Merge pull request #2407 from cesanta/rt1020

Add RT1020-EVK baremetal example
This commit is contained in:
Sergey Lyubka 2023-10-05 14:19:00 +01:00 committed by GitHub
commit 8ec327f9c7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 721 additions and 519 deletions

View File

@ -2,22 +2,22 @@ CFLAGS = -W -Wall -Wextra -Werror -Wundef -Wshadow -Wdouble-promotion
CFLAGS += -Wformat-truncation -fno-common -Wconversion -Wno-sign-conversion
CFLAGS += -g3 -Os -ffunction-sections -fdata-sections
CFLAGS += -I. -Icmsis_core/CMSIS/Core/Include -Icmsis_mcu/devices/MIMXRT1021 #-DCPU_MIMXRT1021DAG5A
CFLAGS += -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-sp-d16
LDFLAGS ?= -Tlink.ld -nostdlib -nostartfiles --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
# cmsis_mcu/devices/MIMXRT1021/gcc/MIMXRT1021xxxxx_ram.ld
# cmsis_mcu/devices/MIMXRT1021/system_MIMXRT1021.c
CFLAGS += -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-d16
LDFLAGS ?= -Tlink_ram.ld -nostdlib -nostartfiles --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c syscalls.c sysinit.c
SOURCES += cmsis_mcu/devices/MIMXRT1021/gcc/startup_MIMXRT1021.S
CFLAGS += -D__ATOLLIC__ -D__STARTUP_CLEAR_BSS # Make startup code work as expected
# Mongoose-specific. See https://mongoose.ws/documentation/#build-options
SOURCES += mongoose.c
SOURCES += mongoose.c #net.c packed_fs.c
CFLAGS += -DMG_ENABLE_TCPIP=1 -DMG_ARCH=MG_ARCH_NEWLIB -DMG_ENABLE_CUSTOM_MILLIS=1
CFLAGS += -DMG_ENABLE_CUSTOM_RANDOM=1 #-DMG_ENABLE_PACKED_FS=1
CFLAGS += -DMG_ENABLE_CUSTOM_RANDOM=1 -DMG_ENABLE_PACKED_FS=1 -DMG_ENABLE_DRIVER_IMXRT1020=1
CFLAGS += $(CFLAGS_EXTRA)
# Example specific build options. See README.md
#CFLAGS += -DHTTP_URL=\"http://0.0.0.0/\" -DHTTPS_URL=\"https://0.0.0.0/\"
CFLAGS += -DHTTP_URL=\"http://0.0.0.0/\" -DHTTPS_URL=\"https://0.0.0.0/\"
ifeq ($(OS),Windows_NT)
RM = cmd /C del /Q /F /S
@ -32,6 +32,7 @@ firmware.bin: firmware.elf
firmware.elf: cmsis_core cmsis_mcu $(SOURCES) hal.h link.ld Makefile
arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(LDFLAGS) -o $@
arm-none-eabi-size $@
flash: firmware.bin
st-flash --reset write $< 0x8000000
@ -56,8 +57,16 @@ endif
DEVICE_URL ?= https://dash.vcon.io/api/v3/devices/4
update: firmware.bin
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$<
curl -su :$(VCON_API_KEY) https://dash.vcon.io/api/v3/devices/4/rpc/swd.exec -d '{"req":"init"}'
curl -su :$(VCON_API_KEY) https://dash.vcon.io/api/v3/devices/4/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0003 wm,e000edfc,1 wm,e000ed0c,5fa0004"}'
curl -su :$(VCON_API_KEY) https://dash.vcon.io/api/v3/devices/4/rpc/swd.exec -d '{"req":"init"}'
PC=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,4"}' | jq -r .resp[5:]` && \
SP=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,0"}' | jq -r .resp[5:]` && \
REQ="wm,e000ed08,0 wr,d,$$SP wr,f,$$PC" && \
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"'"$$REQ"'"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0001"}'
test update: CFLAGS += -DUART_DEBUG=USART1
test update: CFLAGS += -DUART_DEBUG=LPUART2
test: update
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt
grep 'READY, IP:' /tmp/output.txt # Check for network init

