile
DMAC_0_Handler, // 31 Direct
DMAC_1_Handler, // 32 Direct
DMAC_2_Handler, // 33 Direct
DMAC_3_Handler, // 34 Direct
DMAC_OTHER_Handler, // 35 Direct
EVSYS_0_Handler, // 36 Event
EVSYS_1_Handler, // 37 Event
EVSYS_2_Handler, // 38 Event
EVSYS_3_Handler, // 39 Event
EVSYS_OTHER_Handler, // 40 Event
PAC_Handler, // 41 Peripheral
0, // 42 Reserved
0, // 43 Reserved
0, // 44 Reserved
RAMECC_Handler, // 45 RAM
SERCOM0_0_Handler, // 46 Serial
SERCOM0_1_Handler, // 47 Serial
SERCOM0_2_Handler, // 48 Serial
SERCOM0_OTHER_Handler, // 49 Serial
SERCOM1_0_Handler, // 50 Serial
SERCOM1_1_Handler, // 51 Serial
SERCOM1_2_Handler, // 52 Serial
SERCOM1_OTHER_Handler, // 53 Serial
SERCOM2_0_Handler, // 54 Serial
SERCOM2_1_Handler, // 55 Serial
SERCOM2_2_Handler, // 56 Serial
SERCOM2_OTHER_Handler, // 57 Serial
SERCOM3_0_Handler, // 58 Serial
SERCOM3_1_Handler, // 59 Serial
SERCOM3_2_Handler, // 60 Serial
SERCOM3_OTHER_Handler, // 61 Serial
SERCOM4_0_Handler, // 62 Serial
SERCOM4_1_Handler, // 63 Serial
SERCOM4_2_Handler, // 64 Serial
SERCOM4_OTHER_Handler, // 65 Serial
SERCOM5_0_Handler, // 66 Serial
SERCOM5_1_Handler, // 67 Serial
SERCOM5_2_Handler, // 68 Serial
SERCOM5_OTHER_Handler, // 69 Serial
SERCOM6_0_Handler, // 70 Serial
SERCOM6_1_Handler, // 71 Serial
SERCOM6_2_Handler, // 72 Serial
SERCOM6_OTHER_Handler, // 73 Serial
SERCOM7_0_Handler, // 74 Serial
SERCOM7_1_Handler, // 75 Serial
SERCOM7_2_Handler, // 76 Serial
SERCOM7_OTHER_Handler, // 77 Serial
CAN0_Handler, // 78 Control
CAN1_Handler, // 79 Control
USB_OTHER_Handler, // 80 Universal
USB_SOF_HSOF_Handler, // 81 Universal
USB_TRCPT0_Handler, // 82 Universal
USB_TRCPT1_Handler, // 83 Universal
GMAC_Handler, // 84 Ethernet
TCC0_OTHER_Handler, // 85 Timer
TCC0_MC0_Handler, // 86 Timer
TCC0_MC1_Handler, // 87 Timer
TCC0_MC2_Handler, // 88 Timer
TCC0_MC3_Handler, // 89 Timer
TCC0_MC4_Handler, // 90 Timer
TCC0_MC5_Handler, // 91 Timer
TCC1_OTHER_Handler, // 92 Timer
TCC1_MC0_Handler, // 93 Timer
TCC1_MC1_Handler, // 94 Timer
TCC1_MC2_Handler, // 95 Timer
TCC1_MC3_Handler, // 96 Timer
TCC2_OTHER_Handler, // 97 Timer
TCC2_MC0_Handler, // 98 Timer
TCC2_MC1_Handler, // 99 Timer
TCC2_MC2_Handler, // 100 Timer
TCC3_OTHER_Handler, // 101 Timer
TCC3_MC0_Handler, // 102 Timer
TCC3_MC1_Handler, // 103 Timer
TCC4_OTHER_Handler, // 104 Timer
TCC4_MC0_Handler, // 105 Timer
TCC4_MC1_Handler, // 106 Timer
TC0_Handler, // 107 Basic
TC1_Handler, // 108 Basic
TC2_Handler, // 109 Basic
TC3_Handler, // 110 Basic
TC4_Handler, // 111 Basic
TC5_Handler, // 112 Basic
TC6_Handler, // 113 Basic
TC7_Handler, // 114 Basic
PDEC_OTHER_Handler, // 115 Quadrature
PDEC_MC0_Handler, // 116 Quadrature
PDEC_MC1_Handler, // 117 Quadrature
ADC0_OTHER_Handler, // 118 Analog
ADC0_RESRDY_Handler, // 119 Analog
ADC1_OTHER_Handler, // 120 Analog
ADC1_RESRDY_Handler, // 121 Analog
AC_Handler, // 122 Analog
DAC_OTHER_Handler, // 123 Digital-to-Analog
DAC_EMPTY_0_Handler, // 124 Digital-to-Analog
DAC_EMPTY_1_Handler, // 125 Digital-to-Analog
DAC_RESRDY_0_Handler, // 126 Digital-to-Analog
DAC_RESRDY_1_Handler, // 127 Digital-to-Analog
I2S_Handler, // 128 Inter-IC
PCC_Handler, // 129 Parallel
AES_Handler, // 130 Advanced
TRNG_Handler, // 131 True
ICM_Handler, // 132 Integrity
PUKCC_Handler, // 133 PUblic-Key
QSPI_Handler, // 134 Quad
SDHC0_Handler, // 135 SD/MMC
SDHC1_Handler // 136 SD/MMC
};
__attribute__((naked, noreturn)) void Reset_Handler(void) {
// Clear BSS section, and copy data section from flash to RAM
extern long _sbss, _ebss, _sdata, _edata, _sidata;
for (long *src = &_sbss; src < &_ebss; src++) *src = 0;
for (long *src = &_sdata, *dst = &_sidata; src < &_edata;) *src++ = *dst++;
SCB->VTOR = (uint32_t) &tab;
SystemInit();
// Call main()
extern void main(void);
main();
for (;;) (void) 0; // Infinite loop
}
void Default_Handler(void) {
for (;;) (void) 0;
}

