// Copyright (c) 2004-2013 Sergey Lyubka // Copyright (c) 2013-2022 Cesanta Software Limited // All rights reserved // // This software is dual-licensed: you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation. For the terms of this // license, see http://www.gnu.org/licenses/ // // You are free to use this software under the terms of the GNU General // Public License, but WITHOUT ANY WARRANTY; without even the implied // warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU General Public License for more details. // // Alternatively, you can license this software under a commercial // license, as set out in https://www.mongoose.ws/licensing/ // // SPDX-License-Identifier: GPL-2.0-only or commercial #include "mongoose.h" #ifdef MG_ENABLE_LINES #line 1 "src/base64.c" #endif static int mg_base64_encode_single(int c) { if (c < 26) { return c + 'A'; } else if (c < 52) { return c - 26 + 'a'; } else if (c < 62) { return c - 52 + '0'; } else { return c == 62 ? '+' : '/'; } } static int mg_base64_decode_single(int c) { if (c >= 'A' && c <= 'Z') { return c - 'A'; } else if (c >= 'a' && c <= 'z') { return c + 26 - 'a'; } else if (c >= '0' && c <= '9') { return c + 52 - '0'; } else if (c == '+') { return 62; } else if (c == '/') { return 63; } else if (c == '=') { return 64; } else { return -1; } } size_t mg_base64_update(unsigned char ch, char *to, size_t n) { unsigned long rem = (n & 3) % 3; if (rem == 0) { to[n] = (char) mg_base64_encode_single(ch >> 2); to[++n] = (char) ((ch & 3) << 4); } else if (rem == 1) { to[n] = (char) mg_base64_encode_single(to[n] | (ch >> 4)); to[++n] = (char) ((ch & 15) << 2); } else { to[n] = (char) mg_base64_encode_single(to[n] | (ch >> 6)); to[++n] = (char) mg_base64_encode_single(ch & 63); n++; } return n; } size_t mg_base64_final(char *to, size_t n) { size_t saved = n; // printf("---[%.*s]\n", n, to); if (n & 3) n = mg_base64_update(0, to, n); if ((saved & 3) == 2) n--; // printf(" %d[%.*s]\n", n, n, to); while (n & 3) to[n++] = '='; to[n] = '\0'; return n; } size_t mg_base64_encode(const unsigned char *p, size_t n, char *to, size_t dl) { size_t i, len = 0; if (dl > 0) to[0] = '\0'; if (dl < ((n / 3) + (n % 3 ? 1 : 0)) * 4 + 1) return 0; for (i = 0; i < n; i++) len = mg_base64_update(p[i], to, len); len = mg_base64_final(to, len); return len; } size_t mg_base64_decode(const char *src, size_t n, char *dst, size_t dl) { const char *end = src == NULL ? NULL : src + n; // Cannot add to NULL size_t len = 0; if (dl > 0) dst[0] = '\0'; if (dl < n / 4 * 3 + 1) return 0; while (src != NULL && src + 3 < end) { int a = mg_base64_decode_single(src[0]), b = mg_base64_decode_single(src[1]), c = mg_base64_decode_single(src[2]), d = mg_base64_decode_single(src[3]); if (a == 64 || a < 0 || b == 64 || b < 0 || c < 0 || d < 0) return 0; dst[len++] = (char) ((a << 2) | (b >> 4)); if (src[2] != '=') { dst[len++] = (char) ((b << 4) | (c >> 2)); if (src[3] != '=') dst[len++] = (char) ((c << 6) | d); } src += 4; } dst[len] = '\0'; return len; } #ifdef MG_ENABLE_LINES #line 1 "src/device_dummy.c" #endif #if MG_DEVICE == MG_DEVICE_NONE void *mg_flash_start(void) { return NULL; } size_t mg_flash_size(void) { return 0; } size_t mg_flash_sector_size(void) { return 0; } size_t mg_flash_write_align(void) { return 0; } int mg_flash_bank(void) { return 0; } bool mg_flash_erase(void *location) { (void) location; return false; } bool mg_flash_swap_bank(void) { return true; } bool mg_flash_write(void *addr, const void *buf, size_t len) { (void) addr, (void) buf, (void) len; return false; } void mg_device_reset(void) { } #endif #ifdef MG_ENABLE_LINES #line 1 "src/device_flash.c" #endif #if MG_DEVICE == MG_DEVICE_STM32H7 || MG_DEVICE == MG_DEVICE_STM32H5 // Flash can be written only if it is erased. Erased flash is 0xff (all bits 1) // Writes must be mg_flash_write_align() - aligned. Thus if we want to save an // object, we pad it at the end for alignment. // // Objects in the flash sector are stored sequentially: // | 32-bit size | 32-bit KEY | ..data.. | ..pad.. | 32-bit size | ...... // // In order to get to the next object, read its size, then align up. // Traverse the list of saved objects size_t mg_flash_next(char *p, char *end, uint32_t *key, size_t *size) { size_t aligned_size = 0, align = mg_flash_write_align(), left = end - p; uint32_t *p32 = (uint32_t *) p, min_size = sizeof(uint32_t) * 2; if (p32[0] != 0xffffffff && left > MG_ROUND_UP(min_size, align)) { if (size) *size = (size_t) p32[0]; if (key) *key = p32[1]; aligned_size = MG_ROUND_UP(p32[0] + sizeof(uint32_t) * 2, align); if (left < aligned_size) aligned_size = 0; // Out of bounds, fail } return aligned_size; } // Return the last sector of Bank 2 static char *flash_last_sector(void) { size_t ss = mg_flash_sector_size(), size = mg_flash_size(); char *base = (char *) mg_flash_start(), *last = base + size - ss; if (mg_flash_bank() == 2) last -= size / 2; return last; } // Find a saved object with a given key bool mg_flash_load(void *sector, uint32_t key, void *buf, size_t len) { char *base = (char *) mg_flash_start(), *s = (char *) sector, *res = NULL; size_t ss = mg_flash_sector_size(), ofs = 0, n, sz; bool ok = false; if (s == NULL) s = flash_last_sector(); if (s < base || s >= base + mg_flash_size()) { MG_ERROR(("%p is outsize of flash", sector)); } else if (((s - base) % ss) != 0) { MG_ERROR(("%p is not a sector boundary", sector)); } else { uint32_t k, scanned = 0; while ((n = mg_flash_next(s + ofs, s + ss, &k, &sz)) > 0) { // MG_DEBUG((" > obj %lu, ofs %lu, key %x/%x", scanned, ofs, k, key)); // mg_hexdump(s + ofs, n); if (k == key && sz == len) { res = s + ofs + sizeof(uint32_t) * 2; memcpy(buf, res, len); // Copy object ok = true; // Keep scanning for the newer versions of it } ofs += n, scanned++; } MG_DEBUG(("Scanned %u objects, key %x is @ %p", scanned, key, res)); } return ok; } static bool mg_flash_writev(char *location, struct mg_str *strings, size_t n) { size_t align = mg_flash_write_align(), i, j, k = 0, nwritten = 0; char buf[align]; bool ok = true; for (i = 0; ok && i < n; i++) { for (j = 0; ok && j < strings[i].len; j++) { buf[k++] = strings[i].ptr[j]; if (k >= sizeof(buf)) { ok = mg_flash_write(location + nwritten, buf, sizeof(buf)); k = 0, nwritten += sizeof(buf); } } } if (k > 0) { while (k < sizeof(buf)) buf[k++] = 0xff; ok = mg_flash_write(location + nwritten, buf, sizeof(buf)); } return ok; } // For all saved objects in the sector, delete old versions of objects static void mg_flash_sector_cleanup(char *sector) { // Buffer all saved objects into an IO buffer (backed by RAM) // erase sector, and re-save them. struct mg_iobuf io = {0, 0, 0, 2048}; size_t ss = mg_flash_sector_size(); size_t n, size, size2, ofs = 0, hs = sizeof(uint32_t) * 2; uint32_t key; // Traverse all objects MG_DEBUG(("Cleaning up sector %p", sector)); while ((n = mg_flash_next(sector + ofs, sector + ss, &key, &size)) > 0) { // Delete an old copy of this object in the cache for (size_t o = 0; o < io.len; o += size2 + hs) { uint32_t k = *(uint32_t *) (io.buf + o + sizeof(uint32_t)); size2 = *(uint32_t *) (io.buf + o); if (k == key) { mg_iobuf_del(&io, o, size2 + hs); break; } } // And add the new copy mg_iobuf_add(&io, io.len, sector + ofs, size + hs); ofs += n; } // All objects are cached in RAM now if (mg_flash_erase(sector)) { // Erase sector. If successful, for (ofs = 0; ofs < io.len; ofs += size + hs) { // Traverse cached objects size = *(uint32_t *) (io.buf + ofs); key = *(uint32_t *) (io.buf + ofs + sizeof(uint32_t)); mg_flash_save(sector, key, io.buf + ofs + hs, size); // Save to flash } } mg_iobuf_free(&io); } // Save an object with a given key - append to the end of an object list bool mg_flash_save(void *sector, uint32_t key, const void *buf, size_t len) { char *base = (char *) mg_flash_start(), *s = (char *) sector; size_t ss = mg_flash_sector_size(), ofs = 0, n; bool ok = false; if (s == NULL) s = flash_last_sector(); if (s < base || s >= base + mg_flash_size()) { MG_ERROR(("%p is outsize of flash", sector)); } else if (((s - base) % ss) != 0) { MG_ERROR(("%p is not a sector boundary", sector)); } else { size_t needed = sizeof(uint32_t) * 2 + len; size_t needed_aligned = MG_ROUND_UP(needed, mg_flash_write_align()); while ((n = mg_flash_next(s + ofs, s + ss, NULL, NULL)) > 0) ofs += n; // If there is not enough space left, cleanup sector and re-eval ofs if (ofs + needed_aligned > ss) { mg_flash_sector_cleanup(s); ofs = 0; while ((n = mg_flash_next(s + ofs, s + ss, NULL, NULL)) > 0) ofs += n; } if (ofs + needed_aligned <= ss) { // Enough space to save this object uint32_t hdr[2] = {(uint32_t) len, key}; struct mg_str data[] = {mg_str_n((char *) hdr, sizeof(hdr)), mg_str_n(buf, len)}; ok = mg_flash_writev(s + ofs, data, 2); MG_DEBUG(("Saving %lu bytes @ %p, key %x: %d", len, s + ofs, key, ok)); MG_DEBUG(("Sector space left: %lu bytes", ss - ofs - needed_aligned)); } else { MG_ERROR(("Sector is full")); } } return ok; } #else bool mg_flash_save(void *sector, uint32_t key, const void *buf, size_t len) { (void) sector, (void) key, (void) buf, (void) len; return false; } bool mg_flash_load(void *sector, uint32_t key, void *buf, size_t len) { (void) sector, (void) key, (void) buf, (void) len; return false; } #endif #ifdef MG_ENABLE_LINES #line 1 "src/device_stm32h5.c" #endif #if MG_DEVICE == MG_DEVICE_STM32H5 #define FLASH_BASE 0x40022000 // Base address of the flash controller #define FLASH_KEYR (FLASH_BASE + 0x4) // See RM0481 7.11 #define FLASH_OPTKEYR (FLASH_BASE + 0xc) #define FLASH_OPTCR (FLASH_BASE + 0x1c) #define FLASH_NSSR (FLASH_BASE + 0x20) #define FLASH_NSCR (FLASH_BASE + 0x28) #define FLASH_NSCCR (FLASH_BASE + 0x30) #define FLASH_OPTSR_CUR (FLASH_BASE + 0x50) #define FLASH_OPTSR_PRG (FLASH_BASE + 0x54) void *mg_flash_start(void) { return (void *) 0x08000000; } size_t mg_flash_size(void) { return 2 * 1024 * 1024; // 2Mb } size_t mg_flash_sector_size(void) { return 8 * 1024; // 8k } size_t mg_flash_write_align(void) { return 16; // 128 bit } int mg_flash_bank(void) { return MG_REG(FLASH_OPTCR) & MG_BIT(31) ? 