View File

@ -0,0 +1,288 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
// https://www.nxp.com/webapp/Download?colCode=IMXRT1020RM
// https://cache.nxp.com/secured/assets/documents/en/user-guide/MIMXRT1020EVKHUG.pdf
#pragma once
#include "MIMXRT1021.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((((bank) - '0') << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
// Use LED for blinking, GPIO_AD_B0_05. GPIO1.5 (schematics)
#define LED PIN('1', 5)
#ifndef UART_DEBUG
#define UART_DEBUG LPUART1
#endif
// No settable constants, see sysinit.c
#define SYS_FREQUENCY 500000000UL
static inline void spin(volatile uint32_t count) {
while (count--) (void) 0;
}
enum { CLOCK_OFF = 0U, CLOCK_ON_RUN = 1U, CLOCK_ON_RUN_WAIT = 3U };
static inline void clock_periph(uint32_t index, uint32_t shift, uint32_t val) {
volatile uint32_t *r = &CCM->CCGR0;
SETBITS(r[index], 3UL << shift, val << shift);
}
// which peripheral feeds the pin
static inline void gpio_mux_config(uint16_t index, uint8_t af) {
IOMUXC->SW_MUX_CTL_PAD[index] = af;
}
// which pin feeds the peripheral (2nd stage)
static inline void periph_mux_config(uint16_t index, uint8_t in) {
IOMUXC->SELECT_INPUT[index] = in;
}
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT };
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_MEDIUM_, GPIO_SPEED_HIGH };
enum { GPIO_PULL_NONE, GPIO_PULL_DOWN, GPIO_PULL_UP };
static inline GPIO_Type *gpio_bank(uint16_t pin) {
static const GPIO_Type *g[] = {NULL, GPIO1, GPIO2, GPIO3, NULL, GPIO5};
return (GPIO_Type *) g[PINBANK(pin)];
}
// pin driver/pull-up/down configuration (ignore "keeper")
static inline void gpio_pad_config(uint16_t index, uint8_t type, uint8_t speed,
uint8_t pull) {
bool dopull = pull > 0;
if (dopull) --pull;
IOMUXC->SW_PAD_CTL_PAD[index] =
IOMUXC_SW_PAD_CTL_PAD_SPEED(speed) | IOMUXC_SW_PAD_CTL_PAD_ODE(type) |
IOMUXC_SW_PAD_CTL_PAD_SRE(speed >= GPIO_SPEED_HIGH) |
IOMUXC_SW_PAD_CTL_PAD_PUE(1) | IOMUXC_SW_PAD_CTL_PAD_PKE(dopull) |
IOMUXC_SW_PAD_CTL_PAD_PUS(pull) | IOMUXC_SW_PAD_CTL_PAD_DSE(7);
}
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull) {
GPIO_Type *gpio = gpio_bank(pin);
uint8_t bit = (uint8_t) PINNO(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
clock_periph(4, CCM_CCGR4_CG1_SHIFT, CLOCK_ON_RUN_WAIT); // iomuxc_ipg_clk_s
switch (PINBANK(pin)) {
case 1:
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_00 + bit, 5);
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_00 + bit, type, speed,
pull);
clock_periph(1, CCM_CCGR1_CG13_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 2:
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_00 + bit, 5);
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_00 + bit, type, speed,
pull);
clock_periph(0, CCM_CCGR0_CG15_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 3:
gpio_mux_config(bit < 13
? kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_32 + bit
: kIOMUXC_SW_MUX_CTL_PAD_GPIO_SD_B0_00 + bit - 13,
5);
gpio_pad_config(bit < 13
? kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_32 + bit
: kIOMUXC_SW_PAD_CTL_PAD_GPIO_SD_B0_00 + bit - 13,
type, speed, pull);
clock_periph(2, CCM_CCGR2_CG13_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 5:
// TODO(): support sw_mux
clock_periph(1, CCM_CCGR1_CG15_SHIFT, CLOCK_ON_RUN_WAIT);
break;
default:
break;
}
gpio->IMR &= ~mask;
if (mode == GPIO_MODE_INPUT) {
gpio->GDIR &= ~mask;
} else {
gpio->GDIR |= mask;
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM,
GPIO_PULL_NONE);
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM,
GPIO_PULL_NONE);
}
static inline bool gpio_read(uint16_t pin) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
return gpio->DR & mask;
}
static inline void gpio_write(uint16_t pin, bool value) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
if (value) {
gpio->DR |= mask;
} else {
gpio->DR &= ~mask;
}
}
static inline void gpio_toggle(uint16_t pin) {
gpio_write(pin, !gpio_read(pin));
}
// 14.5 Table 14-4: uart_clk_root
// see sysinit.c for clocks, (14.7.9: defaults to PLL3/6/1 = 80MHz)
static inline void uart_init(LPUART_Type *uart, unsigned long baud) {
uint8_t af = 2; // Alternate function
uint16_t mr = 0, pr = 0, mt = 0, pt = 0; // pins
uint32_t freq = 80000000; // uart_clk_root frequency
if (uart == LPUART1)
mt = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_06,
pt = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_06,
mr = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_07,
pr = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_07;
if (uart == LPUART2)
mt = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B1_08,
pt = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B1_08,
mr = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B1_09,
pr = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B1_09;
if (uart == LPUART1) clock_periph(5, CCM_CCGR5_CG12_SHIFT, CLOCK_ON_RUN_WAIT);
if (uart == LPUART2) clock_periph(0, CCM_CCGR0_CG14_SHIFT, CLOCK_ON_RUN_WAIT);
clock_periph(4, CCM_CCGR4_CG1_SHIFT, CLOCK_ON_RUN_WAIT); // iomuxc_ipg_clk_s
gpio_mux_config(mt, af);
gpio_pad_config(pt, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_mux_config(mr, af);
gpio_pad_config(pr, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
uart->GLOBAL |= LPUART_GLOBAL_RST_MASK; // reset, CTRL = 0, defaults
uart->GLOBAL &= ~LPUART_GLOBAL_RST_MASK;
SETBITS(uart->BAUD,
LPUART_BAUD_OSR_MASK | LPUART_BAUD_SBR_MASK | LPUART_BAUD_SBNS_MASK,
LPUART_BAUD_OSR(16 - 1) |
LPUART_BAUD_SBR(freq / (16 * baud))); // Rx sample at 16x
SETBITS(uart->CTRL,
LPUART_CTRL_PE_MASK | LPUART_CTRL_M_MASK | LPUART_CTRL_ILT_MASK |
LPUART_CTRL_IDLECFG_MASK,
LPUART_CTRL_IDLECFG(1) | LPUART_CTRL_ILT(1) |
LPUART_BAUD_SBNS(0)); // no parity, idle 2 chars after 1 stop bit
uart->CTRL |= LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK;
}
static inline void uart_write_byte(LPUART_Type *uart, uint8_t byte) {
uart->DATA = byte;
while ((uart->STAT & LPUART_STAT_TDRE_MASK) == 0) spin(1);
}
static inline void uart_write_buf(LPUART_Type *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline int uart_read_ready(LPUART_Type *uart) {
(void) uart;
return uart->STAT & LPUART_STAT_RDRF_MASK;
}
static inline uint8_t uart_read_byte(LPUART_Type *uart) {
return (uint8_t) (uart->DATA & 255);
}
// TODO(NXP): get RNG usage specs
static inline void rng_init(void) {
}
#include <stdlib.h>
static inline uint32_t rng_read(void) {
return (uint32_t) rand();
}
// - PHY has no xtal, XI driven from ENET_REF_CLK1 (labeled as ENET_TX_CLK
// (GPIO_AD_B0_08)), generated by the MCU
// - PHY RST connected to GPIO1.4 (GPIO_AD_B0_04); INTRP/NAND_TREE connected to
// GPIO1.22 (GPIO_AD_B1_06)
// - 37.4 REF_CLK1 is RMII mode reference clock for Rx, Tx, and SMI; it is I/O
// - 11.4.2 IOMUXC_GPR_GPR1 bit 17: ENET_REF_CLK_DIR --> 1 ENET_REF_CLK is
// output driven by ref_enetpll0
// - 14.6.1.3.4 Ethernet PLL (PLL6)
static inline void ethernet_init(void) {
gpio_init(PIN('1', 4), GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP); // set GPIO1.4 as GPIO (PHY \RST)
gpio_write(PIN('1', 4), 0); // reset PHY
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_08,
4); // set for ENET_REF_CLK1
IOMUXC->SW_MUX_CTL_PAD[kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_08] |=
IOMUXC_SW_MUX_CTL_PAD_SION(1); // loop signal back from pin
periph_mux_config(kIOMUXC_ENET_RMII_SELECT_INPUT,
1); // drive peripheral from B0_08, so RMII clock is taken
// from ENET_REF_CLK1
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_08, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_09, 0); // set for RXDATA1
periph_mux_config(kIOMUXC_ENET_RX_DATA1_SELECT_INPUT,
1); // drive peripheral from B0_09
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_09, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_10, 0); // set for RXDATA0
periph_mux_config(kIOMUXC_ENET_RX_DATA0_SELECT_INPUT,
1); // drive peripheral from B0_10
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_10, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_11, 0); // set for CRS
periph_mux_config(kIOMUXC_ENET_RX_EN_SELECT_INPUT,
1); // drive peripheral from B0_11
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_11, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_12, 0); // set for RXERR
periph_mux_config(kIOMUXC_ENET_RX_ERR_SELECT_INPUT,
1); // drive peripheral from B0_12
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_12, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_13, 0); // set for TXEN
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_13, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_14, 0); // set for TXDATA0
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_14, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_15, 0); // set for TXDATA1
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_15, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_40, 4); // set for MDIO
periph_mux_config(kIOMUXC_ENET_MDIO_SELECT_INPUT,
2); // drive peripheral from EMC_40
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_40, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_41, 4); // set for MDC
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_41, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_init(PIN('1', 22), GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM,
GPIO_PULL_UP); // set GPIO1.22 as GPIO (PHY INTRP/NAND_TREE)
gpio_write(PIN('1', 22), 1); // prevent NAND_TREE
// 14.8.9 Use 500MHz reference and generate 50MHz. This is done at sysinit.c,
// as we use this source to clock the core
spin(10000); // keep PHY RST low for a while
gpio_write(PIN('1', 4), 1); // deassert RST
gpio_init(PIN('1', 22), GPIO_MODE_INPUT, 0, GPIO_SPEED_MEDIUM,
GPIO_PULL_UP); // setup IRQ (pulled-up)(not used)
IOMUXC_GPR->GPR1 |=
IOMUXC_GPR_GPR1_ENET_REF_CLK_DIR(1); // Set ENET_REF_CLK1 as output
clock_periph(1, CCM_CCGR1_CG5_SHIFT, CLOCK_ON_RUN_WAIT); // enet_ipg_clk
NVIC_EnableIRQ(ENET_IRQn); // Setup Ethernet IRQ handler
}
// Helper macro for MAC generation
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
{ 2, 0, 2, 5, 7, 91 }
// *((uint32_t *)(uintptr_t)&uid[0]) = OCOTP->CFG0;
// *((uint32_t *)(uintptr_t)&uid[4]) = OCOTP->CFG1;