View File

@ -0,0 +1,89 @@
// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
#include <sys/stat.h>
#include "hal.h"
int _fstat(int fd, struct stat *st) {
if (fd < 0) return -1;
st->st_mode = S_IFCHR;
return 0;
}
void *_sbrk(int incr) {
extern char _end;
static unsigned char *heap = NULL;
unsigned char *prev_heap;
if (heap == NULL) heap = (unsigned char *) &_end;
prev_heap = heap;
heap += incr;
return prev_heap;
}
int _open(const char *path) {
(void) path;
return -1;
}
int _close(int fd) {
(void) fd;
return -1;
}
int _isatty(int fd) {
(void) fd;
return 1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd, (void) ptr, (void) dir;
return 0;
}
void _exit(int status) {
(void) status;
for (;;) asm volatile("BKPT #0");
}
void _kill(int pid, int sig) {
(void) pid, (void) sig;
}
int _getpid(void) {
return -1;
}
int _write(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
if (fd == 1) uart_write_buf(UART_DEBUG, ptr, (size_t) len);
return -1;
}
int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;
}
int _link(const char *a, const char *b) {
(void) a, (void) b;
return -1;
}
int _unlink(const char *a) {
(void) a;
return -1;
}
int _stat(const char *path, struct stat *st) {
(void) path, (void) st;
return -1;
}
int mkdir(const char *path, mode_t mode) {
(void) path, (void) mode;
return -1;
}
void _init(void) {
}