2 : 1; } static void flash_unlock(void) { static bool unlocked = false; if (unlocked == false) { MG_REG(FLASH_KEYR) = 0x45670123; MG_REG(FLASH_KEYR) = 0Xcdef89ab; MG_REG(FLASH_OPTKEYR) = 0x08192a3b; MG_REG(FLASH_OPTKEYR) = 0x4c5d6e7f; unlocked = true; } } static int flash_page_start(volatile uint32_t *dst) { char *base = (char *) mg_flash_start(), *end = base + mg_flash_size(); volatile char *p = (char *) dst; return p >= base && p < end && ((p - base) % mg_flash_sector_size()) == 0; } static bool flash_is_err(void) { return MG_REG(FLASH_NSSR) & ((MG_BIT(8) - 1) << 17); // RM0481 7.11.9 } static void flash_wait(void) { while ((MG_REG(FLASH_NSSR) & MG_BIT(0)) && (MG_REG(FLASH_NSSR) & MG_BIT(16)) == 0) { (void) 0; } } static void flash_clear_err(void) { flash_wait(); // Wait until ready MG_REG(FLASH_NSCCR) = ((MG_BIT(9) - 1) << 16U); // Clear all errors } static bool flash_bank_is_swapped(void) { return MG_REG(FLASH_OPTCR) & MG_BIT(31); // RM0481 7.11.8 } bool mg_flash_erase(void *location) { bool ok = false; if (flash_page_start(location) == false) { MG_ERROR(("%p is not on a sector boundary")); } else { uintptr_t diff = (char *) location - (char *) mg_flash_start(); uint32_t sector = diff / mg_flash_sector_size(); flash_unlock(); flash_clear_err(); MG_REG(FLASH_NSCR) = 0; if ((sector < 128 && flash_bank_is_swapped()) || (sector > 127 && !flash_bank_is_swapped())) { MG_REG(FLASH_NSCR) |= MG_BIT(31); // Set FLASH_CR_BKSEL } if (sector > 127) sector -= 128; MG_REG(FLASH_NSCR) |= MG_BIT(2) | (sector << 6); // Erase | sector_num MG_REG(FLASH_NSCR) |= MG_BIT(5); // Start erasing flash_wait(); ok = !flash_is_err(); MG_DEBUG(("Erase sector %lu @ %p: %s. CR %#lx SR %#lx", sector, location, ok ? "ok" : "fail", MG_REG(FLASH_NSCR), MG_REG(FLASH_NSSR))); // mg_hexdump(location, 32); } return ok; } bool mg_flash_swap_bank(void) { uint32_t desired = flash_bank_is_swapped() ? 0 : MG_BIT(31); flash_unlock(); flash_clear_err(); // printf("OPTSR_PRG 1 %#lx\n", FLASH->OPTSR_PRG); MG_SET_BITS(MG_REG(FLASH_OPTSR_PRG), MG_BIT(31), desired); // printf("OPTSR_PRG 2 %#lx\n", FLASH->OPTSR_PRG); MG_REG(FLASH_OPTCR) |= MG_BIT(1); // OPTSTART while ((MG_REG(FLASH_OPTSR_CUR) & MG_BIT(31)) != desired) (void) 0; return true; } bool mg_flash_write(void *addr, const void *buf, size_t len) { if ((len % mg_flash_write_align()) != 0) { MG_ERROR(("%lu is not aligned to %lu", len, mg_flash_write_align())); return false; } uint32_t *dst = (uint32_t *) addr; uint32_t *src = (uint32_t *) buf; uint32_t *end = (uint32_t *) ((char *) buf + len); bool ok = true; flash_unlock(); flash_clear_err(); MG_ARM_DISABLE_IRQ(); // MG_DEBUG(("Starting flash write %lu bytes @ %p", len, addr)); while (ok && src < end) { if (flash_page_start(dst) && mg_flash_erase(dst) == false) break; MG_REG(FLASH_NSCR) = MG_BIT(1); // Set programming flag *(volatile uint32_t *) dst++ = *src++; flash_wait(); if (flash_is_err()) ok = false; } MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst, flash_is_err() ? "fail" : "ok", MG_REG(FLASH_NSCR), MG_REG(FLASH_NSSR))); if (flash_is_err()) ok = false; // mg_hexdump(addr, len > 32 ? 32 : len); // MG_REG(FLASH_NSCR) &= ~MG_BIT(1); // Set programming flag MG_REG(FLASH_NSCR) = 0; // Clear flags MG_ARM_ENABLE_IRQ(); return ok; } void mg_device_reset(void) { // SCB->AIRCR = ((0x5fa << SCB_AIRCR_VECTKEY_Pos)|SCB_AIRCR_SYSRESETREQ_Msk); *(volatile unsigned long *) 0xe000ed0c = 0x5fa0004; } #endif #ifdef MG_ENABLE_LINES #line 1 "src/device_stm32h7.c" #endif #if MG_DEVICE == MG_DEVICE_STM32H7 #define FLASH_BASE1 0x52002000 // Base address for bank1 #define FLASH_BASE2 0x52002100 // Base address for bank2 #define FLASH_KEYR 0x04 // See RM0433 4.9.2 #define FLASH_OPTKEYR 0x08 #define FLASH_OPTCR 0x18 #define FLASH_SR 0x10 #define FLASH_CR 0x0c #define FLASH_CCR 0x14 #define FLASH_OPTSR_CUR 0x1c #define FLASH_OPTSR_PRG 0x20 void *mg_flash_start(void) { return (void *) 0x08000000; } size_t mg_flash_size(void) { return 2 * 1024 * 1024; // 2Mb } size_t mg_flash_sector_size(void) { return 128 * 1024; // 128k } size_t mg_flash_write_align(void) { return 32; // 256 bit } int mg_flash_bank(void) { return MG_REG(FLASH_BASE1 + FLASH_OPTCR) & MG_BIT(31) ? 2 : 1; } static void flash_unlock(void) { static bool unlocked = false; if (unlocked == false) { MG_REG(FLASH_BASE1 + FLASH_KEYR) = 0x45670123; MG_REG(FLASH_BASE1 + FLASH_KEYR) = 0xcdef89ab; MG_REG(FLASH_BASE2 + FLASH_KEYR) = 0x45670123; MG_REG(FLASH_BASE2 + FLASH_KEYR) = 0xcdef89ab; MG_REG(FLASH_BASE1 + FLASH_OPTKEYR) = 0x08192a3b; // opt reg is "shared" MG_REG(FLASH_BASE1 + FLASH_OPTKEYR) = 0x4c5d6e7f; // thus unlock once unlocked = true; } } static bool flash_page_start(volatile uint32_t *dst) { char *base = (char *) mg_flash_start(), *end = base + mg_flash_size(); volatile char *p = (char *) dst; return p >= base && p < end && ((p - base) % mg_flash_sector_size()) == 0; } static bool flash_is_err(uint32_t bank) { return MG_REG(bank + FLASH_SR) & ((MG_BIT(11) - 1) << 17); // RM0433 4.9.5 } static void flash_wait(uint32_t bank) { while (MG_REG(bank + FLASH_SR) & (MG_BIT(0) | MG_BIT(2))) (void) 0; } static void flash_clear_err(uint32_t bank) { flash_wait(bank); // Wait until ready MG_REG(bank + FLASH_CCR) = ((MG_BIT(11) - 1) << 16U); // Clear all errors } static bool flash_bank_is_swapped(uint32_t bank) { return MG_REG(bank + FLASH_OPTCR) & MG_BIT(31); // RM0433 4.9.7 } // Figure out flash bank based on the address static uint32_t flash_bank(void *addr) { size_t ofs = (char *) addr - (char *) mg_flash_start(); return ofs < mg_flash_size() / 2 ? FLASH_BASE1 : FLASH_BASE2; } bool mg_flash_erase(void *addr) { bool ok = false; if (flash_page_start(addr) == false) { MG_ERROR(("%p is not on a sector boundary", addr)); } else { uintptr_t diff = (char *) addr - (char *) mg_flash_start(); uint32_t sector = diff / mg_flash_sector_size(); uint32_t bank = flash_bank(addr); flash_unlock(); if (sector > 7) sector -= 8; // MG_INFO(("Erasing @ %p, sector %lu, bank %#x", addr, sector, bank)); flash_clear_err(bank); MG_REG(bank + FLASH_CR) |= (sector & 7U) << 8U; // Sector to erase MG_REG(bank + FLASH_CR) |= MG_BIT(2); // Sector erase bit MG_REG(bank + FLASH_CR) |= MG_BIT(7); // Start erasing ok = !flash_is_err(bank); MG_DEBUG(("Erase sector %lu @ %p %s. CR %#lx SR %#lx", sector, addr, ok ? "ok" : "fail", MG_REG(bank + FLASH_CR), MG_REG(bank + FLASH_SR))); // mg_hexdump(addr, 32); } return ok; } bool mg_flash_swap_bank() { uint32_t bank = FLASH_BASE1; uint32_t desired = flash_bank_is_swapped(bank) ? 0 : MG_BIT(31); flash_unlock(); flash_clear_err(bank); // printf("OPTSR_PRG 1 %#lx\n", FLASH->OPTSR_PRG); MG_SET_BITS(MG_REG(bank + FLASH_OPTSR_PRG), MG_BIT(31), desired); // printf("OPTSR_PRG 2 %#lx\n", FLASH->OPTSR_PRG); MG_REG(bank + FLASH_OPTCR) |= MG_BIT(1); // OPTSTART while ((MG_REG(bank + FLASH_OPTSR_CUR) & MG_BIT(31)) != desired) (void) 0; return true; } bool mg_flash_write(void *addr, const void *buf, size_t len) { if ((len % mg_flash_write_align()) != 0) { MG_ERROR(("%lu is not aligned to %lu", len, mg_flash_write_align())); return false; } uint32_t bank = flash_bank(addr); uint32_t *dst = (uint32_t *) addr; uint32_t *src = (uint32_t *) buf; uint32_t *end = (uint32_t *) ((char *) buf + len); bool ok = true; flash_unlock(); flash_clear_err(bank); MG_ARM_DISABLE_IRQ(); MG_REG(bank + FLASH_CR) = MG_BIT(1); // Set programming flag // MG_INFO(("Writing flash @ %p, %lu bytes", addr, len)); while (ok && src < end) { if (flash_page_start(dst) && mg_flash_erase(dst) == false) break; *(volatile uint32_t *) dst++ = *src++; flash_wait(bank); if (flash_is_err(bank)) ok = false; } MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst, ok ? "ok" : "fail", MG_REG(bank + FLASH_CR), MG_REG(bank + FLASH_SR))); // mg_hexdump(addr, len > 32 ? 32 : len); MG_REG(bank + FLASH_CR) &= ~MG_BIT(1); // Clear programming flag MG_ARM_ENABLE_IRQ(); return ok; } void mg_device_reset(void) { // SCB->AIRCR = ((0x5fa << SCB_AIRCR_VECTKEY_Pos)|SCB_AIRCR_SYSRESETREQ_Msk); *(volatile unsigned long *) 0xe000ed0c = 0x5fa0004; } #endif #ifdef MG_ENABLE_LINES #line 1 "src/dns.c" #endif struct dns_data { struct dns_data *next; struct mg_connection *c; uint64_t expire; uint16_t txnid; }; static void mg_sendnsreq(struct mg_connection *, struct mg_str *, int, struct mg_dns *, bool); static void mg_dns_free(struct dns_data **head, struct dns_data *d) { LIST_DELETE(struct dns_data, head, d); free(d); } void mg_resolve_cancel(struct mg_connection *c) { struct dns_data *tmp, *d; struct dns_data **head = (struct dns_data **) &c->mgr->active_dns_requests; for (d = *head; d != NULL; d = tmp) { tmp = d->next; if (d->c == c) mg_dns_free(head, d); } } static size_t mg_dns_parse_name_depth(const uint8_t *s, size_t len, size_t ofs, char *to, size_t tolen, size_t j, int depth) { size_t i = 0; if (tolen > 0 && depth == 0) to[0] = '\0'; if (depth > 5) return 0; // MG_INFO(("ofs %lx %x %x", (unsigned long) ofs, s[ofs], s[ofs + 1])); while (ofs + i + 1 < len) { size_t n = s[ofs + i]; if (n == 0) { i++; break; } if (n & 0xc0) { size_t ptr = (((n & 0x3f) << 8) | s[ofs + i + 1]); // 12 is hdr len // MG_INFO(("PTR %lx", (unsigned long) ptr)); if (ptr + 1 < len && (s[ptr] & 0xc0) == 0 && mg_dns_parse_name_depth(s, len, ptr, to, tolen, j, depth + 1) == 0) return 0; i += 2; break; } if (ofs + i + n + 1 >= len) return 0; if (j > 0) { if (j < tolen) to[j] = '.'; j++; } if (j + n < tolen) memcpy(&to[j], &s[ofs + i + 1], n); j += n; i += n + 1; if (j < tolen) to[j] = '\0'; // Zero-terminate this chunk // MG_INFO(("--> [%s]", to)); } if (tolen > 0) to[tolen - 1] = '\0'; // Make sure make sure it is nul-term return i; } static size_t mg_dns_parse_name(const uint8_t *s, size_t n, size_t