View File

@ -0,0 +1,16 @@
ENTRY(Reset_Handler);
MEMORY {
itcram(rx) : ORIGIN = 0x00000000, LENGTH = 64k
dtcram(rw) : ORIGIN = 0x20000000, LENGTH = 64k
ocram(rw) : ORIGIN = 0x20200000, LENGTH = 128k # This is cached !
}
__StackTop = ORIGIN(dtcram) + LENGTH(dtcram);
SECTIONS {
.irq : { KEEP(*(.isr_vector)) } > itcram
.text : { *(.text* .text.*) *(.rodata*) ; } > itcram
.data : { __data_start__ = .; *(.data SORT(.data.*)) __data_end__ = .; } > dtcram AT > itcram
__etext = LOADADDR(.data);
.bss : { __bss_start__ = .; *(.bss SORT(.bss.*) COMMON) __bss_end__ = .; } > dtcram
_end = .;
}

View File

@ -3,7 +3,7 @@
#include "hal.h"
#include "mongoose.h"
// #include "net.h"
#include "net.h"
#define BLINK_PERIOD_MS 1000 // LED blinking period in millis
@ -22,26 +22,17 @@ void mg_random(void *buf, size_t len) { // Use on-board RNG
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
static void timer_fn(void *arg) {
//gpio_toggle(LED); // Blink LED
//struct mg_tcpip_if *ifp = arg; // And show
//const char *names[] = {"down", "up", "req", "ready"}; // network stats
//MG_INFO(("Ethernet: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
// names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
// ifp->ndrop, ifp->nerr));
MG_INFO(("%p", arg));
gpio_toggle(LED); // Blink LED
struct mg_tcpip_if *ifp = arg; // And show
const char *names[] = {"down", "up", "req", "ready"}; // network stats
MG_INFO(("Ethernet: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
ifp->ndrop, ifp->nerr));
}
int main(void) {
gpio_output(LED); // Setup blue LED
for (;;) {
gpio_toggle(LED);
spin(99999);
}
uart_init(UART_DEBUG, 115200); // Initialise debug printf
ethernet_init(); // Initialise ethernet pins
MG_INFO(("Starting, CPU freq %g MHz", (double) SystemCoreClock / 1000000));
@ -49,17 +40,15 @@ int main(void) {
struct mg_mgr mgr; // Initialise
mg_mgr_init(&mgr); // Mongoose event manager
mg_log_set(MG_LL_DEBUG); // Set log level
mg_timer_add(&mgr, BLINK_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, NULL);
#if 0
// Initialise Mongoose network stack
struct mg_tcpip_driver_stm32_data driver_data = {.mdc_cr = 4};
struct mg_tcpip_driver_imxrt1020_data driver_data = {.mdc_cr = 4};
struct mg_tcpip_if mif = {.mac = GENERATE_LOCALLY_ADMINISTERED_MAC(),
// Uncomment below for static configuration:
// .ip = mg_htonl(MG_U32(192, 168, 0, 223)),
// .mask = mg_htonl(MG_U32(255, 255, 255, 0)),
// .gw = mg_htonl(MG_U32(192, 168, 0, 1)),
.driver = &mg_tcpip_driver_stm32,
.driver = &mg_tcpip_driver_imxrt1020,
.driver_data = &driver_data};
mg_tcpip_init(&mgr, &mif);
mg_timer_add(&mgr, BLINK_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, &mif);
@ -70,8 +59,7 @@ int main(void) {
}
MG_INFO(("Initialising application..."));
web_init(&mgr);
#endif
// web_init(&mgr);
MG_INFO(("Starting event loop"));
for (;;) {