View File

@ -3616,7 +3616,7 @@ static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
//struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
@ -3659,7 +3659,7 @@ static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
@ -3713,7 +3713,7 @@ struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %p %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, NULL);
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
if (mg_url_is_ssl(url)) {
struct mg_str host = mg_url_host(url);
@ -5494,6 +5494,175 @@ void mg_timer_poll(struct mg_timer **head, uint64_t now_ms) {
}
}
#ifdef MG_ENABLE_LINES
#line 1 "src/tls_builtin.c"
#endif
#if MG_TLS == MG_TLS_BUILTIN
struct tls_data {
struct mg_iobuf send;
struct mg_iobuf recv;
};
#define MG_LOAD_BE16(p) ((uint16_t) ((MG_U8P(p)[0] << 8U) | MG_U8P(p)[1]))
#define TLS_HDR_SIZE 5 // 1 byte type, 2 bytes version, 2 bytes len
static inline bool mg_is_big_endian(void) {
int v = 1;
return *(unsigned char *) &v == 1;
}
static inline uint16_t mg_swap16(uint16_t v) {
return (uint16_t) ((v << 8U) | (v >> 8U));
}
static inline uint32_t mg_swap32(uint32_t v) {
return (v >> 24) | (v >> 8 & 0xff00) | (v << 8 & 0xff0000) | (v << 24);
}
static inline uint64_t mg_swap64(uint64_t v) {
return (((uint64_t) mg_swap32((uint32_t) v)) << 32) |
mg_swap32((uint32_t) (v >> 32));
}
static inline uint16_t mg_be16(uint16_t v) {
return mg_is_big_endian() ? mg_swap16(v) : v;
}
static inline uint32_t mg_be32(uint32_t v) {
return mg_is_big_endian() ? mg_swap32(v) : v;
}
static inline void add8(struct mg_iobuf *io, uint8_t data) {
mg_iobuf_add(io, io->len, &data, sizeof(data));
}
static inline void add16(struct mg_iobuf *io, uint16_t data) {
data = mg_htons(data);
mg_iobuf_add(io, io->len, &data, sizeof(data));
}
static inline void add32(struct mg_iobuf *io, uint32_t data) {
data = mg_htonl(data);
mg_iobuf_add(io, io->len, &data, sizeof(data));
}
void mg_tls_init(struct mg_connection *c, struct mg_str hostname) {
struct tls_data *tls = (struct tls_data *) calloc(1, sizeof(struct tls_data));
if (tls != NULL) {
tls->send.align = tls->recv.align = MG_IO_SIZE;
c->tls = tls;
c->is_tls = c->is_tls_hs = 1;
} else {
mg_error(c, "tls oom");
}
(void) hostname;
}
void mg_tls_free(struct mg_connection *c) {
struct tls_data *tls = c->tls;
if (tls != NULL) {
mg_iobuf_free(&tls->send);
mg_iobuf_free(&tls->recv);
}
free(c->tls);
c->tls = NULL;
}
long mg_tls_send(struct mg_connection *c, const void *buf, size_t len) {
(void) c, (void) buf, (void) len;
// MG_INFO(("BBBBBBBB"));
return -1;
}
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
(void) c, (void) buf, (void) len;
char tmp[8192];
long n = mg_io_recv(c, tmp, sizeof(tmp));
if (n > 0) mg_hexdump(tmp, (size_t) n);
MG_INFO(("AAAAAAAA"));
return -1;
// struct mg_tls *tls = (struct mg_tls *) c->tls;
// long n = mbedtls_ssl_read(&tls->ssl, (unsigned char *) buf, len);
// if (n == MBEDTLS_ERR_SSL_WANT_READ || n == MBEDTLS_ERR_SSL_WANT_WRITE)
// return MG_IO_WAIT;
// if (n <= 0) return MG_IO_ERR;
// return n;
}
size_t mg_tls_pending(struct mg_connection *c) {
(void) c;
return 0;
}
void mg_tls_handshake(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *rio = &tls->recv;
struct mg_iobuf *wio = &tls->send;
// Pull data from TCP
for (;;) {
mg_iobuf_resize(rio, rio->len + 1);
long n = mg_io_recv(c, &rio->buf[rio->len], rio->size - rio->len);
if (n > 0) {
rio->len += (size_t) n;
} else if (n == MG_IO_WAIT) {
break;
} else {
mg_error(c, "IO err");
return;
}
}
// Look if we've pulled everything
if (rio->len < TLS_HDR_SIZE) return;
uint8_t record_type = rio->buf[0];
uint16_t record_len = MG_LOAD_BE16(rio->buf + 3);
uint16_t record_version = MG_LOAD_BE16(rio->buf + 1);
if (record_type != 22) {
mg_error(c, "no 22");
return;
}
if (rio->len < (size_t) TLS_HDR_SIZE + record_len) return;
// Got full hello
// struct tls_hello *hello = (struct tls_hello *) (hdr + 1);
MG_INFO(("CT=%d V=%hx L=%hu", record_type, record_version, record_len));
mg_hexdump(rio->buf, rio->len);
// Send response. Server Hello
size_t ofs = wio->len;
add8(wio, 22), add16(wio, 0x303), add16(wio, 0); // Layer: type, ver, len
add8(wio, 2), add8(wio, 0), add16(wio, 0), add16(wio, 0x304); // Hello
mg_iobuf_add(wio, wio->len, NULL, 32); // 32 random
mg_random(wio->buf + wio->len - 32, 32); // bytes
add8(wio, 0); // Session ID
add16(wio, 0x1301); // Cipher: TLS_AES_128_GCM_SHA256
add8(wio, 0); // Compression method: 0
add16(wio, 46); // Extensions length
add16(wio, 43), add16(wio, 2), add16(wio, 0x304); // extension: TLS 1.3
add16(wio, 51), add16(wio, 36), add16(wio, 29), add16(wio, 32); // keyshare