ofs, char *dst, size_t dstlen) { return mg_dns_parse_name_depth(s, n, ofs, dst, dstlen, 0, 0); } size_t mg_dns_parse_rr(const uint8_t *buf, size_t len, size_t ofs, bool is_question, struct mg_dns_rr *rr) { const uint8_t *s = buf + ofs, *e = &buf[len]; memset(rr, 0, sizeof(*rr)); if (len < sizeof(struct mg_dns_header)) return 0; // Too small if (len > 512) return 0; // Too large, we don't expect that if (s >= e) return 0; // Overflow if ((rr->nlen = (uint16_t) mg_dns_parse_name(buf, len, ofs, NULL, 0)) == 0) return 0; s += rr->nlen + 4; if (s > e) return 0; rr->atype = (uint16_t) (((uint16_t) s[-4] << 8) | s[-3]); rr->aclass = (uint16_t) (((uint16_t) s[-2] << 8) | s[-1]); if (is_question) return (size_t) (rr->nlen + 4); s += 6; if (s > e) return 0; rr->alen = (uint16_t) (((uint16_t) s[-2] << 8) | s[-1]); if (s + rr->alen > e) return 0; return (size_t) (rr->nlen + rr->alen + 10); } bool mg_dns_parse(const uint8_t *buf, size_t len, struct mg_dns_message *dm) { const struct mg_dns_header *h = (struct mg_dns_header *) buf; struct mg_dns_rr rr; size_t i, n, ofs = sizeof(*h); memset(dm, 0, sizeof(*dm)); if (len < sizeof(*h)) return 0; // Too small, headers dont fit if (mg_ntohs(h->num_questions) > 1) return 0; // Sanity if (mg_ntohs(h->num_answers) > 10) return 0; // Sanity dm->txnid = mg_ntohs(h->txnid); for (i = 0; i < mg_ntohs(h->num_questions); i++) { if ((n = mg_dns_parse_rr(buf, len, ofs, true, &rr)) == 0) return false; // MG_INFO(("Q %lu %lu %hu/%hu", ofs, n, rr.atype, rr.aclass)); ofs += n; } for (i = 0; i < mg_ntohs(h->num_answers); i++) { if ((n = mg_dns_parse_rr(buf, len, ofs, false, &rr)) == 0) return false; // MG_INFO(("A -- %lu %lu %hu/%hu %s", ofs, n, rr.atype, rr.aclass, // dm->name)); mg_dns_parse_name(buf, len, ofs, dm->name, sizeof(dm->name)); ofs += n; if (rr.alen == 4 && rr.atype == 1 && rr.aclass == 1) { dm->addr.is_ip6 = false; memcpy(&dm->addr.ip, &buf[ofs - 4], 4); dm->resolved = true; break; // Return success } else if (rr.alen == 16 && rr.atype == 28 && rr.aclass == 1) { dm->addr.is_ip6 = true; memcpy(&dm->addr.ip, &buf[ofs - 16], 16); dm->resolved = true; break; // Return success } } return true; } static void dns_cb(struct mg_connection *c, int ev, void *ev_data, void *fn_data) { struct dns_data *d, *tmp; struct dns_data **head = (struct dns_data **) &c->mgr->active_dns_requests; if (ev == MG_EV_POLL) { uint64_t now = *(uint64_t *) ev_data; for (d = *head; d != NULL; d = tmp) { tmp = d->next; // MG_DEBUG ("%lu %lu dns poll", d->expire, now)); if (now > d->expire) mg_error(d->c, "DNS timeout"); } } else if (ev == MG_EV_READ) { struct mg_dns_message dm; int resolved = 0; if (mg_dns_parse(c->recv.buf, c->recv.len, &dm) == false) { MG_ERROR(("Unexpected DNS response:")); mg_hexdump(c->recv.buf, c->recv.len); } else { // MG_VERBOSE(("%s %d", dm.name, dm.resolved)); for (d = *head; d != NULL; d = tmp) { tmp = d->next; // MG_INFO(("d %p %hu %hu", d, d->txnid, dm.txnid)); if (dm.txnid != d->txnid) continue; if (d->c->is_resolving) { if (dm.resolved) { dm.addr.port = d->c->rem.port; // Save port d->c->rem = dm.addr; // Copy resolved address MG_DEBUG( ("%lu %s is %M", d->c->id, dm.name, mg_print_ip, &d->c->rem)); mg_connect_resolved(d->c); #if MG_ENABLE_IPV6 } else if (dm.addr.is_ip6 == false && dm.name[0] != '\0' && c->mgr->use_dns6 == false) { struct mg_str x = mg_str(dm.name); mg_sendnsreq(d->c, &x, c->mgr->dnstimeout, &c->mgr->dns6, true); #endif } else { mg_error(d->c, "%s DNS lookup failed", dm.name); } } else { MG_ERROR(("%lu already resolved", d->c->id)); } mg_dns_free(head, d); resolved = 1; } } if (!resolved) MG_ERROR(("stray DNS reply")); c->recv.len = 0; } else if (ev == MG_EV_CLOSE) { for (d = *head; d != NULL; d = tmp) { tmp = d->next; mg_error(d->c, "DNS error"); mg_dns_free(head, d); } } (void) fn_data; } static bool mg_dns_send(struct mg_connection *c, const struct mg_str *name, uint16_t txnid, bool ipv6) { struct { struct mg_dns_header header; uint8_t data[256]; } pkt; size_t i, n; memset(&pkt, 0, sizeof(pkt)); pkt.header.txnid = mg_htons(txnid); pkt.header.flags = mg_htons(0x100); pkt.header.num_questions = mg_htons(1); for (i = n = 0; i < sizeof(pkt.data) - 5; i++) { if (name->ptr[i] == '.' || i >= name->len) { pkt.data[n] = (uint8_t) (i - n); memcpy(&pkt.data[n + 1], name->ptr + n, i - n); n = i + 1; } if (i >= name->len) break; } memcpy(&pkt.data[n], "\x00\x00\x01\x00\x01", 5); // A query n += 5; if (ipv6) pkt.data[n - 3] = 0x1c; // AAAA query // memcpy(&pkt.data[n], "\xc0\x0c\x00\x1c\x00\x01", 6); // AAAA query // n += 6; return mg_send(c, &pkt, sizeof(pkt.header) + n); } static void mg_sendnsreq(struct mg_connection *c, struct mg_str *name, int ms, struct mg_dns *dnsc, bool ipv6) { struct dns_data *d = NULL; if (dnsc->url == NULL) { mg_error(c, "DNS server URL is NULL. Call mg_mgr_init()"); } else if (dnsc->c == NULL) { dnsc->c = mg_connect(c->mgr, dnsc->url, NULL, NULL); if (dnsc->c != NULL) { dnsc->c->pfn = dns_cb; // dnsc->c->is_hexdumping = 1; } } if (dnsc->c == NULL) { mg_error(c, "resolver"); } else if ((d = (struct dns_data *) calloc(1, sizeof(*d))) == NULL) { mg_error(c, "resolve OOM"); } else { struct dns_data *reqs = (struct dns_data *) c->mgr->active_dns_requests; d->txnid = reqs ? (uint16_t) (reqs->txnid + 1) : 1; d->next = (struct dns_data *) c->mgr->active_dns_requests; c->mgr->active_dns_requests = d; d->expire = mg_millis() + (uint64_t) ms; d->c = c; c->is_resolving = 1; MG_VERBOSE(("%lu resolving %.*s @ %s, txnid %hu", c->id, (int) name->len, name->ptr, dnsc->url, d->txnid)); if (!mg_dns_send(dnsc->c, name, d->txnid, ipv6)) { mg_error(dnsc->c, "DNS send"); } } } void mg_resolve(struct mg_connection *c, const char *url) { struct mg_str host = mg_url_host(url); c->rem.port = mg_htons(mg_url_port(url)); if (mg_aton(host, &c->rem)) { // host is an IP address, do not fire name resolution mg_connect_resolved(c); } else { // host is not an IP, send DNS resolution request struct mg_dns *dns = c->mgr->use_dns6 ? &c->mgr->dns6 : &c->mgr->dns4; mg_sendnsreq(c, &host, c->mgr->dnstimeout, dns, c->mgr->use_dns6); } } #ifdef MG_ENABLE_LINES #line 1 "src/event.c" #endif void mg_call(struct mg_connection *c, int ev, void *ev_data) { // Run user-defined handler first, in order to give it an ability // to intercept processing (e.g. clean input buffer) before the // protocol handler kicks in if (c->fn != NULL) c->fn(c, ev, ev_data, c->fn_data); if (c->pfn != NULL) c->pfn(c, ev, ev_data, c->pfn_data); } void mg_error(struct mg_connection *c, const char *fmt, ...) { char buf[64]; va_list ap; va_start(ap, fmt); mg_vsnprintf(buf, sizeof(buf), fmt, &ap); va_end(ap); MG_ERROR(("%lu %ld %s", c->id, c->fd, buf)); c->is_closing = 1; // Set is_closing before sending MG_EV_CALL mg_call(c, MG_EV_ERROR, buf); // Let user handler to override it } #ifdef MG_ENABLE_LINES #line 1 "src/fmt.c" #endif static bool is_digit(int c) { return c >= '0' && c <= '9'; } static int addexp(char *buf, int e, int sign) { int n = 0; buf[n++] = 'e'; buf[n++] = (char) sign; if (e > 400) return 0; if (e < 10) buf[n++] = '0'; if (e >= 100) buf[n++] = (char) (e / 100 + '0'), e -= 100 * (e / 100); if (e >= 10) buf[n++] = (char) (e / 10 + '0'), e -= 10 * (e / 10); buf[n++] = (char) (e + '0'); return n; } static int xisinf(double x) { union { double f; uint64_t u; } ieee754 = {x}; return ((unsigned) (ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && ((unsigned) ieee754.u == 0); } static int xisnan(double x) { union { double f; uint64_t u; } ieee754 = {x}; return ((unsigned) (ieee754.u >> 32) & 0x7fffffff) + ((unsigned) ieee754.u != 0) > 0x7ff00000; } static size_t mg_dtoa(char *dst, size_t dstlen, double d, int width, bool tz) { char buf[40]; int i, s = 0, n = 0, e = 0; double t, mul, saved; if (d == 0.0) return mg_snprintf(dst, dstlen, "%s", "0"); if (xisinf(d)) return mg_snprintf(dst, dstlen, "%s", d > 0 ? "inf" : "-inf"); if (xisnan(d)) return mg_snprintf(dst, dstlen, "%s", "nan"); if (d < 0.0) d = -d, buf[s++] = '-'; // Round saved = d; mul = 1.0; while (d >= 10.0 && d / mul >= 10.0) mul *= 10.0; while (d <= 1.0 && d / mul <= 1.0) mul /= 10.0; for (i = 0, t = mul * 5; i < width; i++) t /= 10.0; d += t; // Calculate exponent, and 'mul' for scientific representation mul = 1.0; while (d >= 10.0 && d / mul >= 10.0) mul *= 10.0, e++; while (d < 1.0 && d / mul < 1.0) mul /= 10.0, e--; // printf(" --> %g %d %g %g\n", saved, e, t, mul); if (e >= width && width > 1) { n = (int) mg_dtoa(buf, sizeof(buf), saved / mul, width, tz); // printf(" --> %.*g %d [%.*s]\n", 10, d / t, e, n, buf); n += addexp(buf + s + n, e, '+'); return mg_snprintf(dst, dstlen, "%.*s", n, buf); } else if (e <= -width && width > 1) { n = (int) mg_dtoa(buf, sizeof(buf), saved / mul, width, tz); // printf(" --> %.*g %d [%.*s]\n", 10, d / mul, e, n, buf); n += addexp(buf + s + n, -e, '-'); return mg_snprintf(dst, dstlen, "%.*s", n, buf); } else { for (i = 0, t = mul; t >= 1.0 && s + n < (int) sizeof(buf); i++) { int ch = (int) (d / t); if (n > 0 || ch > 0) buf[s + n++] = (char) (ch + '0'); d -= ch * t; t /= 10.0; } // printf(" --> [%g] -> %g %g (%d) [%.*s]\n", saved, d, t, n, s + n, buf); if (n == 0) buf[s++] = '0'; while (t >= 1.0 && n + s < (int) sizeof(buf)) buf[n++] = '0', t /= 10.0; if (s + n < (int) sizeof(buf)) buf[n + s++] = '.'; // printf(" 1--> [%g] -> [%.