// Copyright (c) 2022-2023 Cesanta Software Limited // All rights reserved // // Datasheet: RM0481, devboard manual: UM3115 // https://www.st.com/resource/en/reference_manual/rm0481-stm32h563h573-and-stm32h562-armbased-32bit-mcus-stmicroelectronics.pdf // Alternate functions: https://www.st.com/resource/en/datasheet/stm32h563vi.pdf #pragma once #include #include #include #include #include #include #define BIT(x) (1UL << (x)) #define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK) #define PIN(bank, num) ((((bank) - 'A') << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) #define LED1 PIN('B', 0) // On-board LED pin (green) #define LED2 PIN('F', 4) // On-board LED pin (yellow) #define LED3 PIN('G', 4) // On-board LED pin (red) #define LED LED2 // Use yellow LED for blinking // System clock (11.4, Figure 48; 11.4.5, Figure 51; 11.4.8 // CPU_FREQUENCY <= 250 MHz; (SYS_FREQUENCY / HPRE) ; hclk = CPU_FREQUENCY // APB clocks <= 250 MHz. Configure flash latency (WS) in accordance to hclk // freq (7.3.4, Table 37) enum { HPRE = 7, // register value, divisor value = BIT(value - 7) = / 1 PPRE1 = 4, // register values, divisor value = BIT(value - 3) = / 2 PPRE2 = 4, PPRE3 = 4, }; // Make sure your chip package uses the internal LDO, otherwise set PLL1_N = 200 enum { PLL1_HSI = 64, PLL1_M = 32, PLL1_N = 250, PLL1_P = 2 }; #define FLASH_LATENCY 0x25 // WRHIGHFREQ LATENCY #define CPU_FREQUENCY ((PLL1_HSI * PLL1_N / PLL1_M / PLL1_P / (BIT(HPRE - 7))) * 1000000) #define AHB_FREQUENCY CPU_FREQUENCY #define APB2_FREQUENCY (AHB_FREQUENCY / (BIT(PPRE2 - 3))) #define APB1_FREQUENCY (AHB_FREQUENCY / (BIT(PPRE1 - 3))) static inline void spin(volatile uint32_t n) { while (n--) (void) 0; } enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN }; enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE }; enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN }; #define GPIO(N) ((GPIO_TypeDef *) ((GPIOA_BASE_NS) + 0x400 * (N))) static GPIO_TypeDef *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); } static inline void gpio_toggle(uint16_t pin) { GPIO_TypeDef *gpio = gpio_bank(pin); uint32_t mask = BIT(PINNO(pin)); gpio->BSRR = mask << (gpio->ODR & mask ? 16 : 0); } static inline int gpio_read(uint16_t pin) { return gpio_bank(pin)->IDR & BIT(PINNO(pin)) ? 1 : 0; } static inline void gpio_write(uint16_t pin, bool val) { GPIO_TypeDef *gpio = gpio_bank(pin); gpio->BSRR = BIT(PINNO(pin)) << (val ? 0 : 16); } static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type, uint8_t speed, uint8_t pull, uint8_t af) { GPIO_TypeDef *gpio = gpio_bank(pin); uint8_t n = (uint8_t) (PINNO(pin)); RCC->AHB2ENR |= BIT(PINBANK(pin)); // Enable GPIO clock SETBITS(gpio->OTYPER, 1UL << n, ((uint32_t) type) << n); SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2)); SETBITS(gpio->PUPDR, 3UL << (n * 2), ((uint32_t) pull) << (n * 2)); SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4), ((uint32_t) af) << ((n & 7) * 4)); SETBITS(gpio->MODER, 3UL << (n * 2), ((uint32_t) mode) << (n * 2)); } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } #ifndef UART_DEBUG #define UART_DEBUG USART3 #endif static inline bool uart_init(USART_TypeDef *uart, unsigned long baud) { uint8_t af = 7; // Alternate function uint16_t rx = 0, tx = 0; // pins uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1 if (uart == USART1) { freq = APB2_FREQUENCY, RCC->APB2ENR |= RCC_APB2ENR_USART1EN; tx = PIN('A', 9), rx = PIN('A', 10); } else if (uart == USART2) { freq = APB1_FREQUENCY, RCC->APB1LENR |= RCC_APB1LENR_USART2EN; tx = PIN('A', 2), rx = PIN('A', 3); } else if (uart == USART3) { freq = APB1_FREQUENCY, RCC->APB1LENR |= RCC_APB1LENR_USART3EN; tx = PIN('D', 8), rx = PIN('D', 9); } else { return false; } gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); uart->CR1 = 0; // Disable UART uart->BRR = freq / baud; // Set baud rate uart->CR1 = USART_CR1_RE | USART_CR1_TE; // Set mode to TX & RX uart->CR1 |= USART_CR1_UE; // Enable UART return true; } static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) { uart->TDR = byte; while ((uart->ISR & BIT(7)) == 0) spin(1); } static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline int uart_read_ready(USART_TypeDef *uart) { return uart->ISR & BIT(5); // If RXNE bit is set, data is ready } static inline uint8_t uart_read_byte(USART_TypeDef *uart) { return (uint8_t) (uart->RDR & 255); } static inline void rng_init(void) { RCC->CCIPR5 |= RCC_CCIPR5_RNGSEL_0; // RNG clock source pll1_q_ck RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN; // Enable RNG clock RNG->CR |= RNG_CR_RNGEN; // Enable RNG } static inline uint32_t rng_read(void) { while ((RNG->SR & RNG_SR_DRDY) == 0) spin(1); return RNG->DR; } static inline bool ldo_is_on(void) { return (PWR->SCCR & PWR_SCCR_LDOEN) == PWR_SCCR_LDOEN; } // Hw pull-ups on PHY RXD0,1,DV to enable autonegotiation static inline void ethernet_init(void) { // Initialise Ethernet. Enable MAC GPIO pins, see UM3115 section 10.7 uint16_t pins[] = {PIN('A', 1), PIN('A', 2), PIN('A', 7), PIN('B', 15), PIN('C', 1), PIN('C', 4), PIN('C', 5), PIN('G', 11), PIN('G', 13)}; for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) { gpio_init(pins[i], GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_INSANE, GPIO_PULL_NONE, 11); // 11 is the Ethernet function } NVIC_EnableIRQ(ETH_IRQn); // Setup Ethernet IRQ handler RCC->APB3ENR |= RCC_APB3ENR_SBSEN; // Enable SBS clock SETBITS(SBS->PMCR, SBS_PMCR_ETH_SEL_PHY, SBS_PMCR_ETH_SEL_PHY_2); // RMII RCC->AHB1ENR |= RCC_AHB1ENR_ETHEN | RCC_AHB1ENR_ETHRXEN | RCC_AHB1ENR_ETHTXEN; } #define UUID ((uint32_t *) UID_BASE) // Unique 96-bit chip ID. TRM 59.1 // Helper macro for MAC generation, byte reads not allowed #define GENERATE_LOCALLY_ADMINISTERED_MAC() \ { \ 2, UUID[0] & 255, (UUID[0] >> 10) & 255, (UUID[0] >> 19) & 255, \ UUID[1] & 255, UUID[2] & 255 \ }