mg_iobuf_add(wio, wio->len, NULL, 32); // 32 random
mg_random(wio->buf + wio->len - 32, 32); // bytes
*(uint16_t *) &wio->buf[ofs + 3] = mg_be16((uint16_t) (wio->len - ofs - 5));
*(uint16_t *) &wio->buf[ofs + 7] = mg_be16((uint16_t) (wio->len - ofs - 9));
// Change cipher. Cipher's payload is an encypted app data
// ofs = wio->len;
add8(wio, 20), add16(wio, 0x303); // Layer: type, version
add16(wio, 1), add8(wio, 1);
ofs = wio->len; // Application data
add8(wio, 23), add16(wio, 0x303), add16(wio, 5); // Layer: type, version
// mg_iobuf_add(wio, wio->len, "\x01\x02\x03\x04\x05", 5);
add8(wio, 22); // handshake message
add8(wio, 8); // encrypted extensions
add8(wio, 0), add16(wio, 2), add16(wio, 0); // empty 2 bytes
add8(wio, 11); // certificate message
add8(wio, 0), add16(wio, 4), add32(wio, 0x1020304); // len
*(uint16_t *) &wio->buf[ofs + 3] = mg_be16((uint16_t)(wio->len - ofs - 5));
mg_io_send(c, wio->buf, wio->len);
wio->len = 0;
rio->len = 0;
c->is_tls_hs = 0;
mg_error(c, "doh");
}
void mg_tls_ctx_free(struct mg_mgr *mgr) {
mgr->tls_ctx = NULL;
}
void mg_tls_ctx_init(struct mg_mgr *mgr, const struct mg_tls_opts *opts) {
(void) opts, (void) mgr;
}
#endif
#ifdef MG_ENABLE_LINES
#line 1 "src/tls_dummy.c"
#endif
@ -6858,6 +7027,224 @@ struct mg_tcpip_driver mg_tcpip_driver_imxrt1020 = {
#endif
#ifdef MG_ENABLE_LINES
#line 1 "src/tcpip/driver_same54.c"
#endif
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_SAME54) && \
MG_ENABLE_DRIVER_SAME54
#include <sam.h>
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ETH_PKT_SIZE 1536 // Max frame size
#define ETH_DESC_CNT 4 // Descriptors count
#define ETH_DS 2 // Descriptor size (words)
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
static uint8_t s_txno; // Current TX descriptor
static uint8_t s_rxno; // Current RX descriptor
static struct mg_tcpip_if *s_ifp; // MIP interface
enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1 };
#define PHY_BCR_DUPLEX_MODE_Msk BIT(8)
#define PHY_BCR_SPEED_Msk BIT(13)
#define PHY_BSR_LINK_STATUS_Msk BIT(2)
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
GMAC_REGS->GMAC_MAN = GMAC_MAN_CLTTO_Msk |
GMAC_MAN_OP(2) | // Setting the read operation
GMAC_MAN_WTN(2) | GMAC_MAN_PHYA(addr) | // PHY address
GMAC_MAN_REGA(reg); // Setting the register
while (!(GMAC_REGS->GMAC_NSR & GMAC_NSR_IDLE_Msk)) (void) 0;
return GMAC_REGS->GMAC_MAN & GMAC_MAN_DATA_Msk; // Getting the read value
}
#if 0
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
GMAC_REGS->GMAC_MAN = GMAC_MAN_CLTTO_Msk | GMAC_MAN_OP(1) | // Setting the write operation
GMAC_MAN_WTN(2) | GMAC_MAN_PHYA(addr) | // PHY address
GMAC_MAN_REGA(reg) | GMAC_MAN_DATA(val); // Setting the register
while (!(GMAC_REGS->GMAC_NSR & GMAC_NSR_IDLE_Msk)); // Waiting until the write op is complete
}
#endif
int get_clock_rate(struct mg_tcpip_driver_same54_data *d) {
if (d && d->mdc_cr >= 0 && d->mdc_cr <= 5) {
return d->mdc_cr;
} else {
// get MCLK from GCLK_GENERATOR 0
uint32_t div = 512;
uint32_t mclk;
if (!(GCLK_REGS->GCLK_GENCTRL[0] & GCLK_GENCTRL_DIVSEL_Msk)) {
div = ((GCLK_REGS->GCLK_GENCTRL[0] & 0x00FF0000) >> 16);
if (div == 0) div = 1;
}
switch (GCLK_REGS->GCLK_GENCTRL[0] & GCLK_GENCTRL_SRC_Msk) {
case GCLK_GENCTRL_SRC_XOSC0_Val:
mclk = 32000000UL; /* 32MHz */
break;
case GCLK_GENCTRL_SRC_XOSC1_Val:
mclk = 32000000UL; /* 32MHz */
break;
case GCLK_GENCTRL_SRC_OSCULP32K_Val:
mclk = 32000UL;
break;
case GCLK_GENCTRL_SRC_XOSC32K_Val:
mclk = 32000UL;
break;
case GCLK_GENCTRL_SRC_DFLL_Val:
mclk = 48000000UL; /* 48MHz */
break;
case GCLK_GENCTRL_SRC_DPLL0_Val:
mclk = 200000000UL; /* 200MHz */
break;
case GCLK_GENCTRL_SRC_DPLL1_Val:
mclk = 200000000UL; /* 200MHz */
break;
default:
mclk = 200000000UL; /* 200MHz */
}
mclk /= div;
uint8_t crs[] = {0, 1, 2, 3, 4, 5}; // GMAC->NCFGR::CLK values
uint8_t dividers[] = {8, 16, 32, 48, 64, 128}; // Respective CLK dividers
for (int i = 0; i < 6; i++) {
if (mclk / dividers[i] <= 2375000UL /* 2.5MHz - 5% */) {
return crs[i];
}
}
return 5;
}
}
static bool mg_tcpip_driver_same54_init(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_same54_data *d =
(struct mg_tcpip_driver_same54_data *) ifp->driver_data;
s_ifp = ifp;
MCLK_REGS->MCLK_APBCMASK |= MCLK_APBCMASK_GMAC_Msk;
MCLK_REGS->MCLK_AHBMASK |= MCLK_AHBMASK_GMAC_Msk;
GMAC_REGS->GMAC_NCFGR = GMAC_NCFGR_CLK(get_clock_rate(d)); // Set MDC divider
GMAC_REGS->GMAC_NCR = 0; // Disable RX & TX
GMAC_REGS->GMAC_NCR |= GMAC_NCR_MPE_Msk; // Enable MDC & MDIO
for (int i = 0; i < ETH_DESC_CNT; i++) { // Init TX descriptors
s_txdesc[i][0] = (uint32_t) s_txbuf[i]; // Point to data buffer