*s]\n", saved, s + n, buf); for (i = 0, t = 0.1; s + n < (int) sizeof(buf) && n < width; i++) { int ch = (int) (d / t); buf[s + n++] = (char) (ch + '0'); d -= ch * t; t /= 10.0; } } while (tz && n > 0 && buf[s + n - 1] == '0') n--; // Trim trailing zeroes if (n > 0 && buf[s + n - 1] == '.') n--; // Trim trailing dot n += s; if (n >= (int) sizeof(buf)) n = (int) sizeof(buf) - 1; buf[n] = '\0'; return mg_snprintf(dst, dstlen, "%s", buf); } static size_t mg_lld(char *buf, int64_t val, bool is_signed, bool is_hex) { const char *letters = "0123456789abcdef"; uint64_t v = (uint64_t) val; size_t s = 0, n, i; if (is_signed && val < 0) buf[s++] = '-', v = (uint64_t) (-val); // This loop prints a number in reverse order. I guess this is because we // write numbers from right to left: least significant digit comes last. // Maybe because we use Arabic numbers, and Arabs write RTL? if (is_hex) { for (n = 0; v; v >>= 4) buf[s + n++] = letters[v & 15]; } else { for (n = 0; v; v /= 10) buf[s + n++] = letters[v % 10]; } // Reverse a string for (i = 0; i < n / 2; i++) { char t = buf[s + i]; buf[s + i] = buf[s + n - i - 1], buf[s + n - i - 1] = t; } if (val == 0) buf[n++] = '0'; // Handle special case return n + s; } static size_t scpy(void (*out)(char, void *), void *ptr, char *buf, size_t len) { size_t i = 0; while (i < len && buf[i] != '\0') out(buf[i++], ptr); return i; } size_t mg_xprintf(void (*out)(char, void *), void *ptr, const char *fmt, ...) { size_t len = 0; va_list ap; va_start(ap, fmt); len = mg_vxprintf(out, ptr, fmt, &ap); va_end(ap); return len; } size_t mg_vxprintf(void (*out)(char, void *), void *param, const char *fmt, va_list *ap) { size_t i = 0, n = 0; while (fmt[i] != '\0') { if (fmt[i] == '%') { size_t j, k, x = 0, is_long = 0, w = 0 /* width */, pr = ~0U /* prec */; char pad = ' ', minus = 0, c = fmt[++i]; if (c == '#') x++, c = fmt[++i]; if (c == '-') minus++, c = fmt[++i]; if (c == '0') pad = '0', c = fmt[++i]; while (is_digit(c)) w *= 10, w += (size_t) (c - '0'), c = fmt[++i]; if (c == '.') { c = fmt[++i]; if (c == '*') { pr = (size_t) va_arg(*ap, int); c = fmt[++i]; } else { pr = 0; while (is_digit(c)) pr *= 10, pr += (size_t) (c - '0'), c = fmt[++i]; } } while (c == 'h') c = fmt[++i]; // Treat h and hh as int if (c == 'l') { is_long++, c = fmt[++i]; if (c == 'l') is_long++, c = fmt[++i]; } if (c == 'p') x = 1, is_long = 1; if (c == 'd' || c == 'u' || c == 'x' || c == 'X' || c == 'p' || c == 'g' || c == 'f') { bool s = (c == 'd'), h = (c == 'x' || c == 'X' || c == 'p'); char tmp[40]; size_t xl = x ? 2 : 0; if (c == 'g' || c == 'f') { double v = va_arg(*ap, double); if (pr == ~0U) pr = 6; k = mg_dtoa(tmp, sizeof(tmp), v, (int) pr, c == 'g'); } else if (is_long == 2) { int64_t v = va_arg(*ap, int64_t); k = mg_lld(tmp, v, s, h); } else if (is_long == 1) { long v = va_arg(*ap, long); k = mg_lld(tmp, s ? (int64_t) v : (int64_t) (unsigned long) v, s, h); } else { int v = va_arg(*ap, int); k = mg_lld(tmp, s ? (int64_t) v : (int64_t) (unsigned) v, s, h); } for (j = 0; j < xl && w > 0; j++) w--; for (j = 0; pad == ' ' && !minus && k < w && j + k < w; j++) n += scpy(out, param, &pad, 1); n += scpy(out, param, (char *) "0x", xl); for (j = 0; pad == '0' && k < w && j + k < w; j++) n += scpy(out, param, &pad, 1); n += scpy(out, param, tmp, k); for (j = 0; pad == ' ' && minus && k < w && j + k < w; j++) n += scpy(out, param, &pad, 1); } else if (c == 'm' || c == 'M') { mg_pm_t f = va_arg(*ap, mg_pm_t); if (c == 'm') out('"', param); n += f(out, param, ap); if (c == 'm') n += 2, out('"', param); } else if (c == 'c') { int ch = va_arg(*ap, int); out((char) ch, param); n++; } else if (c == 's') { char *p = va_arg(*ap, char *); if (pr == ~0U) pr = p == NULL ? 0 : strlen(p); for (j = 0; !minus && pr < w && j + pr < w; j++) n += scpy(out, param, &pad, 1); n += scpy(out, param, p, pr); for (j = 0; minus && pr < w && j + pr < w; j++) n += scpy(out, param, &pad, 1); } else if (c == '%') { out('%', param); n++; } else { out('%', param); out(c, param); n += 2; } i++; } else { out(fmt[i], param), n++, i++; } } return n; } #ifdef MG_ENABLE_LINES #line 1 "src/fs.c" #endif struct mg_fd *mg_fs_open(struct mg_fs *fs, const char *path, int flags) { struct mg_fd *fd = (struct mg_fd *) calloc(1, sizeof(*fd)); if (fd != NULL) { fd->fd = fs->op(path, flags); fd->fs = fs; if (fd->fd == NULL) { free(fd); fd = NULL; } } return fd; } void mg_fs_close(struct mg_fd *fd) { if (fd != NULL) { fd->fs->cl(fd->fd); free(fd); } } char *mg_file_read(struct mg_fs *fs, const char *path, size_t *sizep) { struct mg_fd *fd; char *data = NULL; size_t size = 0; fs->st(path, &size, NULL); if ((fd = mg_fs_open(fs, path, MG_FS_READ)) != NULL) { data = (char *) calloc(1, size + 1); if (data != NULL) { if (fs->rd(fd->fd, data, size) != size) { free(data); data = NULL; } else { data[size] = '\0'; if (sizep != NULL) *sizep = size; } } mg_fs_close(fd); } return data; } bool mg_file_write(struct mg_fs *fs, const char *path, const void *buf, size_t len) { bool result = false; struct mg_fd *fd; char tmp[MG_PATH_MAX]; mg_snprintf(tmp, sizeof(tmp), "%s..%d", path, rand()); if ((fd = mg_fs_open(fs, tmp, MG_FS_WRITE)) != NULL) { result = fs->wr(fd->fd, buf, len) == len; mg_fs_close(fd); if (result) { fs->rm(path); fs->mv(tmp, path); } else { fs->rm(tmp); } } return result; } bool mg_file_printf(struct mg_fs *fs, const char *path, const char *fmt, ...) { va_list ap; char *data; bool result = false; va_start(ap, fmt); data = mg_vmprintf(fmt, &ap); va_end(ap); result = mg_file_write(fs, path, data, strlen(data)); free(data); return result; } #ifdef MG_ENABLE_LINES #line 1 "src/fs_fat.c" #endif #if MG_ENABLE_FATFS #include static int mg_days_from_epoch(int y, int m, int d) { y -= m <= 2; int era = y / 400; int yoe = y - era * 400; int doy = (153 * (m + (m > 2 ? -3 : 9)) + 2) / 5 + d - 1; int doe = yoe * 365 + yoe / 4 - yoe / 100 + doy; return era * 146097 + doe - 719468; } static time_t mg_timegm(const struct tm *t) { int year = t->tm_year + 1900; int month = t->tm_mon; // 0-11 if (month > 11) { year += month / 12; month %= 12; } else if (month < 0) { int years_diff = (11 - month) / 12; year -= years_diff; month += 12 * years_diff; } int x = mg_days_from_epoch(year, month + 1, t->tm_mday); return 60 * (60 * (24L * x + t->tm_hour) + t->tm_min) + t->tm_sec; } static time_t ff_time_to_epoch(uint16_t fdate, uint16_t ftime) { struct tm tm; memset(&tm, 0, sizeof(struct tm)); tm.tm_sec = (ftime << 1) & 0x3e; tm.tm_min = ((ftime >> 5) & 0x3f); tm.tm_hour = ((ftime >> 11) & 0x1f); tm.tm_mday = (fdate & 0x1f); tm.tm_mon = ((fdate >> 5) & 0x0f) - 1; tm.tm_year = ((fdate >> 9) & 0x7f) + 80; return mg_timegm(&tm); } static int ff_stat(const char *path, size_t *size, time_t *mtime) { FILINFO fi; if (path[0] == '\0') { if (size) *size = 0; if (mtime) *mtime = 0; return MG_FS_DIR; } else if (f_stat(path, &fi) == 0) { if (size) *size = (size_t) fi.fsize; if (mtime) *mtime = ff_time_to_epoch(fi.fdate, fi.ftime); return MG_FS_READ | MG_FS_WRITE | ((fi.fattrib & AM_DIR) ? MG_FS_DIR : 0); } else { return 0; } } static void ff_list(const char *dir, void (*fn)(const char *, void *), void *userdata) { DIR d; FILINFO fi; if (f_opendir(&d, dir) == FR_OK) { while (f_readdir(&d, &fi) == FR_OK && fi.fname[0] != '\0') { if (!strcmp(fi.fname, ".") || !strcmp(fi.fname, "..")) continue; fn(fi.fname, userdata); } f_closedir(&d); } } static void *ff_open(const char *path, int flags) { FIL f; unsigned char mode = FA_READ; if (flags & MG_FS_WRITE) mode |= FA_WRITE | FA_OPEN_ALWAYS | FA_OPEN_APPEND; if (f_open(&f, path, mode) == 0) { FIL *fp; if ((fp = calloc(1, sizeof(*fp))) != NULL) { memcpy(fp, &f, sizeof(*fp)); return fp; } } return NULL; } static void ff_close(void *fp) { if (fp != NULL) { f_close((FIL *) fp); free(fp); } } static size_t ff_read(void *fp, void *buf, size_t len) { UINT n = 0, misalign = ((size_t) buf) & 3; if (misalign) { char aligned[4]; f_read((FIL *) fp, aligned, len > misalign ? misalign : len, &n); memcpy(buf, aligned, n); } else { f_read((FIL *) fp, buf, len, &n); } return n; } static size_t ff_write(void *fp, const void *buf, size_t len) { UINT n = 0; return f_write((FIL *) fp, (char *) buf, len, &n) == FR_OK ? n : 0; } static size_t ff_seek(void *fp, size_t offset) { f_lseek((FIL *) fp, offset); return offset; } static bool ff_rename(const char *from, const char *to) { return f_rename(from, to) == FR_OK; } static bool ff_remove(const char *path) { return f_unlink(path) == FR_OK; } static bool ff_mkdir(const char *path) { return f_mkdir(path) == FR_OK; } struct mg_fs mg_fs_fat = {ff_stat, ff_list, ff_open, ff_close, ff_read, ff_write, ff_seek, ff_rename, ff_remove, ff_mkdir}; #endif #ifdef MG_ENABLE_LINES #line 1 "src/fs_packed.c" #endif struct packed_file { const char *data; size_t size; size_t pos; }; #if MG_ENABLE_PACKED_FS #else const char *mg_unpack(const char *path, size_t *size, time_t *mtime) { *size = 0, *mtime = 0; (void) path; return NULL; } const char *mg_unlist(size_t no) { (void) no; return NULL; } #endif struct mg_str mg_unpacked(const char *path) { size_t len = 0; const char *buf = mg_unpack(path, &len, NULL); return mg_str_n(buf, len); } static int is_dir_prefix(const char *prefix, size_t n, const char *path) { // MG_INFO(("[%.*s] [%s] %c", (int) n, prefix, path, path[n])); return n < strlen(path) && strncmp(prefix, path, n) == 0 && (n == 0 || path[n] == '/' || path[n - 1] == '/'); } static int packed_stat(const char *path, size_t *size, time_t *mtime) { const char *p; size_t i, n = strlen(path); if (mg_unpack(path, size, mtime)) return MG_FS_READ; // Regular file // Scan all files. If `path` is a dir prefix for any of them, it's a dir for (i = 0; (p = mg_unlist(i)) != NULL; i++) { if (is_dir_prefix(path, n, p)) return MG_FS_DIR; } return 0; } static void packed_list(const char *dir, void (*fn)(const char *, void *), void *userdata) { char buf[MG_PATH_MAX], tmp[sizeof(buf)]; const char *path, *begin, *end; size_t i, n = strlen(dir); tmp[0] = '\0'; // Previously listed entry for (i = 0; (path = mg_unlist(i)) != NULL; i++) { if (!is_dir_prefix(dir, n, path)) continue; begin = &path[n + 1]; end = strchr(begin, '/'); if (end == NULL) end = begin + strlen(begin); mg_snprintf(buf, sizeof(buf), "%.