View File

@ -0,0 +1 @@
../../device-dashboard/net.c

View File

@ -0,0 +1 @@
../../device-dashboard/net.h

View File

@ -0,0 +1 @@
../../device-dashboard/packed_fs.c

View File

@ -9,12 +9,12 @@ int _fstat(int fd, struct stat *st) {
}
void *_sbrk(int incr) {
extern char __end__;
extern char _end;
static unsigned char *heap = NULL;
unsigned char *prev_heap;
unsigned char x = 0, *heap_end = (unsigned char *)((size_t) &x - 512);
(void) x;
if (heap == NULL) heap = (unsigned char *) &__end__;
if (heap == NULL) heap = (unsigned char *) &_end;
prev_heap = heap;
if (heap + incr > heap_end) return (void *) -1;
heap += incr;

View File

@ -0,0 +1,106 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
//
// This file contains essentials required by the CMSIS:
// uint32_t SystemCoreClock - holds the system core clock value
// SystemInit() - initialises the system, e.g. sets up clocks
#include "hal.h"
uint32_t SystemCoreClock = SYS_FREQUENCY;
// - 14.4, Figure 14-2: clock tree
// - 14.7.4: ARM_PODF defaults to /1
// - 14.7.5: AHB_PODF defaults to /1; PERIPH_CLK_SEL defaults to derive clock
// from pre_periph_clk_sel
// - 14.7.6: PRE_PERIPH_CLK_SEL defaults to derive clock from PLL2 PFD3.
// - (For 528MHz operation, we need to set it to derive clock from PLL2, but
// this chip max is 500 MHz).
// - 14.6.1.3.1 System PLL (PLL2); 13.3.2.2 PLLs; 14.6.1.4 Phase Fractional
// Dividers (PFD)
// - 14.8.2: PLL2 is powered off and bypassed to 24MHz
// - 14.8.11: PFD defaults to 18/16 but Figure 14-2 shows half the value
// ("divider")
// - For 500MHz operation, we need to set PRE_PERIPH_CLK_SEL to derive clock
// from divided PLL6
// - 14.8.9: configure PLL6 to generate a 500MHz clock
// - Datasheet 4.1.3: System frequency/Bus frequency max 500/125MHz respectively
// (AHB/IPG)
// - MCUXpresso: IPG_CLK_ROOT <= 125MHz; PERCLK_CLK_ROOT <= 62.5MHz
// - Datasheet 4.8.4.1.1/2: the processor clock frequency must exceed twice the
// ENET_RX_CLK/ENET_TX_CLK frequency.
// - Datasheet 4.8.4.2: no details for RMII (above is for MII), assumed 50MHz
// min processor clock
// - Datasheet 4.1.3, Table 11: "Overdrive" run mode requires 1.25V core voltage
// minimum
void SystemInit(void) { // Called automatically by startup code (ints masked)
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
// 53.4.2: Disable watchdog after reset (unlocked)
RTWDOG->CS &= ~RTWDOG_CS_EN_MASK;
RTWDOG->TOVAL = 0xFFFF;
while (RTWDOG->CS & RTWDOG_CS_ULK_MASK) spin(1); // wait for lock
while ((RTWDOG->CS & RTWDOG_CS_RCS_MASK) == 0)
spin(1); // wait for new config
// Set VDD_SOC to 1.25V
SETBITS(DCDC->REG3, DCDC_REG3_TRG_MASK, DCDC_REG3_TRG(0x12));
while ((DCDC->REG0 & DCDC_REG0_STS_DC_OK_MASK) == 0)
spin(1); // Wait for DCDC_STS_DC_OK
// 14.8.9 Init 500MHz reference, clock the M7 core with it, generate 50MHz for
// ENET and RMII.
SETBITS(CCM_ANALOG->PLL_ENET, CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK,
CCM_ANALOG_PLL_ENET_BYPASS_MASK |
CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(0)); // bypass to 24MHz osc
SETBITS(
CCM_ANALOG->PLL_ENET,
CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK,
CCM_ANALOG_PLL_ENET_DIV_SELECT(1) | CCM_ANALOG_PLL_ENET_ENABLE_MASK |
CCM_ANALOG_PLL_ENET_ENET_500M_REF_EN_MASK); // setup PLL
while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_ENET &=
~CCM_ANALOG_PLL_ENET_BYPASS_MASK; // Disable Bypass (switch to PLL)
SETBITS(CCM->CBCDR, CCM_CBCDR_IPG_PODF_MASK,
CCM_CBCDR_IPG_PODF(3)); // Set IPG divider /4 (125MHz)
SETBITS(CCM->CSCMR1, CCM_CSCMR1_PERCLK_PODF_MASK,
CCM_CSCMR1_PERCLK_PODF(1)); // Set PERCLK divider /2 (62.5MHz)
SETBITS(CCM->CBCMR, CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK,
CCM_CBCMR_PRE_PERIPH_CLK_SEL(3)); // run from 500MHz clock
// 14.5 Table 14-4: uart_clk_root
// 14.4: uart_clk_root = PLL3/6 or OSC; CCM_CSCDR1 (14.7.9) defaults to
// PLL3/6/1
CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_POWER_MASK; // Power PLL on
while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_USB1 &=
~CCM_ANALOG_PLL_USB1_BYPASS_MASK; // Disable Bypass (switch to PLL)
rng_init(); // Initialise random number generator
// NXP startup code calls SystemInit BEFORE initializing RAM...
SysTick_Config(SYS_FREQUENCY / 1000); // Sys tick every 1ms
}
#if 0
__attribute__((section(".cfg"), used)) uint32_t __cfg[] = {0x1234abcd};
extern uint32_t __isr_vector[];
extern uint32_t __ivt_boot_data[];
__attribute__((section(".ivt"), used)) uint32_t __ivt[8] = {
0x412000d1, // header: 41 - version, 2000 size, d1 tag
(uint32_t) __isr_vector, // entry
0, // reserved
0, // dcd
(uint32_t) __ivt_boot_data, // boot data
(uint32_t) __ivt, // this is us - ivt absolute address
0, // csf absolute address
0, // reserved for HAB
};
__attribute__((section(".ivt"), used)) uint32_t __ivt_boot_data[] = {
0, // boot start location
64 * 1024, // size
0, // Plugin flag
0Xffffffff // empty - extra data word
};
#endif