s_txdesc[i][1] = BIT(31); // OWN bit
}
s_txdesc[ETH_DESC_CNT - 1][1] |= BIT(30); // Last tx descriptor - wrap
GMAC_REGS->GMAC_DCFGR = GMAC_DCFGR_DRBS(0x18); // DMA recv buf 1536
for (int i = 0; i < ETH_DESC_CNT; i++) { // Init RX descriptors
s_rxdesc[i][0] = (uint32_t) s_rxbuf[i]; // Address of the data buffer
s_rxdesc[i][1] = 0; // Clear status
}
s_rxdesc[ETH_DESC_CNT - 1][0] |= BIT(1); // Last rx descriptor - wrap
GMAC_REGS->GMAC_TBQB = (uint32_t) s_txdesc; // about the descriptor addresses
GMAC_REGS->GMAC_RBQB = (uint32_t) s_rxdesc; // Let the controller know
GMAC_REGS->SA[0].GMAC_SAB =
MG_U32(ifp->mac[3], ifp->mac[2], ifp->mac[1], ifp->mac[0]);
GMAC_REGS->SA[0].GMAC_SAT = MG_U32(0, 0, ifp->mac[5], ifp->mac[4]);
GMAC_REGS->GMAC_UR &= ~GMAC_UR_MII_Msk; // Disable MII, use RMII
GMAC_REGS->GMAC_NCFGR |= GMAC_NCFGR_MAXFS_Msk | GMAC_NCFGR_MTIHEN_Msk |
GMAC_NCFGR_EFRHD_Msk | GMAC_NCFGR_CAF_Msk;
GMAC_REGS->GMAC_TSR = GMAC_TSR_HRESP_Msk | GMAC_TSR_UND_Msk |
GMAC_TSR_TXCOMP_Msk | GMAC_TSR_TFC_Msk |
GMAC_TSR_TXGO_Msk | GMAC_TSR_RLE_Msk |
GMAC_TSR_COL_Msk | GMAC_TSR_UBR_Msk;
GMAC_REGS->GMAC_RSR = GMAC_RSR_HNO_Msk | GMAC_RSR_RXOVR_Msk |
GMAC_RSR_REC_Msk | GMAC_RSR_BNA_Msk;
GMAC_REGS->GMAC_IDR = ~0U; // Disable interrupts, then enable required
GMAC_REGS->GMAC_IER = GMAC_IER_HRESP_Msk | GMAC_IER_ROVR_Msk |
GMAC_IER_TCOMP_Msk | GMAC_IER_TFC_Msk |
GMAC_IER_RLEX_Msk | GMAC_IER_TUR_Msk |
GMAC_IER_RXUBR_Msk | GMAC_IER_RCOMP_Msk;
GMAC_REGS->GMAC_NCR |= GMAC_NCR_TXEN_Msk | GMAC_NCR_RXEN_Msk;
NVIC_EnableIRQ(GMAC_IRQn);
return true;
}
static size_t mg_tcpip_driver_same54_tx(const void *buf, size_t len,
struct mg_tcpip_if *ifp) {
if (len > sizeof(s_txbuf[s_txno])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((s_txdesc[s_txno][1] & BIT(31)) == 0) {
ifp->nerr++;
MG_ERROR(("No free descriptors"));
len = 0; // All descriptors are busy, fail
} else {
uint32_t status = len | BIT(15); // Frame length, last chunk
if (s_txno == ETH_DESC_CNT - 1) status |= BIT(30); // wrap
memcpy(s_txbuf[s_txno], buf, len); // Copy data
s_txdesc[s_txno][1] = status;
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
}
__DSB(); // Ensure descriptors have been written
GMAC_REGS->GMAC_NCR |= GMAC_NCR_TSTART_Msk; // Enable transmission
return len;
}
static bool mg_tcpip_driver_same54_up(struct mg_tcpip_if *ifp) {
uint16_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR);
bool up = bsr & PHY_BSR_LINK_STATUS_Msk ? 1 : 0;
// If PHY is ready, update NCFGR accordingly
if (ifp->state == MG_TCPIP_STATE_DOWN && up) {
uint16_t bcr = eth_read_phy(PHY_ADDR, PHY_BCR);
bool fd = bcr & PHY_BCR_DUPLEX_MODE_Msk ? 1 : 0;
bool spd = bcr & PHY_BCR_SPEED_Msk ? 1 : 0;
GMAC_REGS->GMAC_NCFGR |= GMAC_NCFGR_SPD(spd) | GMAC_NCFGR_FD(fd);
}
return up;
}
void GMAC_Handler(void);
void GMAC_Handler(void) {
uint32_t isr = GMAC_REGS->GMAC_ISR;
uint32_t rsr = GMAC_REGS->GMAC_RSR;
uint32_t tsr = GMAC_REGS->GMAC_TSR;
if (isr & GMAC_ISR_RCOMP_Msk) {
if (rsr & GMAC_ISR_RCOMP_Msk) {
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
if ((s_rxdesc[s_rxno][0] & BIT(0)) == 0) break;
size_t len = s_rxdesc[s_rxno][1] & (BIT(13) - 1);
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
s_rxdesc[s_rxno][0] &= ~BIT(0); // Disown
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
}
}
}
if ((tsr & (GMAC_TSR_HRESP_Msk | GMAC_TSR_UND_Msk | GMAC_TSR_TXCOMP_Msk |
GMAC_TSR_TFC_Msk | GMAC_TSR_TXGO_Msk | GMAC_TSR_RLE_Msk |
GMAC_TSR_COL_Msk | GMAC_TSR_UBR_Msk)) != 0) {
// MG_INFO((" --> %#x %#x", s_txdesc[s_txno][1], tsr));
if (!(s_txdesc[s_txno][1] & BIT(31))) s_txdesc[s_txno][1] |= BIT(31);
}
GMAC_REGS->GMAC_RSR = rsr;
GMAC_REGS->GMAC_TSR = tsr;
}
struct mg_tcpip_driver mg_tcpip_driver_same54 = {
mg_tcpip_driver_same54_init, mg_tcpip_driver_same54_tx, NULL,
mg_tcpip_driver_same54_up};
#endif
#ifdef MG_ENABLE_LINES
#line 1 "src/tcpip/driver_stm32.c"
#endif
@ -8485,6 +8872,7 @@ static void mg_tcpip_rx(struct mg_tcpip_if *ifp, void *buf, size_t len) {
pkt.raw.ptr = (char *) buf;
pkt.raw.len = len;
pkt.eth = (struct eth *) buf;
//mg_hexdump(buf, len > 16 ? 16: len);
if (pkt.raw.len < sizeof(*pkt.eth)) return; // Truncated - runt?
if (ifp->enable_mac_check &&
memcmp(pkt.eth->dst, ifp->mac, sizeof(pkt.eth->dst)) != 0 &&
@ -8517,8 +8905,8 @@ static void mg_tcpip_rx(struct mg_tcpip_if *ifp, void *buf, size_t len) {
mkpay(&pkt, pkt.ip + 1);
rx_ip(ifp, &pkt);
} else {
MG_DEBUG((" Unknown eth type %x", mg_htons(pkt.eth->type)));
mg_hexdump(buf, len >= 16 ? 16 : len);
MG_DEBUG(("Unknown eth type %x", mg_htons(pkt.eth->type)));
mg_hexdump(buf, len >= 32 ? 32 : len);
}
}