*s", (int) (end - begin), begin); buf[sizeof(buf) - 1] = '\0'; // If this entry has been already listed, skip // NOTE: we're assuming that file list is sorted alphabetically if (strcmp(buf, tmp) == 0) continue; fn(buf, userdata); // Not yet listed, call user function strcpy(tmp, buf); // And save this entry as listed } } static void *packed_open(const char *path, int flags) { size_t size = 0; const char *data = mg_unpack(path, &size, NULL); struct packed_file *fp = NULL; if (data == NULL) return NULL; if (flags & MG_FS_WRITE) return NULL; if ((fp = (struct packed_file *) calloc(1, sizeof(*fp))) != NULL) { fp->size = size; fp->data = data; } return (void *) fp; } static void packed_close(void *fp) { if (fp != NULL) free(fp); } static size_t packed_read(void *fd, void *buf, size_t len) { struct packed_file *fp = (struct packed_file *) fd; if (fp->pos + len > fp->size) len = fp->size - fp->pos; memcpy(buf, &fp->data[fp->pos], len); fp->pos += len; return len; } static size_t packed_write(void *fd, const void *buf, size_t len) { (void) fd, (void) buf, (void) len; return 0; } static size_t packed_seek(void *fd, size_t offset) { struct packed_file *fp = (struct packed_file *) fd; fp->pos = offset; if (fp->pos > fp->size) fp->pos = fp->size; return fp->pos; } static bool packed_rename(const char *from, const char *to) { (void) from, (void) to; return false; } static bool packed_remove(const char *path) { (void) path; return false; } static bool packed_mkdir(const char *path) { (void) path; return false; } struct mg_fs mg_fs_packed = { packed_stat, packed_list, packed_open, packed_close, packed_read, packed_write, packed_seek, packed_rename, packed_remove, packed_mkdir}; #ifdef MG_ENABLE_LINES #line 1 "src/fs_posix.c" #endif #if MG_ENABLE_FILE #ifndef MG_STAT_STRUCT #define MG_STAT_STRUCT stat #endif #ifndef MG_STAT_FUNC #define MG_STAT_FUNC stat #endif static int p_stat(const char *path, size_t *size, time_t *mtime) { #if !defined(S_ISDIR) MG_ERROR(("stat() API is not supported. %p %p %p", path, size, mtime)); return 0; #else #if MG_ARCH == MG_ARCH_WIN32 struct _stati64 st; wchar_t tmp[MG_PATH_MAX]; MultiByteToWideChar(CP_UTF8, 0, path, -1, tmp, sizeof(tmp) / sizeof(tmp[0])); if (_wstati64(tmp, &st) != 0) return 0; // If path is a symlink, windows reports 0 in st.st_size. // Get a real file size by opening it and jumping to the end if (st.st_size == 0 && (st.st_mode & _S_IFREG)) { FILE *fp = _wfopen(tmp, L"rb"); if (fp != NULL) { fseek(fp, 0, SEEK_END); if (ftell(fp) > 0) st.st_size = ftell(fp); // Use _ftelli64 on win10+ fclose(fp); } } #else struct MG_STAT_STRUCT st; if (MG_STAT_FUNC(path, &st) != 0) return 0; #endif if (size) *size = (size_t) st.st_size; if (mtime) *mtime = st.st_mtime; return MG_FS_READ | MG_FS_WRITE | (S_ISDIR(st.st_mode) ? MG_FS_DIR : 0); #endif } #if MG_ARCH == MG_ARCH_WIN32 struct dirent { char d_name[MAX_PATH]; }; typedef struct win32_dir { HANDLE handle; WIN32_FIND_DATAW info; struct dirent result; } DIR; int gettimeofday(struct timeval *tv, void *tz) { FILETIME ft; unsigned __int64 tmpres = 0; if (tv != NULL) { GetSystemTimeAsFileTime(&ft); tmpres |= ft.dwHighDateTime; tmpres <<= 32; tmpres |= ft.dwLowDateTime; tmpres /= 10; // convert into microseconds tmpres -= (int64_t) 11644473600000000; tv->tv_sec = (long) (tmpres / 1000000UL); tv->tv_usec = (long) (tmpres % 1000000UL); } (void) tz; return 0; } static int to_wchar(const char *path, wchar_t *wbuf, size_t wbuf_len) { int ret; char buf[MAX_PATH * 2], buf2[MAX_PATH * 2], *p; strncpy(buf, path, sizeof(buf)); buf[sizeof(buf) - 1] = '\0'; // Trim trailing slashes. Leave backslash for paths like "X:\" p = buf + strlen(buf) - 1; while (p > buf && p[-1] != ':' && (p[0] == '\\' || p[0] == '/')) *p-- = '\0'; memset(wbuf, 0, wbuf_len * sizeof(wchar_t)); ret = MultiByteToWideChar(CP_UTF8, 0, buf, -1, wbuf, (int) wbuf_len); // Convert back to Unicode. If doubly-converted string does not match the // original, something is fishy, reject. WideCharToMultiByte(CP_UTF8, 0, wbuf, (int) wbuf_len, buf2, sizeof(buf2), NULL, NULL); if (strcmp(buf, buf2) != 0) { wbuf[0] = L'\0'; ret = 0; } return ret; } DIR *opendir(const char *name) { DIR *d = NULL; wchar_t wpath[MAX_PATH]; DWORD attrs; if (name == NULL) { SetLastError(ERROR_BAD_ARGUMENTS); } else if ((d = (DIR *) calloc(1, sizeof(*d))) == NULL) { SetLastError(ERROR_NOT_ENOUGH_MEMORY); } else { to_wchar(name, wpath, sizeof(wpath) / sizeof(wpath[0])); attrs = GetFileAttributesW(wpath); if (attrs != 0Xffffffff && (attrs & FILE_ATTRIBUTE_DIRECTORY)) { (void) wcscat(wpath, L"\\*"); d->handle = FindFirstFileW(wpath, &d->info); d->result.d_name[0] = '\0'; } else { free(d); d = NULL; } } return d; } int closedir(DIR *d) { int result = 0; if (d != NULL) { if (d->handle != INVALID_HANDLE_VALUE) result = FindClose(d->handle) ? 0 : -1; free(d); } else { result = -1; SetLastError(ERROR_BAD_ARGUMENTS); } return result; } struct dirent *readdir(DIR *d) { struct dirent *result = NULL; if (d != NULL) { memset(&d->result, 0, sizeof(d->result)); if (d->handle != INVALID_HANDLE_VALUE) { result = &d->result; WideCharToMultiByte(CP_UTF8, 0, d->info.cFileName, -1, result->d_name, sizeof(result->d_name), NULL, NULL); if (!FindNextFileW(d->handle, &d->info)) { FindClose(d->handle); d->handle = INVALID_HANDLE_VALUE; } } else { SetLastError(ERROR_FILE_NOT_FOUND); } } else { SetLastError(ERROR_BAD_ARGUMENTS); } return result; } #endif static void p_list(const char *dir, void (*fn)(const char *, void *), void *userdata) { #if MG_ENABLE_DIRLIST struct dirent *dp; DIR *dirp; if ((dirp = (opendir(dir))) == NULL) return; while ((dp = readdir(dirp)) != NULL) { if (!strcmp(dp->d_name, ".") || !strcmp(dp->d_name, "..")) continue; fn(dp->d_name, userdata); } closedir(dirp); #else (void) dir, (void) fn, (void) userdata; #endif } static void *p_open(const char *path, int flags) { #if MG_ARCH == MG_ARCH_WIN32 const char *mode = flags == MG_FS_READ ? "rb" : "a+b"; wchar_t b1[MG_PATH_MAX], b2[10]; MultiByteToWideChar(CP_UTF8, 0, path, -1, b1, sizeof(b1) / sizeof(b1[0])); MultiByteToWideChar(CP_UTF8, 0, mode, -1, b2, sizeof(b2) / sizeof(b2[0])); return (void *) _wfopen(b1, b2); #else const char *mode = flags == MG_FS_READ ? "rbe" : "a+be"; // e for CLOEXEC return (void *) fopen(path, mode); #endif } static void p_close(void *fp) { fclose((FILE *) fp); } static size_t p_read(void *fp, void *buf, size_t len) { return fread(buf, 1, len, (FILE *) fp); } static size_t p_write(void *fp, const void *buf, size_t len) { return fwrite(buf, 1, len, (FILE *) fp); } static size_t p_seek(void *fp, size_t offset) { #if (defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64) || \ (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) || \ (defined(_XOPEN_SOURCE) && _XOPEN_SOURCE >= 600) if (fseeko((FILE *) fp, (off_t) offset, SEEK_SET) != 0) (void) 0; #else if (fseek((FILE *) fp, (long) offset, SEEK_SET) != 0) (void) 0; #endif return (size_t) ftell((FILE *) fp); } static bool p_rename(const char *from, const char *to) { return rename(from, to) == 0; } static bool p_remove(const char *path) { return remove(path) == 0; } static bool p_mkdir(const char *path) { return mkdir(path, 0775) == 0; } #else static int p_stat(const char *path, size_t *size, time_t *mtime) { (void) path, (void) size, (void) mtime; return 0; } static void p_list(const char *path, void (*fn)(const char *, void *), void *userdata) { (void) path, (void) fn, (void) userdata; } static void *p_open(const char *path, int flags) { (void) path, (void) flags; return NULL; } static void p_close(void *fp) { (void) fp; } static size_t p_read(void *fd, void *buf, size_t len) { (void) fd, (void) buf, (void) len; return 0; } static size_t p_write(void *fd, const void *buf, size_t len) { (void) fd, (void) buf, (void) len; return 0; } static size_t p_seek(void *fd, size_t offset) { (void) fd, (void) offset; return (size_t) ~0; } static bool p_rename(const char *from, const char *to) { (void) from, (void) to; return false; } static bool p_remove(const char *path) { (void) path; return false; } static bool p_mkdir(const char *path) { (void) path; return false; } #endif struct mg_fs mg_fs_posix = {p_stat, p_list, p_open, p_close, p_read, p_write, p_seek, p_rename, p_remove, p_mkdir}; #ifdef MG_ENABLE_LINES #line 1 "src/http.c" #endif bool mg_to_size_t(struct mg_str str, size_t *val); bool mg_to_size_t(struct mg_str str, size_t *val) { size_t i = 0, max = (size_t) -1, max2 = max / 10, result = 0, ndigits = 0; while (i < str.len && (str.ptr[i] == ' ' || str.ptr[i] == '\t')) i++; if (i < str.len && str.ptr[i] == '-') return false; while (i < str.len && str.ptr[i] >= '0' && str.ptr[i] <= '9') { size_t digit = (size_t) (str.ptr[i] - '0'); if (result > max2) return false; // Overflow result *= 10; if (result > max - digit) return false; // Overflow result += digit; i++, ndigits++; } while (i < str.len && (str.ptr[i] == ' ' || str.ptr[i] == '\t')) i++; if (ndigits == 0) return false; // #2322: Content-Length = 1 * DIGIT if (i != str.len) return false; // Ditto *val = (size_t) result; return true; } // Chunk deletion marker is the MSB in the "processed" counter #define MG_DMARK ((size_t) 1 << (sizeof(size_t) * 8 - 1)) // Multipart POST example: // --xyz // Content-Disposition: form-data; name="val" // // abcdef // --xyz // Content-Disposition: form-data; name="foo"; filename="a.txt" // Content-Type: text/plain // // hello world // // --xyz-- size_t mg_http_next_multipart(struct mg_str body, size_t ofs, struct mg_http_part *part) { struct mg_str cd = mg_str_n("Content-Disposition", 19); const char *s = body.ptr; size_t b = ofs, h1, h2, b1, b2, max = body.len; // Init part params if (part != NULL) part->name = part->filename = part->body = mg_str_n(0, 0); // Skip boundary while (b + 2 < max && s[b] != '\r' && s[b + 1] != '\n') b++; if (b <= ofs || b + 2 >= max) return 0; // MG_INFO(("B: %zu %zu [%.*s]", ofs, b - ofs, (int) (b - ofs), s)); // Skip headers h1 = h2 = b + 2; for (;;) { while (h2 + 2 < max && s[h2] != '\r' && s[h2 + 1] != '\n') h2++; if (h2 == h1) break; if (h2 + 2 >= max) return 0; // MG_INFO(("Header: [%.