View File

@ -1,166 +0,0 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
// https://www.nxp.com/webapp/Download?colCode=IMXRT1020RM
// https://cache.nxp.com/secured/assets/documents/en/user-guide/MIMXRT1020EVKHUG.pdf
#pragma once
#include "MIMXRT1021.h"
// #include "drivers/fsl_clock.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((((bank) - 'A') << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
#define LED PIN('A', 6) // Use LED for blinking, GPIO_AD_B0_06. RM tbl 9-1
#ifndef UART_DEBUG
#define UART_DEBUG LPUART1
#endif
#define SYS_FREQUENCY 16000000
static inline void spin(volatile uint32_t count) {
while (count--) (void) 0;
}
static inline GPIO_Type *gpio_bank(uint16_t pin) {
switch (PINBANK(pin)) {
case 1: return (GPIO_Type *) GPIO1_BASE;
case 2: return (GPIO_Type *) GPIO2_BASE;
case 3: return (GPIO_Type *) GPIO3_BASE;
case 5: return (GPIO_Type *) GPIO5_BASE;
default: return NULL;
}
}
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
// enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
// enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN };
#if 0
static inline void CLOCK_ControlGate(clock_ip_name_t name,
clock_gate_value_t value) {
uint32_t index = ((uint32_t) name) >> 8U;
uint32_t shift = ((uint32_t) name) & 0x1FU;
volatile uint32_t *reg;
assert(index <= 6UL);
reg = (volatile uint32_t *) ((uint32_t) ((volatile uint32_t *) &CCM->CCGR0) +
sizeof(volatile uint32_t *) * index);
SDK_ATOMIC_LOCAL_CLEAR_AND_SET(reg, (3UL << shift),
(((uint32_t) value) << shift));
}
static inline void CLOCK_EnableClock(clock_ip_name_t name) {
CLOCK_ControlGate(name, kCLOCK_ClockNeededRunWait);
}
#endif
enum { CLOCK_OFF = 0U, CLOCK_ON_RUN = 1U, CLOCK_ON_RUN_WAIT = 3U };
static inline void clock_periph(uint32_t index, uint32_t shift, uint32_t val) {
volatile uint32_t *r = &CCM->CCGR0;
SETBITS(r[index], 3UL << shift, val << shift);
}
static inline void gpio_init(uint16_t pin, uint8_t mode) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
// Enable clock
switch (PINBANK(pin)) {
case 1: clock_periph(1, CCM_CCGR1_CG13_SHIFT, CLOCK_ON_RUN_WAIT); break;
case 2: clock_periph(0, CCM_CCGR0_CG15_SHIFT, CLOCK_ON_RUN_WAIT); break;
case 3: clock_periph(2, CCM_CCGR2_CG13_SHIFT, CLOCK_ON_RUN_WAIT); break;
case 5: clock_periph(1, CCM_CCGR1_CG15_SHIFT, CLOCK_ON_RUN_WAIT); break;
default: break;
}
gpio->IMR &= ~mask;
if (mode == GPIO_MODE_INPUT) {
gpio->GDIR &= ~mask;
} else {
gpio->GDIR |= mask;
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT);
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT);
}
static inline bool gpio_read(uint16_t pin) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
return gpio->DR & mask;
}
static inline void gpio_write(uint16_t pin, bool value) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
if (value) {
gpio->DR |= mask;
} else {
gpio->DR &= ~mask;
}
}
static inline void gpio_toggle(uint16_t pin) {
gpio_write(pin, !gpio_read(pin));
}
static inline void uart_init(LPUART_Type *uart, unsigned long baud) {
(void) uart, (void) baud;
}
#if 0
static inline void uart_init(LPUART_Type *uart, unsigned long baud) {
uint8_t af = 7; // Alternate function
uint16_t rx = 0, tx = 0; // pins
uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1
if (uart == USART1) freq = APB2_FREQUENCY, RCC->APB2ENR |= BIT(4);
if (uart == USART2) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(17);
if (uart == USART3) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(18);
if (uart == USART1) tx = PIN('A', 9), rx = PIN('A', 10);
if (uart == USART2) tx = PIN('A', 2), rx = PIN('A', 3);
if (uart == USART3) tx = PIN('D', 8), rx = PIN('D', 9);
gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
uart->CR1 = 0; // Disable this UART
uart->BRR = freq / baud; // Set baud rate
uart->CR1 |= BIT(0) | BIT(2) | BIT(3); // Set UE, RE, TE
}
#endif
static inline void uart_write_byte(LPUART_Type *uart, uint8_t byte) {
// uart->TDR = byte;
// while ((uart->ISR & BIT(7)) == 0) spin(1);
(void) uart, (void) byte;
}
static inline void uart_write_buf(LPUART_Type *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline int uart_read_ready(LPUART_Type *uart) {
(void) uart;
// return uart->ISR & BIT(5); // If RXNE bit is set, data is ready
return 0;
}
static inline uint8_t uart_read_byte(LPUART_Type *uart) {
(void) uart;
// return (uint8_t) (uart->RDR & 255);
return 0;
}
static inline void rng_init(void) {
}
static inline uint32_t rng_read(void) {
return 42;
}
static inline void ethernet_init(void) {
}