View File

@ -1696,6 +1696,7 @@ extern struct mg_tcpip_driver mg_tcpip_driver_w5500;
extern struct mg_tcpip_driver mg_tcpip_driver_tm4c;
extern struct mg_tcpip_driver mg_tcpip_driver_stm32h;
extern struct mg_tcpip_driver mg_tcpip_driver_imxrt;
extern struct mg_tcpip_driver mg_tcpip_driver_same54;
// Drivers that require SPI, can use this SPI abstraction
struct mg_tcpip_spi {
@ -1722,6 +1723,15 @@ struct mg_tcpip_driver_imxrt1020_data {
};
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_SAME54) && MG_ENABLE_DRIVER_SAME54
struct mg_tcpip_driver_same54_data {
int mdc_cr;
};
#endif
struct mg_tcpip_driver_stm32_data {
// MDC clock divider. MDC clock is derived from HCLK, must not exceed 2.5MHz
// HCLK range DIVIDER mdc_cr VALUE

View File

@ -65,7 +65,7 @@ static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
//struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
@ -108,7 +108,7 @@ static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
@ -162,7 +162,7 @@ struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %p %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, NULL);
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
if (mg_url_is_ssl(url)) {
struct mg_str host = mg_url_host(url);

214
src/tcpip/driver_same54.c Normal file
View File

@ -0,0 +1,214 @@
#include "tcpip.h"
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_SAME54) && \
MG_ENABLE_DRIVER_SAME54
#include <sam.h>
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ETH_PKT_SIZE 1536 // Max frame size
#define ETH_DESC_CNT 4 // Descriptors count
#define ETH_DS 2 // Descriptor size (words)
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
static uint8_t s_txno; // Current TX descriptor
static uint8_t s_rxno; // Current RX descriptor
static struct mg_tcpip_if *s_ifp; // MIP interface
enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1 };
#define PHY_BCR_DUPLEX_MODE_Msk BIT(8)
#define PHY_BCR_SPEED_Msk BIT(13)
#define PHY_BSR_LINK_STATUS_Msk BIT(2)
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
GMAC_REGS->GMAC_MAN = GMAC_MAN_CLTTO_Msk |
GMAC_MAN_OP(2) | // Setting the read operation
GMAC_MAN_WTN(2) | GMAC_MAN_PHYA(addr) | // PHY address
GMAC_MAN_REGA(reg); // Setting the register
while (!(GMAC_REGS->GMAC_NSR & GMAC_NSR_IDLE_Msk)) (void) 0;
return GMAC_REGS->GMAC_MAN & GMAC_MAN_DATA_Msk; // Getting the read value
}
#if 0
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
GMAC_REGS->GMAC_MAN = GMAC_MAN_CLTTO_Msk | GMAC_MAN_OP(1) | // Setting the write operation
GMAC_MAN_WTN(2) | GMAC_MAN_PHYA(addr) | // PHY address
GMAC_MAN_REGA(reg) | GMAC_MAN_DATA(val); // Setting the register
while (!(GMAC_REGS->GMAC_NSR & GMAC_NSR_IDLE_Msk)); // Waiting until the write op is complete
}
#endif
int get_clock_rate(struct mg_tcpip_driver_same54_data *d) {
if (d && d->mdc_cr >= 0 && d->mdc_cr <= 5) {
return d->mdc_cr;
} else {
// get MCLK from GCLK_GENERATOR 0
uint32_t div = 512;
uint32_t mclk;
if (!(GCLK_REGS->GCLK_GENCTRL[0] & GCLK_GENCTRL_DIVSEL_Msk)) {
div = ((GCLK_REGS->GCLK_GENCTRL[0] & 0x00FF0000) >> 16);
if (div == 0) div = 1;
}
switch (GCLK_REGS->GCLK_GENCTRL[0] & GCLK_GENCTRL_SRC_Msk) {
case GCLK_GENCTRL_SRC_XOSC0_Val:
mclk = 32000000UL; /* 32MHz */
break;
case GCLK_GENCTRL_SRC_XOSC1_Val:
mclk = 32000000UL; /* 32MHz */
break;
case GCLK_GENCTRL_SRC_OSCULP32K_Val:
mclk = 32000UL;
break;
case GCLK_GENCTRL_SRC_XOSC32K_Val:
mclk = 32000UL;
break;
case GCLK_GENCTRL_SRC_DFLL_Val:
mclk = 48000000UL; /* 48MHz */
break;
case GCLK_GENCTRL_SRC_DPLL0_Val:
mclk = 200000000UL; /* 200MHz */
break;
case GCLK_GENCTRL_SRC_DPLL1_Val:
mclk = 200000000UL; /* 200MHz */
break;
default:
mclk = 200000000UL; /* 200MHz */
}
mclk /= div;
uint8_t crs[] = {0, 1, 2, 3, 4, 5}; // GMAC->NCFGR::CLK values
uint8_t dividers[] = {8, 16, 32, 48, 64, 128}; // Respective CLK dividers
for (int i = 0; i < 6; i++) {
if (mclk / dividers[i] <= 2375000UL /* 2.5MHz - 5% */) {
return crs[i];
}
}
return 5;
}
}
static bool mg_tcpip_driver_same54_init(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_same54_data *d =
(struct mg_tcpip_driver_same54_data *) ifp->driver_data;
s_ifp = ifp;
MCLK_REGS->MCLK_APBCMASK |= MCLK_APBCMASK_GMAC_Msk;
MCLK_REGS->MCLK_AHBMASK |= MCLK_AHBMASK_GMAC_Msk;
GMAC_REGS->GMAC_NCFGR = GMAC_NCFGR_CLK(get_clock_rate(d)); // Set MDC divider
GMAC_REGS->GMAC_NCR = 0; // Disable RX & TX
GMAC_REGS->GMAC_NCR |= GMAC_NCR_MPE_Msk; // Enable MDC & MDIO
for (int i = 0; i < ETH_DESC_CNT; i++) { // Init TX descriptors
s_txdesc[i][0] = (uint32_t) s_txbuf[i]; // Point to data buffer
s_txdesc[i][1] = BIT(31); // OWN bit
}
s_txdesc[ETH_DESC_CNT - 1][1] |= BIT(30); // Last tx descriptor - wrap
GMAC_REGS->GMAC_DCFGR = GMAC_DCFGR_DRBS(0x18); // DMA recv buf 1536
for (int i = 0; i < ETH_DESC_CNT; i++) { // Init RX descriptors
s_rxdesc[i][0] = (uint32_t) s_rxbuf[i]; // Address of the data buffer
s_rxdesc[i][1] = 0; // Clear status
}
s_rxdesc[ETH_DESC_CNT - 1][0] |= BIT(1); // Last rx descriptor - wrap
GMAC_REGS->GMAC_TBQB = (uint32_t) s_txdesc; // about the descriptor addresses
GMAC_REGS->GMAC_RBQB = (uint32_t) s_rxdesc; // Let the controller know
GMAC_REGS->SA[0].GMAC_SAB =
MG_U32(ifp->mac[3], ifp->mac[2], ifp->mac[1], ifp->mac[0]);
GMAC_REGS->SA[0].GMAC_SAT = MG_U32(0, 0, ifp->mac[5], ifp->mac[4]);
GMAC_REGS->GMAC_UR &= ~GMAC_UR_MII_Msk; // Disable MII, use RMII
GMAC_REGS->GMAC_NCFGR |= GMAC_NCFGR_MAXFS_Msk | GMAC_NCFGR_MTIHEN_Msk |
GMAC_NCFGR_EFRHD_Msk | GMAC_NCFGR_CAF_Msk;
GMAC_REGS->GMAC_TSR = GMAC_TSR_HRESP_Msk | GMAC_TSR_UND_Msk |
GMAC_TSR_TXCOMP_Msk | GMAC_TSR_TFC_Msk |
GMAC_TSR_TXGO_Msk | GMAC_TSR_RLE_Msk |
GMAC_TSR_COL_Msk | GMAC_TSR_UBR_Msk;
GMAC_REGS->GMAC_RSR = GMAC_RSR_HNO_Msk | GMAC_RSR_RXOVR_Msk |
GMAC_RSR_REC_Msk | GMAC_RSR_BNA_Msk;
GMAC_REGS->GMAC_IDR = ~0U; // Disable interrupts, then enable required
GMAC_REGS->GMAC_IER = GMAC_IER_HRESP_Msk | GMAC_IER_ROVR_Msk |
GMAC_IER_TCOMP_Msk | GMAC_IER_TFC_Msk |
GMAC_IER_RLEX_Msk | GMAC_IER_TUR_Msk |
GMAC_IER_RXUBR_Msk | GMAC_IER_RCOMP_Msk;
GMAC_REGS->GMAC_NCR |= GMAC_NCR_TXEN_Msk | GMAC_NCR_RXEN_Msk;
NVIC_EnableIRQ(GMAC_IRQn);
return true;
}
static size_t mg_tcpip_driver_same54_tx(const void *buf, size_t len,
struct mg_tcpip_if *ifp) {
if (len > sizeof(s_txbuf[s_txno])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((s_txdesc[s_txno][1] & BIT(31)) == 0) {
ifp->nerr++;
MG_ERROR(("No free descriptors"));
len = 0; // All descriptors are busy, fail
} else {
uint32_t status = len | BIT(15); // Frame length, last chunk
if (s_txno == ETH_DESC_CNT - 1) status |= BIT(30); // wrap
memcpy(s_txbuf[s_txno], buf, len); // Copy data
s_txdesc[s_txno][1] = status;
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
}
__DSB(); // Ensure descriptors have been written
GMAC_REGS->GMAC_NCR |= GMAC_NCR_TSTART_Msk; // Enable transmission
return len;
}
static bool mg_tcpip_driver_same54_up(struct mg_tcpip_if *ifp) {
uint16_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR);
bool up = bsr & PHY_BSR_LINK_STATUS_Msk ? 1 : 0;
// If PHY is ready, update NCFGR accordingly
if (ifp->state == MG_TCPIP_STATE_DOWN && up) {
uint16_t bcr = eth_read_phy(PHY_ADDR, PHY_BCR);
bool fd = bcr & PHY_BCR_DUPLEX_MODE_Msk ? 1 : 0;
bool spd = bcr & PHY_BCR_SPEED_Msk ? 1 : 0;
GMAC_REGS->GMAC_NCFGR |= GMAC_NCFGR_SPD(spd) | GMAC_NCFGR_FD(fd);
}
return up;
}
void GMAC_Handler(void);
void GMAC_Handler(void) {
uint32_t isr = GMAC_REGS->GMAC_ISR;
uint32_t rsr = GMAC_REGS->GMAC_RSR;
uint32_t tsr = GMAC_REGS->GMAC_TSR;
if (isr & GMAC_ISR_RCOMP_Msk) {
if (rsr & GMAC_ISR_RCOMP_Msk) {
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
if ((s_rxdesc[s_rxno][0] & BIT(0)) == 0) break;
size_t len = s_rxdesc[s_rxno][1] & (BIT(13) - 1);
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
s_rxdesc[s_rxno][0] &= ~BIT(0); // Disown
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
}
}
}
if ((tsr & (GMAC_TSR_HRESP_Msk | GMAC_TSR_UND_Msk | GMAC_TSR_TXCOMP_Msk |
GMAC_TSR_TFC_Msk | GMAC_TSR_TXGO_Msk | GMAC_TSR_RLE_Msk |
GMAC_TSR_COL_Msk | GMAC_TSR_UBR_Msk)) != 0) {
// MG_INFO((" --> %#x %#x", s_txdesc[s_txno][1], tsr));
if (!(s_txdesc[s_txno][1] & BIT(31))) s_txdesc[s_txno][1] |= BIT(31);
}
GMAC_REGS->GMAC_RSR = rsr;
GMAC_REGS->GMAC_TSR = tsr;
}
struct mg_tcpip_driver mg_tcpip_driver_same54 = {
mg_tcpip_driver_same54_init, mg_tcpip_driver_same54_tx, NULL,
mg_tcpip_driver_same54_up};
#endif