*s]", (int) (h2 - h1), &s[h1])); if (part != NULL && h1 + cd.len + 2 < h2 && s[h1 + cd.len] == ':' && mg_ncasecmp(&s[h1], cd.ptr, cd.len) == 0) { struct mg_str v = mg_str_n(&s[h1 + cd.len + 2], h2 - (h1 + cd.len + 2)); part->name = mg_http_get_header_var(v, mg_str_n("name", 4)); part->filename = mg_http_get_header_var(v, mg_str_n("filename", 8)); } h1 = h2 = h2 + 2; } b1 = b2 = h2 + 2; while (b2 + 2 + (b - ofs) + 2 < max && !(s[b2] == '\r' && s[b2 + 1] == '\n' && memcmp(&s[b2 + 2], s, b - ofs) == 0)) b2++; if (b2 + 2 >= max) return 0; if (part != NULL) part->body = mg_str_n(&s[b1], b2 - b1); // MG_INFO(("Body: [%.*s]", (int) (b2 - b1), &s[b1])); return b2 + 2; } void mg_http_bauth(struct mg_connection *c, const char *user, const char *pass) { struct mg_str u = mg_str(user), p = mg_str(pass); size_t need = c->send.len + 36 + (u.len + p.len) * 2; if (c->send.size < need) mg_iobuf_resize(&c->send, need); if (c->send.size >= need) { size_t i, n = 0; char *buf = (char *) &c->send.buf[c->send.len]; memcpy(buf, "Authorization: Basic ", 21); // DON'T use mg_send! for (i = 0; i < u.len; i++) { n = mg_base64_update(((unsigned char *) u.ptr)[i], buf + 21, n); } if (p.len > 0) { n = mg_base64_update(':', buf + 21, n); for (i = 0; i < p.len; i++) { n = mg_base64_update(((unsigned char *) p.ptr)[i], buf + 21, n); } } n = mg_base64_final(buf + 21, n); c->send.len += 21 + (size_t) n + 2; memcpy(&c->send.buf[c->send.len - 2], "\r\n", 2); } else { MG_ERROR(("%lu oom %d->%d ", c->id, (int) c->send.size, (int) need)); } } struct mg_str mg_http_var(struct mg_str buf, struct mg_str name) { struct mg_str k, v, result = mg_str_n(NULL, 0); while (mg_split(&buf, &k, &v, '&')) { if (name.len == k.len && mg_ncasecmp(name.ptr, k.ptr, k.len) == 0) { result = v; break; } } return result; } int mg_http_get_var(const struct mg_str *buf, const char *name, char *dst, size_t dst_len) { int len; if (dst == NULL || dst_len == 0) { len = -2; // Bad destination } else if (buf->ptr == NULL || name == NULL || buf->len == 0) { len = -1; // Bad source dst[0] = '\0'; } else { struct mg_str v = mg_http_var(*buf, mg_str(name)); if (v.ptr == NULL) { len = -4; // Name does not exist } else { len = mg_url_decode(v.ptr, v.len, dst, dst_len, 1); if (len < 0) len = -3; // Failed to decode } } return len; } static bool isx(int c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); } int mg_url_decode(const char *src, size_t src_len, char *dst, size_t dst_len, int is_form_url_encoded) { size_t i, j; for (i = j = 0; i < src_len && j + 1 < dst_len; i++, j++) { if (src[i] == '%') { // Use `i + 2 < src_len`, not `i < src_len - 2`, note small src_len if (i + 2 < src_len && isx(src[i + 1]) && isx(src[i + 2])) { mg_unhex(src + i + 1, 2, (uint8_t *) &dst[j]); i += 2; } else { return -1; } } else if (is_form_url_encoded && src[i] == '+') { dst[j] = ' '; } else { dst[j] = src[i]; } } if (j < dst_len) dst[j] = '\0'; // Null-terminate the destination return i >= src_len && j < dst_len ? (int) j : -1; } static bool isok(uint8_t c) { return c == '\n' || c == '\r' || c >= ' '; } int mg_http_get_request_len(const unsigned char *buf, size_t buf_len) { size_t i; for (i = 0; i < buf_len; i++) { if (!isok(buf[i])) return -1; if ((i > 0 && buf[i] == '\n' && buf[i - 1] == '\n') || (i > 3 && buf[i] == '\n' && buf[i - 1] == '\r' && buf[i - 2] == '\n')) return (int) i + 1; } return 0; } struct mg_str *mg_http_get_header(struct mg_http_message *h, const char *name) { size_t i, n = strlen(name), max = sizeof(h->headers) / sizeof(h->headers[0]); for (i = 0; i < max && h->headers[i].name.len > 0; i++) { struct mg_str *k = &h->headers[i].name, *v = &h->headers[i].value; if (n == k->len && mg_ncasecmp(k->ptr, name, n) == 0) return v; } return NULL; } // Get character length. Used to parse method, URI, headers static size_t clen(const char *s) { uint8_t c = *(uint8_t *) s; if (c > ' ' && c < '~') return 1; // Usual ascii printed char if ((c & 0xe0) == 0xc0) return 2; // 2-byte UTF8 if ((c & 0xf0) == 0xe0) return 3; // 3-byte UTF8 if ((c & 0xf8) == 0xf0) return 4; // 4-byte UTF8 return 0; } // Skip until the newline. Return advanced `s`, or NULL on error static const char *skiptorn(const char *s, const char *end, struct mg_str *v) { v->ptr = s; while (s < end && s[0] != '\n' && s[0] != '\r') s++, v->len++; // To newline if (s >= end || (s[0] == '\r' && s[1] != '\n')) return NULL; // Stray \r if (s < end && s[0] == '\r') s++; // Skip \r if (s >= end || *s++ != '\n') return NULL; // Skip \n return s; } static bool mg_http_parse_headers(const char *s, const char *end, struct mg_http_header *h, size_t max_hdrs) { size_t i, n; for (i = 0; i < max_hdrs; i++) { struct mg_str k = {NULL, 0}, v = {NULL, 0}; if (s >= end) return false; if (s[0] == '\n' || (s[0] == '\r' && s[1] == '\n')) break; k.ptr = s; while (s < end && s[0] != ':' && (n = clen(s)) > 0) s += n, k.len += n; if (k.len == 0) return false; // Empty name if (s >= end || *s++ != ':') return false; // Invalid, not followed by : while (s < end && s[0] == ' ') s++; // Skip spaces if ((s = skiptorn(s, end, &v)) == NULL) return false; while (v.len > 0 && v.ptr[v.len - 1] == ' ') v.len--; // Trim spaces // MG_INFO(("--HH [%.*s] [%.*s]", (int) k.len, k.ptr, (int) v.len, v.ptr)); h[i].name = k, h[i].value = v; // Success. Assign values } return true; } int mg_http_parse(const char *s, size_t len, struct mg_http_message *hm) { int is_response, req_len = mg_http_get_request_len((unsigned char *) s, len); const char *end = s == NULL ? NULL : s + req_len, *qs; // Cannot add to NULL struct mg_str *cl; size_t n; memset(hm, 0, sizeof(*hm)); if (req_len <= 0) return req_len; hm->message.ptr = hm->head.ptr = s; hm->body.ptr = end; hm->head.len = (size_t) req_len; hm->message.len = hm->body.len = (size_t) -1; // Set body length to infinite // Parse request line hm->method.ptr = s; while (s < end && (n = clen(s)) > 0) s += n, hm->method.len += n; while (s < end && s[0] == ' ') s++; // Skip spaces hm->uri.ptr = s; while (s < end && (n = clen(s)) > 0) s += n, hm->uri.len += n; while (s < end && s[0] == ' ') s++; // Skip spaces if ((s = skiptorn(s, end, &hm->proto)) == NULL) return false; // If URI contains '?' character, setup query string if ((qs = (const char *) memchr(hm->uri.ptr, '?', hm->uri.len)) != NULL) { hm->query.ptr = qs + 1; hm->query.len = (size_t) (&hm->uri.ptr[hm->uri.len] - (qs + 1)); hm->uri.len = (size_t) (qs - hm->uri.ptr); } // Sanity check. Allow protocol/reason to be empty // Do this check after hm->method.len and hm->uri.len are finalised if (hm->method.len == 0 || hm->uri.len == 0) return -1; if (!mg_http_parse_headers(s, end, hm->headers, sizeof(hm->headers) / sizeof(hm->headers[0]))) return -1; // error when parsing if ((cl = mg_http_get_header(hm, "Content-Length")) != NULL) { if (mg_to_size_t(*cl, &hm->body.len) == false) return -1; hm->message.len = (size_t) req_len + hm->body.len; } // mg_http_parse() is used to parse both HTTP requests and HTTP // responses. If HTTP response does not have Content-Length set, then // body is read until socket is closed, i.e. body.len is infinite (~0). // // For HTTP requests though, according to // http://tools.ietf.org/html/rfc7231#section-8.1.3, // only POST and PUT methods have defined body semantics. // Therefore, if Content-Length is not specified and methods are // not one of PUT or POST, set body length to 0. // // So, if it is HTTP request, and Content-Length is not set, // and method is not (PUT or POST) then reset body length to zero. is_response = mg_ncasecmp(hm->method.ptr, "HTTP/", 5) == 0; if (hm->body.len == (size_t) ~0 && !is_response && mg_vcasecmp(&hm->method, "PUT") != 0 && mg_vcasecmp(&hm->method, "POST") != 0) { hm->body.len = 0; hm->message.len = (size_t) req_len; } // The 204 (No content) responses also have 0 body length if (hm->body.len == (size_t) ~0 && is_response && mg_vcasecmp(&hm->uri, "204") == 0) { hm->body.len = 0; hm->message.len = (size_t) req_len; } if (hm->message.len < (size_t) req_len) return -1; // Overflow protection return req_len; } static void mg_http_vprintf_chunk(struct mg_connection *c, const char *fmt, va_list *ap) { size_t len = c->send.len; mg_send(c, " \r\n", 10); mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap); if (c->send.len >= len + 10) { mg_snprintf((char *) c->send.buf + len, 9, "%08lx", c->send.len - len - 10); c->send.buf[len + 8] = '\r'; if (c->send.len == len + 10) c->is_resp = 0; // Last chunk, reset marker } mg_send(c, "\r\n", 2); } void mg_http_printf_chunk(struct mg_connection *c, const char *fmt, ...) { va_list ap; va_start(ap, fmt); mg_http_vprintf_chunk(c, fmt, &ap); va_end(ap); } void mg_http_write_chunk(struct mg_connection *c, const char *buf, size_t len) { mg_printf(c, "%lx\r\n", (unsigned long) len); mg_send(c, buf, len); mg_send(c, "\r\n", 2); if (len == 0) c->is_resp = 0; } // clang-format off static const char *mg_http_status_code_str(int status_code) { switch (status_code) { case 100: return "Continue"; case 101: return "Switching Protocols"; case 102: return "Processing"; case 200: return "OK"; case 201: return "Created"; case 202: return "Accepted"; case 203: return "Non-authoritative Information"; case 204: return "No Content"; case 205: return "Reset Content"; case 206: return "Partial Content"; case 207: return "Multi-Status"; case 208: return "Already Reported"; case 226: return "IM Used"; case 300: return "Multiple Choices"; case 301: return "Moved Permanently"; case 302: return "Found"; case 303: return "See Other"; case 304: return "Not Modified"; case 305: return "Use Proxy"; case 307: return "Temporary Redirect"; case 308: return "Permanent Redirect"; case 400: return "Bad Request"; case 401: return "Unauthorized"; case 402: return "Payment Required"; case 403: return "Forbidden"; case 404: return "Not Found"; case 405: return "Method Not Allowed"; case 406: return "Not Acceptable"; case 407: return "Proxy