View File

@ -1,44 +0,0 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
//
// This file contains essentials required by the CMSIS:
// uint32_t SystemCoreClock - holds the system core clock value
// SystemInit() - initialises the system, e.g. sets up clocks
#include "hal.h"
uint32_t SystemCoreClock = SYS_FREQUENCY;
void SystemInit(void) { // Called automatically by startup code
rng_init(); // Initialise random number generator
SysTick_Config(SystemCoreClock / 1000); // Sys tick every 1ms
}
void _start(void) {
extern void main(void);
main();
for (;;) (void) 0;
}
__attribute__((section(".cfg"), used)) uint32_t __cfg[] = {0x1234abcd};
extern uint32_t __isr_vector[];
extern uint32_t __ivt_boot_data[];
__attribute__((section(".ivt"), used)) uint32_t __ivt[8] = {
0x412000d1, // header: 41 - version, 2000 size, d1 tag
(uint32_t) __isr_vector, // entry
0, // reserved
0, // dcd
(uint32_t) __ivt_boot_data, // boot data
(uint32_t) __ivt, // this is us - ivt absolute address
0, // csf absolute address
0, // reserved for HAB
};
__attribute__((section(".ivt"), used)) uint32_t __ivt_boot_data[] = {
0, // boot start location
64 * 1024, // size
0, // Plugin flag
0Xffffffff // empty - extra data word
};

