// Copyright (c) 2022 Cesanta Software Limited // All rights reserved #include "mcu.h" #include "mongoose.h" #define LED1 PIN('N', 1) // On-board LED pin #define LED2 PIN('N', 0) // On-board LED pin #define LED3 PIN('F', 4) // On-board LED pin #define LED4 PIN('F', 0) // On-board LED pin #define BTN1 PIN('J', 0) // On-board user button #define BTN2 PIN('J', 1) // On-board user button static uint64_t s_ticks, s_exti; // Counters, increased by IRQ handlers static void blink_cb(void *arg) { // Blink periodically struct mip_if *ifp = arg; gpio_toggle(LED1); MG_INFO(("Ethernet: %s", ifp->driver->up(ifp) ? "up": "down")); } uint64_t mg_millis(void) { // Declare our own uptime function return s_ticks; // Return number of milliseconds since boot } void HardFault_Handler(void) { // Escalated fault handler gpio_write(LED1, 1); gpio_write(LED2, 0); for (;;) spin(2999999), gpio_toggle(LED1), gpio_toggle(LED2); // Alternate LEDs forever } void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms s_ticks++; } void GPIOJ_Handler(void) { // External interrupt handler s_exti++; struct gpio *gpio = gpio_bank(BTN1); if (gpio->GPIOMIS & BIT(PINNO(BTN1))) gpio->GPIOICR = BIT(PINNO(BTN1)); gpio_write(LED2, !gpio_read(BTN1)); // No debounce. Turn LED if button is pressed } int main(void) { static struct uart *uart = UART0; // Use UART0 (attached to ICDI) clock_init(); // Set clock to 120MHz systick_init(FREQ / 1000); // Increment s_ticks every ms gpio_output(LED1); // Setup user LEDs gpio_output(LED2); gpio_input(BTN1); // Set button to input gpio_irq_attach(BTN1); // generate interrupts uart_init(uart, 115200); nvic_enable_irq(40); // Setup Ethernet IRQ handler MG_INFO(("Init hw")); // See datasheet: https://www.ti.com/lit/pdf/spms433 // Assign LED3 and LED4 to the EPHY, "activity" and "link", respectively. // (20.4.2.4) gpio_init(LED3, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 5); // EN0LED1 gpio_init(LED4, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 5); // EN0LED0 // Initialize Ethernet clocks, see datasheet section 5 // Turn Flash Prefetch off (silicon errata ETH#02) volatile uint32_t *IMC = (uint32_t *) 0x400FD000; uint32_t val = IMC[0xFC8 / sizeof(*IMC)]; val &= ~BIT(17); val |= BIT(16); IMC[0xFC8 / sizeof(*IMC)] = val; SYSCTL->RCGCEMAC |= BIT(0); // Enable EMAC clock SYSCTL->SREMAC |= BIT(0); // Reset EMAC SYSCTL->SREMAC &= ~BIT(0); SYSCTL->RCGCEPHY |= BIT(0); // Enable EPHY clock SYSCTL->SREPHY |= BIT(0); // Reset EPHY SYSCTL->SREPHY &= ~BIT(0); while (!(SYSCTL->PREMAC & BIT(0)) || !(SYSCTL->PREPHY & BIT(0))) spin(1); // Wait for reset to complete struct mg_mgr mgr; // Initialize Mongoose event manager mg_mgr_init(&mgr); // and attach it to the MIP interface mg_log_set(MG_LL_DEBUG); // Set log level // Initialize Mongoose network stack // Specify MAC address, and IP/mask/GW in network byte order for static // IP configuration. If IP/mask/GW are unset, DHCP is going to be used struct mip_driver_tm4c_data driver_data = {.mdc_cr = 1}; // See driver_tm4c.h struct mip_if mif = { .mac = {2, 0, 1, 2, 3, 5}, .driver = &mip_driver_tm4c, .driver_data = &driver_data, }; mip_init(&mgr, &mif); val = IMC[0xFC8 / sizeof(*IMC)]; // Turn Flash Prefetch on again val &= ~BIT(16); val |= BIT(17); IMC[0xFC8 / sizeof(*IMC)] = val; MG_INFO(("Init done, starting main loop")); mg_timer_add(&mgr, 1000, MG_TIMER_REPEAT, blink_cb, &mif); extern void device_dashboard_fn(struct mg_connection *, int, void *, void *); mg_http_listen(&mgr, "http://0.0.0.0", device_dashboard_fn, NULL); for (;;) mg_mgr_poll(&mgr, 0); // Infinite event loop return 0; }