Authentication Required"; case 408: return "Request Timeout"; case 409: return "Conflict"; case 410: return "Gone"; case 411: return "Length Required"; case 412: return "Precondition Failed"; case 413: return "Payload Too Large"; case 414: return "Request-URI Too Long"; case 415: return "Unsupported Media Type"; case 416: return "Requested Range Not Satisfiable"; case 417: return "Expectation Failed"; case 418: return "I'm a teapot"; case 421: return "Misdirected Request"; case 422: return "Unprocessable Entity"; case 423: return "Locked"; case 424: return "Failed Dependency"; case 426: return "Upgrade Required"; case 428: return "Precondition Required"; case 429: return "Too Many Requests"; case 431: return "Request Header Fields Too Large"; case 444: return "Connection Closed Without Response"; case 451: return "Unavailable For Legal Reasons"; case 499: return "Client Closed Request"; case 500: return "Internal Server Error"; case 501: return "Not Implemented"; case 502: return "Bad Gateway"; case 503: return "Service Unavailable"; case 504: return "Gateway Timeout"; case 505: return "HTTP Version Not Supported"; case 506: return "Variant Also Negotiates"; case 507: return "Insufficient Storage"; case 508: return "Loop Detected"; case 510: return "Not Extended"; case 511: return "Network Authentication Required"; case 599: return "Network Connect Timeout Error"; default: return ""; } } // clang-format on void mg_http_reply(struct mg_connection *c, int code, const char *headers, const char *fmt, ...) { va_list ap; size_t len; mg_printf(c, "HTTP/1.1 %d %s\r\n%sContent-Length: \r\n\r\n", code, mg_http_status_code_str(code), headers == NULL ? "" : headers); len = c->send.len; va_start(ap, fmt); mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, &ap); va_end(ap); if (c->send.len > 16) { size_t n = mg_snprintf((char *) &c->send.buf[len - 15], 11, "%-10lu", (unsigned long) (c->send.len - len)); c->send.buf[len - 15 + n] = ' '; // Change ending 0 to space } c->is_resp = 0; } static void http_cb(struct mg_connection *, int, void *, void *); static void restore_http_cb(struct mg_connection *c) { mg_fs_close((struct mg_fd *) c->pfn_data); c->pfn_data = NULL; c->pfn = http_cb; c->is_resp = 0; } char *mg_http_etag(char *buf, size_t len, size_t size, time_t mtime); char *mg_http_etag(char *buf, size_t len, size_t size, time_t mtime) { mg_snprintf(buf, len, "\"%lld.%lld\"", (int64_t) mtime, (int64_t) size); return buf; } static void static_cb(struct mg_connection *c, int ev, void *ev_data, void *fn_data) { if (ev == MG_EV_WRITE || ev == MG_EV_POLL) { struct mg_fd *fd = (struct mg_fd *) fn_data; // Read to send IO buffer directly, avoid extra on-stack buffer size_t n, max = MG_IO_SIZE, space; size_t *cl = (size_t *) &c->data[(sizeof(c->data) - sizeof(size_t)) / sizeof(size_t) * sizeof(size_t)]; if (c->send.size < max) mg_iobuf_resize(&c->send, max); if (c->send.len >= c->send.size) return; // Rate limit if ((space = c->send.size - c->send.len) > *cl) space = *cl; n = fd->fs->rd(fd->fd, c->send.buf + c->send.len, space); c->send.len += n; *cl -= n; if (n == 0) restore_http_cb(c); } else if (ev == MG_EV_CLOSE) { restore_http_cb(c); } (void) ev_data; } // Known mime types. Keep it outside guess_content_type() function, since // some environments don't like it defined there. // clang-format off static struct mg_str s_known_types[] = { MG_C_STR("html"), MG_C_STR("text/html; charset=utf-8"), MG_C_STR("htm"), MG_C_STR("text/html; charset=utf-8"), MG_C_STR("css"), MG_C_STR("text/css; charset=utf-8"), MG_C_STR("js"), MG_C_STR("text/javascript; charset=utf-8"), MG_C_STR("gif"), MG_C_STR("image/gif"), MG_C_STR("png"), MG_C_STR("image/png"), MG_C_STR("jpg"), MG_C_STR("image/jpeg"), MG_C_STR("jpeg"), MG_C_STR("image/jpeg"), MG_C_STR("woff"), MG_C_STR("font/woff"), MG_C_STR("ttf"), MG_C_STR("font/ttf"), MG_C_STR("svg"), MG_C_STR("image/svg+xml"), MG_C_STR("txt"), MG_C_STR("text/plain; charset=utf-8"), MG_C_STR("avi"), MG_C_STR("video/x-msvideo"), MG_C_STR("csv"), MG_C_STR("text/csv"), MG_C_STR("doc"), MG_C_STR("application/msword"), MG_C_STR("exe"), MG_C_STR("application/octet-stream"), MG_C_STR("gz"), MG_C_STR("application/gzip"), MG_C_STR("ico"), MG_C_STR("image/x-icon"), MG_C_STR("json"), MG_C_STR("application/json"), MG_C_STR("mov"), MG_C_STR("video/quicktime"), MG_C_STR("mp3"), MG_C_STR("audio/mpeg"), MG_C_STR("mp4"), MG_C_STR("video/mp4"), MG_C_STR("mpeg"), MG_C_STR("video/mpeg"), MG_C_STR("pdf"), MG_C_STR("application/pdf"), MG_C_STR("shtml"), MG_C_STR("text/html; charset=utf-8"), MG_C_STR("tgz"), MG_C_STR("application/tar-gz"), MG_C_STR("wav"), MG_C_STR("audio/wav"), MG_C_STR("webp"), MG_C_STR("image/webp"), MG_C_STR("zip"), MG_C_STR("application/zip"), MG_C_STR("3gp"), MG_C_STR("video/3gpp"), {0, 0}, }; // clang-format on static struct mg_str guess_content_type(struct mg_str path, const char *extra) { struct mg_str k, v, s = mg_str(extra); size_t i = 0; // Shrink path to its extension only while (i < path.len && path.ptr[path.len - i - 1] != '.') i++; path.ptr += path.len - i; path.len = i; // Process user-provided mime type overrides, if any while (mg_commalist(&s, &k, &v)) { if (mg_strcmp(path, k) == 0) return v; } // Process built-in mime types for (i = 0; s_known_types[i].ptr != NULL; i += 2) { if (mg_strcmp(path, s_known_types[i]) == 0) return s_known_types[i + 1]; } return mg_str("text/plain; charset=utf-8"); } static int getrange(struct mg_str *s, size_t *a, size_t *b) { size_t i, numparsed = 0; for (i = 0; i + 6 < s->len; i++) { struct mg_str k, v = mg_str_n(s->ptr + i + 6, s->len - i - 6); if (memcmp(&s->ptr[i], "bytes=", 6) != 0) continue; if (mg_split(&v, &k, NULL, '-')) { if (mg_to_size_t(k, a)) numparsed++; if (v.len > 0 && mg_to_size_t(v, b)) numparsed++; } else { if (mg_to_size_t(v, a)) numparsed++; } break; } return (int) numparsed; } void mg_http_serve_file(struct mg_connection *c, struct mg_http_message *hm, const char *path, const struct mg_http_serve_opts *opts) { char etag[64], tmp[MG_PATH_MAX]; struct mg_fs *fs = opts->fs == NULL ? &mg_fs_posix : opts->fs; struct mg_fd *fd = NULL; size_t size = 0; time_t mtime = 0; struct mg_str *inm = NULL; struct mg_str mime = guess_content_type(mg_str(path), opts->mime_types); bool gzip = false; if (path != NULL) { // If a browser sends us "Accept-Encoding: gzip", try to open .gz first struct mg_str *ae = mg_http_get_header(hm, "Accept-Encoding"); if (ae != NULL && mg_strstr(*ae, mg_str("gzip")) != NULL) { mg_snprintf(tmp, sizeof(tmp), "%s.gz", path); fd = mg_fs_open(fs, tmp, MG_FS_READ); if (fd != NULL) gzip = true, path = tmp; } // No luck opening .gz? Open what we've told to open if (fd == NULL) fd = mg_fs_open(fs, path, MG_FS_READ); } // Failed to open, and page404 is configured? Open it, then if (fd == NULL && opts->page404 != NULL) { fd = mg_fs_open(fs, opts->page404, MG_FS_READ); mime = guess_content_type(mg_str(path), opts->mime_types); path = opts->page404; } if (fd == NULL || fs->st(path, &size, &mtime) == 0) { mg_http_reply(c, 404, opts->extra_headers, "Not found\n"); mg_fs_close(fd); // NOTE: mg_http_etag() call should go first! } else if (mg_http_etag(etag, sizeof(etag), size, mtime) != NULL && (inm = mg_http_get_header(hm, "If-None-Match")) != NULL && mg_vcasecmp(inm, etag) == 0) { mg_fs_close(fd); mg_http_reply(c, 304, opts->extra_headers, ""); } else { int n, status = 200; char range[100]; size_t r1 = 0, r2 = 0, cl = size; // Handle Range header struct mg_str *rh = mg_http_get_header(hm, "Range"); range[0] = '\0'; if (rh != NULL && (n = getrange(rh, &r1, &r2)) > 0) { // If range is specified like "400-", set second limit to content len if (n == 1) r2 = cl - 1; if (r1 > r2 || r2 >= cl) { status = 416; cl = 0; mg_snprintf(range, sizeof(range), "Content-Range: bytes */%lld\r\n", (int64_t) size); } else { status = 206; cl = r2 - r1 + 1; mg_snprintf(range, sizeof(range), "Content-Range: bytes %llu-%llu/%llu\r\n", (uint64_t) r1, (uint64_t) (r1 + cl - 1), (uint64_t) size); fs->sk(fd->fd, r1); } } mg_printf(c, "HTTP/1.1 %d %s\r\n" "Content-Type: %.*s\r\n" "Etag: %s\r\n" "Content-Length: %llu\r\n" "%s%s%s\r\n", status, mg_http_status_code_str(status), (int) mime.len, mime.ptr, etag, (uint64_t) cl, gzip ? "Content-Encoding: gzip\r\n" : "", range, opts->extra_headers ? opts->extra_headers : ""); if (mg_vcasecmp(&hm->method, "HEAD") == 0) { c->is_draining = 1; c->is_resp = 0; mg_fs_close(fd); } else { // Track to-be-sent content length at the end of c->data, aligned size_t *clp = (size_t *) &c->data[(sizeof(c->data) - sizeof(size_t)) / sizeof(size_t) * sizeof(size_t)]; c->pfn = static_cb; c->pfn_data = fd; *clp = cl; } } } struct printdirentrydata { struct mg_connection *c; struct mg_http_message *hm; const struct mg_http_serve_opts *opts; const char *dir; }; #if MG_ENABLE_DIRLIST static void printdirentry(const char *name, void *userdata) { struct printdirentrydata *d = (struct printdirentrydata *) userdata; struct mg_fs *fs = d->opts->fs == NULL ? &mg_fs_posix : d->opts->fs; size_t size = 0; time_t t = 0; char path[MG_PATH_MAX], sz[40], mod[40]; int flags, n = 0; // MG_DEBUG(("[%s] [%s]", d->dir, name)); if (mg_snprintf(path, sizeof(path), "%s%c%s", d->dir, '/', name) > sizeof(path)) { MG_ERROR(("%s truncated", name)); } else if ((flags = fs->st(path, &size, &t)) == 0) { MG_ERROR(("%lu stat(%s): %d", d->c->id, path, errno)); } else { const char *slash = flags & MG_FS_DIR ? "/" : ""; if (flags & MG_FS_DIR) { mg_snprintf(sz, sizeof(sz), "%s", "[DIR]"); } else { mg_snprintf(sz, sizeof(sz), "%lld", (uint64_t) size); } #if defined(MG_HTTP_DIRLIST_TIME_FMT) { char time_str[40]; struct tm *time_info = localtime(&t); strftime(time_str, sizeof time_str, "%Y/%m/%d %H:%M:%S", time_info); mg_snprintf(mod, sizeof(mod), "%s", time_str); } #else mg_snprintf(mod, sizeof(mod), "%lu", (unsigned long) t); #endif n = (int) mg_url_encode(name, strlen(name), path, sizeof(path)); mg_printf(d->c, " %s%s" "%s%s\n", n, path, slash, name, slash, (unsigned long) t, mod, flags & MG_FS_DIR ? (int64_t) -1 : (int64_t) size, sz); } } static void listdir(struct mg_connection *c, struct mg_http_message *hm, const struct mg_http_serve_opts *opts, char *dir) { const char *sort_js_code = ""; struct mg_fs *fs = opts->fs == NULL ? &mg_fs_posix : opts->fs; struct printdirentrydata d = {c, hm, opts, dir}; char tmp[10], buf[MG_PATH_MAX]; size_t off, n; int len = mg_url_decode(hm->uri.ptr, hm->uri.len, buf, sizeof(buf), 0); struct mg_str uri = len > 0 ? mg_str_n(buf, (size_t) len) : hm->uri; mg_printf(c, "HTTP/1.1 200 OK\r\n" "Content-Type: text/html; charset=utf-8\r\n" "%s" "Content-Length: \r\n\r\n", opts->extra_headers == NULL ? "" : opts->extra_headers); off = c->send.len; // Start of body mg_printf(c, "Index of %.*s%s%s" "" "