View File

@ -4017,273 +4017,6 @@ struct mg_connection *mg_mqtt_listen(struct mg_mgr *mgr, const char *url,
return c;
}
#ifdef MG_ENABLE_LINES
#line 1 "src/net.c"
#endif
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
size_t old = c->send.len;
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
return c->send.len - old;
}
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
size_t len = 0;
va_list ap;
va_start(ap, fmt);
len = mg_vprintf(c, fmt, &ap);
va_end(ap);
return len;
}
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
uint32_t localhost = mg_htonl(0x7f000001);
if (mg_vcasecmp(&str, "localhost") != 0) return false;
memcpy(addr->ip, &localhost, sizeof(uint32_t));
addr->is_ip6 = false;
return true;
}
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
if (str.len > 0) return false;
memset(addr->ip, 0, sizeof(addr->ip));
addr->is_ip6 = false;
return true;
}
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
uint8_t data[4] = {0, 0, 0, 0};
size_t i, num_dots = 0;
for (i = 0; i < str.len; i++) {
if (str.ptr[i] >= '0' && str.ptr[i] <= '9') {
int octet = data[num_dots] * 10 + (str.ptr[i] - '0');
if (octet > 255) return false;
data[num_dots] = (uint8_t) octet;
} else if (str.ptr[i] == '.') {
if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false;
num_dots++;
} else {
return false;
}
}
if (num_dots != 3 || str.ptr[i - 1] == '.') return false;
memcpy(&addr->ip, data, sizeof(data));
addr->is_ip6 = false;
return true;
}
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
int i;
uint32_t ipv4;
if (str.len < 14) return false;
if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false;
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
addr->ip[10] = addr->ip[11] = 255;
memcpy(&addr->ip[12], &ipv4, 4);
addr->is_ip6 = true;
return true;
}
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
size_t i, j = 0, n = 0, dc = 42;
addr->scope_id = 0;
if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2;
if (mg_v4mapped(str, addr)) return true;
for (i = 0; i < str.len; i++) {
if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') ||
(str.ptr[i] >= 'a' && str.ptr[i] <= 'f') ||
(str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) {
unsigned long val;
if (i > j + 3) return false;
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j]));
val = mg_unhexn(&str.ptr[j], i - j + 1);
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
addr->ip[n + 1] = (uint8_t) (val & 255);
} else if (str.ptr[i] == ':') {
j = i + 1;
if (i > 0 && str.ptr[i - 1] == ':') {
dc = n; // Double colon
if (i > 1 && str.ptr[i - 2] == ':') return false;
} else if (i > 0) {
n += 2;
}
if (n > 14) return false;
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
} else if (str.ptr[i] == '%') { // Scope ID
for (i = i + 1; i < str.len; i++) {
if (str.ptr[i] < '0' || str.ptr[i] > '9') return false;
addr->scope_id *= 10, addr->scope_id += (uint8_t) (str.ptr[i] - '0');
}
} else {
return false;
}
}
if (n < 14 && dc == 42) return false;
if (n < 14) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
// MG_INFO(("[%.*s]", (int) str.len, str.ptr));
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
mg_aton6(str, addr);
}
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
struct mg_connection *c =
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
if (c != NULL) {
c->mgr = mgr;
c->send.align = c->recv.align = MG_IO_SIZE;
c->id = ++mgr->nextid;
}
return c;
}
void mg_close_conn(struct mg_connection *c) {
mg_resolve_cancel(c); // Close any pending DNS query
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
// Order of operations is important. `MG_EV_CLOSE` event must be fired
// before we deallocate received data, see #1331
mg_call(c, MG_EV_CLOSE, NULL);
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
mg_tls_free(c);
mg_iobuf_free(&c->recv);
mg_iobuf_free(&c->send);
mg_bzero((unsigned char *) c, sizeof(*c));
free(c);
}
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if (url == NULL || url[0] == '\0') {
MG_ERROR(("null url"));
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM"));
} else {
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->is_udp = (strncmp(url, "udp:", 4) == 0);
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
c->fn = fn;
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
}
return c;
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM %s", url));
} else if (!mg_open_listener(c, url)) {
MG_ERROR(("Failed: %s, errno %d", url, errno));
free(c);
c = NULL;
} else {
c->is_listening = 1;
c->is_udp = strncmp(url, "udp:", 4) == 0;
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->fn = fn;
c->fn_data = fn_data;
mg_call(c, MG_EV_OPEN, NULL);
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
}
return c;
}
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = mg_alloc_conn(mgr);
if (c != NULL) {
c->fd = (void *) (size_t) fd;
c->fn = fn;
c->fn_data = fn_data;
MG_EPOLL_ADD(c);
mg_call(c, MG_EV_OPEN, NULL);
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
}
return c;
}
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
unsigned flags, void (*fn)(void *), void *arg) {
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
if (t != NULL) {
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
t->id = mgr->timerid++;
}
return t;
}
void mg_mgr_free(struct mg_mgr *mgr) {
struct mg_connection *c;
struct mg_timer *tmp, *t = mgr->timers;
while (t != NULL) tmp = t->next, free(t), t = tmp;
mgr->timers = NULL; // Important. Next call to poll won't touch timers
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
mg_mgr_poll(mgr, 0);
#if MG_ENABLE_FREERTOS_TCP
FreeRTOS_DeleteSocketSet(mgr->ss);
#endif
MG_DEBUG(("All connections closed"));
#if MG_ENABLE_EPOLL
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
#endif
mg_tls_ctx_free(mgr);
}
void mg_mgr_init(struct mg_mgr *mgr) {
memset(mgr, 0, sizeof(*mgr));
#if MG_ENABLE_EPOLL
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
MG_ERROR(("epoll_create1 errno %d", errno));
#else
mgr->epoll_fd = -1;
#endif
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
// clang-format off
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
// clang-format on
#elif MG_ENABLE_FREERTOS_TCP
mgr->ss = FreeRTOS_CreateSocketSet();
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
mgr->dnstimeout = 3000;
mgr->dns4.url = "udp://8.8.8.8:53";
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
mg_tls_ctx_init(mgr);
}
#ifdef MG_ENABLE_LINES
#line 1 "src/net_builtin.c"
#endif
@ -5405,6 +5138,273 @@ bool mg_send(struct mg_connection *c, const void *buf, size_t len) {
}
#endif // MG_ENABLE_TCPIP
#ifdef MG_ENABLE_LINES
#line 1 "src/net.c"
#endif
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
size_t old = c->send.len;
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
return c->send.len - old;
}
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
size_t len = 0;
va_list ap;
va_start(ap, fmt);
len = mg_vprintf(c, fmt, &ap);
va_end(ap);
return len;
}
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
uint32_t localhost = mg_htonl(0x7f000001);
if (mg_vcasecmp(&str, "localhost") != 0) return false;
memcpy(addr->ip, &localhost, sizeof(uint32_t));
addr->is_ip6 = false;
return true;
}
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
if (str.len > 0) return false;
memset(addr->ip, 0, sizeof(addr->ip));
addr->is_ip6 = false;
return true;
}
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
uint8_t data[4] = {0, 0, 0, 0};
size_t i, num_dots = 0;
for (i = 0; i < str.len; i++) {
if (str.ptr[i] >= '0' && str.ptr[i] <= '9') {
int octet = data[num_dots] * 10 + (str.ptr[i] - '0');
if (octet > 255) return false;
data[num_dots] = (uint8_t) octet;
} else if (str.ptr[i] == '.') {
if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false;
num_dots++;
} else {
return false;
}
}
if (num_dots != 3 || str.ptr[i - 1] == '.') return false;
memcpy(&addr->ip, data, sizeof(data));
addr->is_ip6 = false;
return true;
}
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
int i;
uint32_t ipv4;
if (str.len < 14) return false;
if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false;
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
addr->ip[10] = addr->ip[11] = 255;
memcpy(&addr->ip[12], &ipv4, 4);
addr->is_ip6 = true;
return true;
}
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
size_t i, j = 0, n = 0, dc = 42;
addr->scope_id = 0;
if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2;
if (mg_v4mapped(str, addr)) return true;
for (i = 0; i < str.len; i++) {
if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') ||
(str.ptr[i] >= 'a' && str.ptr[i] <= 'f') ||
(str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) {
unsigned long val;
if (i > j + 3) return false;
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j]));
val = mg_unhexn(&str.ptr[j], i - j + 1);
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
addr->ip[n + 1] = (uint8_t) (val & 255);
} else if (str.ptr[i] == ':') {
j = i + 1;
if (i > 0 && str.ptr[i - 1] == ':') {
dc = n; // Double colon
if (i > 1 && str.ptr[i - 2] == ':') return false;
} else if (i > 0) {
n += 2;
}
if (n > 14) return false;
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
} else if (str.ptr[i] == '%') { // Scope ID
for (i = i + 1; i < str.len; i++) {
if (str.ptr[i] < '0' || str.ptr[i] > '9') return false;
addr->scope_id *= 10, addr->scope_id += (uint8_t) (str.ptr[i] - '0');
}
} else {
return false;
}
}
if (n < 14 && dc == 42) return false;
if (n < 14) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
// MG_INFO(("[%.*s]", (int) str.len, str.ptr));
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
mg_aton6(str, addr);
}
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
struct mg_connection *c =
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
if (c != NULL) {
c->mgr = mgr;
c->send.align = c->recv.align = MG_IO_SIZE;
c->id = ++mgr->nextid;
}
return c;
}
void mg_close_conn(struct mg_connection *c) {
mg_resolve_cancel(c); // Close any pending DNS query
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
// Order of operations is important. `MG_EV_CLOSE` event must be fired
// before we deallocate received data, see #1331
mg_call(c, MG_EV_CLOSE, NULL);
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
mg_tls_free(c);
mg_iobuf_free(&c->recv);
mg_iobuf_free(&c->send);
mg_bzero((unsigned char *) c, sizeof(*c));
free(c);
}
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if (url == NULL || url[0] == '\0') {
MG_ERROR(("null url"));
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM"));
} else {
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->is_udp = (strncmp(url, "udp:", 4) == 0);
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
c->fn = fn;
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
}
return c;
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM %s", url));
} else if (!mg_open_listener(c, url)) {
MG_ERROR(("Failed: %s, errno %d", url, errno));
free(c);
c = NULL;
} else {
c->is_listening = 1;
c->is_udp = strncmp(url, "udp:", 4) == 0;
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->fn = fn;
c->fn_data = fn_data;
mg_call(c, MG_EV_OPEN, NULL);
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
}
return c;
}
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = mg_alloc_conn(mgr);
if (c != NULL) {
c->fd = (void *) (size_t) fd;
c->fn = fn;
c->fn_data = fn_data;
MG_EPOLL_ADD(c);
mg_call(c, MG_EV_OPEN, NULL);
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
}
return c;
}
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
unsigned flags, void (*fn)(void *), void *arg) {
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
if (t != NULL) {
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
t->id = mgr->timerid++;
}
return t;
}
void mg_mgr_free(struct mg_mgr *mgr) {
struct mg_connection *c;
struct mg_timer *tmp, *t = mgr->timers;
while (t != NULL) tmp = t->next, free(t), t = tmp;
mgr->timers = NULL; // Important. Next call to poll won't touch timers
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
mg_mgr_poll(mgr, 0);
#if MG_ENABLE_FREERTOS_TCP
FreeRTOS_DeleteSocketSet(mgr->ss);
#endif
MG_DEBUG(("All connections closed"));
#if MG_ENABLE_EPOLL
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
#endif
mg_tls_ctx_free(mgr);
}
void mg_mgr_init(struct mg_mgr *mgr) {
memset(mgr, 0, sizeof(*mgr));
#if MG_ENABLE_EPOLL
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
MG_ERROR(("epoll_create1 errno %d", errno));
#else
mgr->epoll_fd = -1;
#endif
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
// clang-format off
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
// clang-format on
#elif MG_ENABLE_FREERTOS_TCP
mgr->ss = FreeRTOS_CreateSocketSet();
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
mgr->dnstimeout = 3000;
mgr->dns4.url = "udp://8.8.8.8:53";
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
mg_tls_ctx_init(mgr);
}
#ifdef MG_ENABLE_LINES
#line 1 "src/ota_dummy.c"
#endif
@ -8488,9 +8488,9 @@ typedef struct enet_bd_struct_def
} enet_bd_struct_t;
// Descriptor and buffer globals, in non-cached area, 64 bits aligned.
__attribute__((section("NonCacheable,\"aw\",%nobits @"))) enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
__attribute__((section("NonCacheable,\"aw\",%nobits @"))) enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
// TODO(): handle these in a portable compiler-independent CMSIS-friendly way
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
uint8_t rx_data_buffer[(ENET_RXBD_NUM)][((unsigned int)(((ENET_RXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
@ -8500,7 +8500,7 @@ uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (
// static bool mg_tcpip_driver_imxrt1020_init(uint8_t *mac, void *data) { // VO
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
// TODO(scaprile): struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
s_ifp = ifp;
// ENET Reset, wait complete
@ -8531,6 +8531,7 @@ static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
// Configure ENET
ENET->RCR = 0x05ee0104; // #CRCFWD=0 (CRC kept in frame) + RMII + MII Enable
//ENET->RCR |= BIT(3); // Receive all
ENET->TCR = BIT(8) | BIT(2); // Addins (MAC address from PAUR+PALR) + Full duplex enable
//ENET->TFWR = BIT(8); // Store And Forward Enable, 64 bytes (minimize tx latency)