View File

@ -0,0 +1,9 @@
#pragma once
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_SAME54) && MG_ENABLE_DRIVER_SAME54
struct mg_tcpip_driver_same54_data {
int mdc_cr;
};
#endif

View File

@ -762,6 +762,7 @@ static void mg_tcpip_rx(struct mg_tcpip_if *ifp, void *buf, size_t len) {
pkt.raw.ptr = (char *) buf;
pkt.raw.len = len;
pkt.eth = (struct eth *) buf;
//mg_hexdump(buf, len > 16 ? 16: len);
if (pkt.raw.len < sizeof(*pkt.eth)) return; // Truncated - runt?
if (ifp->enable_mac_check &&
memcmp(pkt.eth->dst, ifp->mac, sizeof(pkt.eth->dst)) != 0 &&
@ -794,8 +795,8 @@ static void mg_tcpip_rx(struct mg_tcpip_if *ifp, void *buf, size_t len) {
mkpay(&pkt, pkt.ip + 1);
rx_ip(ifp, &pkt);
} else {
MG_DEBUG((" Unknown eth type %x", mg_htons(pkt.eth->type)));
mg_hexdump(buf, len >= 16 ? 16 : len);
MG_DEBUG(("Unknown eth type %x", mg_htons(pkt.eth->type)));
mg_hexdump(buf, len >= 32 ? 32 : len);
}
}

View File

@ -54,6 +54,7 @@ extern struct mg_tcpip_driver mg_tcpip_driver_w5500;
extern struct mg_tcpip_driver mg_tcpip_driver_tm4c;
extern struct mg_tcpip_driver mg_tcpip_driver_stm32h;
extern struct mg_tcpip_driver mg_tcpip_driver_imxrt;
extern struct mg_tcpip_driver mg_tcpip_driver_same54;
// Drivers that require SPI, can use this SPI abstraction
struct mg_tcpip_spi {