View File

@ -1784,7 +1784,7 @@ extern struct mg_tcpip_driver mg_tcpip_driver_stm32;
extern struct mg_tcpip_driver mg_tcpip_driver_w5500;
extern struct mg_tcpip_driver mg_tcpip_driver_tm4c;
extern struct mg_tcpip_driver mg_tcpip_driver_stm32h;
extern struct mg_tcpip_driver mg_tcpip_driver_imxrt;
extern struct mg_tcpip_driver mg_tcpip_driver_imxrt1020;
extern struct mg_tcpip_driver mg_tcpip_driver_same54;
// Drivers that require SPI, can use this SPI abstraction

View File

@ -97,9 +97,9 @@ typedef struct enet_bd_struct_def
} enet_bd_struct_t;
// Descriptor and buffer globals, in non-cached area, 64 bits aligned.
__attribute__((section("NonCacheable,\"aw\",%nobits @"))) enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
__attribute__((section("NonCacheable,\"aw\",%nobits @"))) enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
// TODO(): handle these in a portable compiler-independent CMSIS-friendly way
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
uint8_t rx_data_buffer[(ENET_RXBD_NUM)][((unsigned int)(((ENET_RXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
@ -109,7 +109,7 @@ uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (
// static bool mg_tcpip_driver_imxrt1020_init(uint8_t *mac, void *data) { // VO
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
// TODO(scaprile): struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
s_ifp = ifp;
// ENET Reset, wait complete
@ -140,6 +140,7 @@ static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
// Configure ENET
ENET->RCR = 0x05ee0104; // #CRCFWD=0 (CRC kept in frame) + RMII + MII Enable
//ENET->RCR |= BIT(3); // Receive all
ENET->TCR = BIT(8) | BIT(2); // Addins (MAC address from PAUR+PALR) + Full duplex enable
//ENET->TFWR = BIT(8); // Store And Forward Enable, 64 bytes (minimize tx latency)

View File

@ -55,7 +55,7 @@ extern struct mg_tcpip_driver mg_tcpip_driver_stm32;
extern struct mg_tcpip_driver mg_tcpip_driver_w5500;
extern struct mg_tcpip_driver mg_tcpip_driver_tm4c;
extern struct mg_tcpip_driver mg_tcpip_driver_stm32h;
extern struct mg_tcpip_driver mg_tcpip_driver_imxrt;
extern struct mg_tcpip_driver mg_tcpip_driver_imxrt1020;
extern struct mg_tcpip_driver mg_tcpip_driver_same54;
// Drivers that require SPI, can use this SPI abstraction