165
src/tls_builtin.c Normal file
View File

@ -0,0 +1,165 @@
#include "tls.h"
#if MG_TLS == MG_TLS_BUILTIN
struct tls_data {
struct mg_iobuf send;
struct mg_iobuf recv;
};
#define MG_LOAD_BE16(p) ((uint16_t) ((MG_U8P(p)[0] << 8U) | MG_U8P(p)[1]))
#define TLS_HDR_SIZE 5 // 1 byte type, 2 bytes version, 2 bytes len
static inline bool mg_is_big_endian(void) {
int v = 1;
return *(unsigned char *) &v == 1;
}
static inline uint16_t mg_swap16(uint16_t v) {
return (uint16_t) ((v << 8U) | (v >> 8U));
}
static inline uint32_t mg_swap32(uint32_t v) {
return (v >> 24) | (v >> 8 & 0xff00) | (v << 8 & 0xff0000) | (v << 24);
}
static inline uint64_t mg_swap64(uint64_t v) {
return (((uint64_t) mg_swap32((uint32_t) v)) << 32) |
mg_swap32((uint32_t) (v >> 32));
}
static inline uint16_t mg_be16(uint16_t v) {
return mg_is_big_endian() ? mg_swap16(v) : v;
}
static inline uint32_t mg_be32(uint32_t v) {
return mg_is_big_endian() ? mg_swap32(v) : v;
}
static inline void add8(struct mg_iobuf *io, uint8_t data) {
mg_iobuf_add(io, io->len, &data, sizeof(data));
}
static inline void add16(struct mg_iobuf *io, uint16_t data) {
data = mg_htons(data);
mg_iobuf_add(io, io->len, &data, sizeof(data));
}
static inline void add32(struct mg_iobuf *io, uint32_t data) {
data = mg_htonl(data);
mg_iobuf_add(io, io->len, &data, sizeof(data));
}
void mg_tls_init(struct mg_connection *c, struct mg_str hostname) {
struct tls_data *tls = (struct tls_data *) calloc(1, sizeof(struct tls_data));
if (tls != NULL) {
tls->send.align = tls->recv.align = MG_IO_SIZE;
c->tls = tls;
c->is_tls = c->is_tls_hs = 1;
} else {
mg_error(c, "tls oom");
}
(void) hostname;
}
void mg_tls_free(struct mg_connection *c) {
struct tls_data *tls = c->tls;
if (tls != NULL) {
mg_iobuf_free(&tls->send);
mg_iobuf_free(&tls->recv);
}
free(c->tls);
c->tls = NULL;
}
long mg_tls_send(struct mg_connection *c, const void *buf, size_t len) {
(void) c, (void) buf, (void) len;
// MG_INFO(("BBBBBBBB"));
return -1;
}
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
(void) c, (void) buf, (void) len;
char tmp[8192];
long n = mg_io_recv(c, tmp, sizeof(tmp));
if (n > 0) mg_hexdump(tmp, (size_t) n);
MG_INFO(("AAAAAAAA"));
return -1;
// struct mg_tls *tls = (struct mg_tls *) c->tls;
// long n = mbedtls_ssl_read(&tls->ssl, (unsigned char *) buf, len);
// if (n == MBEDTLS_ERR_SSL_WANT_READ || n == MBEDTLS_ERR_SSL_WANT_WRITE)
// return MG_IO_WAIT;
// if (n <= 0) return MG_IO_ERR;
// return n;
}
size_t mg_tls_pending(struct mg_connection *c) {
(void) c;
return 0;
}
void mg_tls_handshake(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *rio = &tls->recv;
struct mg_iobuf *wio = &tls->send;
// Pull data from TCP
for (;;) {
mg_iobuf_resize(rio, rio->len + 1);
long n = mg_io_recv(c, &rio->buf[rio->len], rio->size - rio->len);
if (n > 0) {
rio->len += (size_t) n;
} else if (n == MG_IO_WAIT) {
break;
} else {
mg_error(c, "IO err");
return;
}
}
// Look if we've pulled everything
if (rio->len < TLS_HDR_SIZE) return;
uint8_t record_type = rio->buf[0];
uint16_t record_len = MG_LOAD_BE16(rio->buf + 3);
uint16_t record_version = MG_LOAD_BE16(rio->buf + 1);
if (record_type != 22) {
mg_error(c, "no 22");
return;
}
if (rio->len < (size_t) TLS_HDR_SIZE + record_len) return;
// Got full hello
// struct tls_hello *hello = (struct tls_hello *) (hdr + 1);
MG_INFO(("CT=%d V=%hx L=%hu", record_type, record_version, record_len));
mg_hexdump(rio->buf, rio->len);
// Send response. Server Hello
size_t ofs = wio->len;
add8(wio, 22), add16(wio, 0x303), add16(wio, 0); // Layer: type, ver, len
add8(wio, 2), add8(wio, 0), add16(wio, 0), add16(wio, 0x304); // Hello
mg_iobuf_add(wio, wio->len, NULL, 32); // 32 random
mg_random(wio->buf + wio->len - 32, 32); // bytes
add8(wio, 0); // Session ID
add16(wio, 0x1301); // Cipher: TLS_AES_128_GCM_SHA256
add8(wio, 0); // Compression method: 0
add16(wio, 46); // Extensions length
add16(wio, 43), add16(wio, 2), add16(wio, 0x304); // extension: TLS 1.3
add16(wio, 51), add16(wio, 36), add16(wio, 29), add16(wio, 32); // keyshare
mg_iobuf_add(wio, wio->len, NULL, 32); // 32 random
mg_random(wio->buf + wio->len - 32, 32); // bytes
*(uint16_t *) &wio->buf[ofs + 3] = mg_be16((uint16_t) (wio->len - ofs - 5));
*(uint16_t *) &wio->buf[ofs + 7] = mg_be16((uint16_t) (wio->len - ofs - 9));
// Change cipher. Cipher's payload is an encypted app data
// ofs = wio->len;
add8(wio, 20), add16(wio, 0x303); // Layer: type, version
add16(wio, 1), add8(wio, 1);
ofs = wio->len; // Application data
add8(wio, 23), add16(wio, 0x303), add16(wio, 5); // Layer: type, version
// mg_iobuf_add(wio, wio->len, "\x01\x02\x03\x04\x05", 5);
add8(wio, 22); // handshake message
add8(wio, 8); // encrypted extensions
add8(wio, 0), add16(wio, 2), add16(wio, 0); // empty 2 bytes
add8(wio, 11); // certificate message
add8(wio, 0), add16(wio, 4), add32(wio, 0x1020304); // len
*(uint16_t *) &wio->buf[ofs + 3] = mg_be16((uint16_t)(wio->len - ofs - 5));
mg_io_send(c, wio->buf, wio->len);
wio->len = 0;
rio->len = 0;
c->is_tls_hs = 0;
mg_error(c, "doh");
}
void mg_tls_ctx_free(struct mg_mgr *mgr) {
mgr->tls_ctx = NULL;
}
void mg_tls_ctx_init(struct mg_mgr *mgr, const struct mg_tls_opts *opts) {
(void) opts, (void) mgr;
}
#endif