Index of %.*s

" "" "" "" "" "\n", (int) uri.len, uri.ptr, sort_js_code, sort_js_code2, (int) uri.len, uri.ptr); mg_printf(c, "%s", " " "\n"); fs->ls(dir, printdirentry, &d); mg_printf(c, "" "
Name" "ModifiedSize

..[DIR]

Mongoose v.%s
\n", MG_VERSION); n = mg_snprintf(tmp, sizeof(tmp), "%lu", (unsigned long) (c->send.len - off)); if (n > sizeof(tmp)) n = 0; memcpy(c->send.buf + off - 12, tmp, n); // Set content length c->is_resp = 0; // Mark response end } #endif // Resolve requested file into `path` and return its fs->st() result static int uri_to_path2(struct mg_connection *c, struct mg_http_message *hm, struct mg_fs *fs, struct mg_str url, struct mg_str dir, char *path, size_t path_size) { int flags, tmp; // Append URI to the root_dir, and sanitize it size_t n = mg_snprintf(path, path_size, "%.*s", (int) dir.len, dir.ptr); if (n + 2 >= path_size) { mg_http_reply(c, 400, "", "Exceeded path size"); return -1; } path[path_size - 1] = '\0'; // Terminate root dir with slash if (n > 0 && path[n - 1] != '/') path[n++] = '/', path[n] = '\0'; if (url.len < hm->uri.len) { mg_url_decode(hm->uri.ptr + url.len, hm->uri.len - url.len, path + n, path_size - n, 0); } path[path_size - 1] = '\0'; // Double-check if (!mg_path_is_sane(path)) { mg_http_reply(c, 400, "", "Invalid path"); return -1; } n = strlen(path); while (n > 1 && path[n - 1] == '/') path[--n] = 0; // Trim trailing slashes flags = mg_vcmp(&hm->uri, "/") == 0 ? MG_FS_DIR : fs->st(path, NULL, NULL); MG_VERBOSE(("%lu %.*s -> %s %d", c->id, (int) hm->uri.len, hm->uri.ptr, path, flags)); if (flags == 0) { // Do nothing - let's caller decide } else if ((flags & MG_FS_DIR) && hm->uri.len > 0 && hm->uri.ptr[hm->uri.len - 1] != '/') { mg_printf(c, "HTTP/1.1 301 Moved\r\n" "Location: %.*s/\r\n" "Content-Length: 0\r\n" "\r\n", (int) hm->uri.len, hm->uri.ptr); c->is_resp = 0; flags = -1; } else if (flags & MG_FS_DIR) { if (((mg_snprintf(path + n, path_size - n, "/" MG_HTTP_INDEX) > 0 && (tmp = fs->st(path, NULL, NULL)) != 0) || (mg_snprintf(path + n, path_size - n, "/index.shtml") > 0 && (tmp = fs->st(path, NULL, NULL)) != 0))) { flags = tmp; } else if ((mg_snprintf(path + n, path_size - n, "/" MG_HTTP_INDEX ".gz") > 0 && (tmp = fs->st(path, NULL, NULL)) != 0)) { // check for gzipped index flags = tmp; path[n + 1 + strlen(MG_HTTP_INDEX)] = '\0'; // Remove appended .gz in index file name } else { path[n] = '\0'; // Remove appended index file name } } return flags; } static int uri_to_path(struct mg_connection *c, struct mg_http_message *hm, const struct mg_http_serve_opts *opts, char *path, size_t path_size) { struct mg_fs *fs = opts->fs == NULL ? &mg_fs_posix : opts->fs; struct mg_str k, v, s = mg_str(opts->root_dir), u = {0, 0}, p = {0, 0}; while (mg_commalist(&s, &k, &v)) { if (v.len == 0) v = k, k = mg_str("/"), u = k, p = v; if (hm->uri.len < k.len) continue; if (mg_strcmp(k, mg_str_n(hm->uri.ptr, k.len)) != 0) continue; u = k, p = v; } return uri_to_path2(c, hm, fs, u, p, path, path_size); } void mg_http_serve_dir(struct mg_connection *c, struct mg_http_message *hm, const struct mg_http_serve_opts *opts) { char path[MG_PATH_MAX]; const char *sp = opts->ssi_pattern; int flags = uri_to_path(c, hm, opts, path, sizeof(path)); if (flags < 0) { // Do nothing: the response has already been sent by uri_to_path() } else if (flags & MG_FS_DIR) { #if MG_ENABLE_DIRLIST listdir(c, hm, opts, path); #else mg_http_reply(c, 403, "", "Forbidden\n"); #endif } else if (flags && sp != NULL && mg_globmatch(sp, strlen(sp), path, strlen(path))) { mg_http_serve_ssi(c, opts->root_dir, path); } else { mg_http_serve_file(c, hm, path, opts); } } static bool mg_is_url_safe(int c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '.' || c == '_' || c == '-' || c == '~'; } size_t mg_url_encode(const char *s, size_t sl, char *buf, size_t len) { size_t i, n = 0; for (i = 0; i < sl; i++) { int c = *(unsigned char *) &s[i]; if (n + 4 >= len) return 0; if (mg_is_url_safe(c)) { buf[n++] = s[i]; } else { buf[n++] = '%'; mg_hex(&s[i], 1, &buf[n]); n += 2; } } if (len > 0 && n < len - 1) buf[n] = '\0'; // Null-terminate the destination if (len > 0) buf[len - 1] = '\0'; // Always. return n; } void mg_http_creds(struct mg_http_message *hm, char *user, size_t userlen, char *pass, size_t passlen) { struct mg_str *v = mg_http_get_header(hm, "Authorization"); user[0] = pass[0] = '\0'; if (v != NULL && v->len > 6 && memcmp(v->ptr, "Basic ", 6) == 0) { char buf[256]; size_t n = mg_base64_decode(v->ptr + 6, v->len - 6, buf, sizeof(buf)); const char *p = (const char *) memchr(buf, ':', n > 0 ? n : 0); if (p != NULL) { mg_snprintf(user, userlen, "%.*s", p - buf, buf); mg_snprintf(pass, passlen, "%.*s", n - (size_t) (p - buf) - 1, p + 1); } } else if (v != NULL && v->len > 7 && memcmp(v->ptr, "Bearer ", 7) == 0) { mg_snprintf(pass, passlen, "%.*s", (int) v->len - 7, v->ptr + 7); } else if ((v = mg_http_get_header(hm, "Cookie")) != NULL) { struct mg_str t = mg_http_get_header_var(*v, mg_str_n("access_token", 12)); if (t.len > 0) mg_snprintf(pass, passlen, "%.*s", (int) t.len, t.ptr); } else { mg_http_get_var(&hm->query, "access_token", pass, passlen); } } static struct mg_str stripquotes(struct mg_str s) { return s.len > 1 && s.ptr[0] == '"' && s.ptr[s.len - 1] == '"' ? mg_str_n(s.ptr + 1, s.len - 2) : s; } struct mg_str mg_http_get_header_var(struct mg_str s, struct mg_str v) { size_t i; for (i = 0; v.len > 0 && i + v.len + 2 < s.len; i++) { if (s.ptr[i + v.len] == '=' && memcmp(&s.ptr[i], v.ptr, v.len) == 0) { const char *p = &s.ptr[i + v.len + 1], *b = p, *x = &s.ptr[s.len]; int q = p < x && *p == '"' ? 1 : 0; while (p < x && (q ? p == b || *p != '"' : *p != ';' && *p != ' ' && *p != ',')) p++; // MG_INFO(("[%.*s] [%.*s] [%.*s]", (int) s.len, s.ptr, (int) v.len, // v.ptr, (int) (p - b), b)); return stripquotes(mg_str_n(b, (size_t) (p - b + q))); } } return mg_str_n(NULL, 0); } bool mg_http_match_uri(const struct mg_http_message *hm, const char *glob) { return mg_match(hm->uri, mg_str(glob), NULL); } long mg_http_upload(struct mg_connection *c, struct mg_http_message *hm, struct mg_fs *fs, const char *path, size_t max_size) { char buf[20] = "0"; long res = 0, offset; mg_http_get_var(&hm->query, "offset", buf, sizeof(buf)); offset = strtol(buf, NULL, 0); if (hm->body.len == 0) { mg_http_reply(c, 200, "", "%ld", res); // Nothing to write } else { struct mg_fd *fd; size_t current_size = 0; MG_DEBUG(("%s -> %d bytes @ %ld", path, (int) hm->body.len, offset)); if (offset == 0) fs->rm(path); // If offset if 0, truncate file fs->st(path, ¤t_size, NULL); if (offset < 0) { mg_http_reply(c, 400, "", "offset required"); res = -1; } else if (offset > 0 && current_size != (size_t) offset) { mg_http_reply(c, 400, "", "%s: offset mismatch", path); res = -2; } else if ((size_t) offset + hm->body.len > max_size) { mg_http_reply(c, 400, "", "%s: over max size of %lu", path, (unsigned long) max_size); res = -3; } else if ((fd = mg_fs_open(fs, path, MG_FS_WRITE)) == NULL) { mg_http_reply(c, 400, "", "open(%s): %d", path, errno); res = -4; } else { res = offset + (long) fs->wr(fd->fd, hm->body.ptr, hm->body.len); mg_fs_close(fd); mg_http_reply(c, 200, "", "%ld", res); } } return res; } int mg_http_status(const struct mg_http_message *hm) { return atoi(hm->uri.ptr); } static bool is_hex_digit(int c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); } static int skip_chunk(const char *buf, int len, int *pl, int *dl) { int i = 0, n = 0; if (len < 3) return 0; while (i < len && is_hex_digit(buf[i])) i++; if (len < i + 1 || buf[i] != '\r' || buf[i + 1] != '\n') return -1; // Error n = (int) mg_unhexn(buf, (size_t) i); // Decode hex length if (n < 0) return -1; // Error if (len < i + n + 4) return 0; // Chunk not yet fully buffered if (buf[i + n + 2] != '\r' || buf[i + n + 3] != '\n') return -1; // Error *pl = i + 2, *dl = n; return i + 2 + n + 2; } static bool is_chunked(struct mg_http_message *hm) { const char *needle = "chunked"; struct mg_str *te = mg_http_get_header(hm, "Transfer-Encoding"); return te != NULL && mg_vcasecmp(te, needle) == 0; } static void http_cb(struct mg_connection *c, int ev, void *evd, void *fnd) { if (ev == MG_EV_READ || ev == MG_EV_CLOSE) { struct mg_http_message hm; size_t ofs = 0; // Parsing offset while (c->is_resp == 0 && ofs < c->recv.len) { const char *buf = (char *) c->recv.buf + ofs; int n = mg_http_parse(buf, c->recv.len - ofs, &hm); if (n < 0) { mg_error(c, "HTTP parse"); return; } if (n == 0) break; // Request is not buffered yet if (ev == MG_EV_CLOSE) { // If client did not set Content-Length hm.message.len = c->recv.len - ofs; // and closes now, deliver MSG hm.body.len = hm.message.len - (size_t) (hm.body.ptr - hm.message.ptr); } if (is_chunked(&hm)) { // For chunked data, strip off prefixes and suffixes from chunks // and relocate them right after the headers, then report a message char *s = (char *) c->recv.buf + ofs + n; int o = 0, pl, dl, cl, len = (int) (c->recv.len - ofs - (size_t) n); // Find zero-length chunk (the end of the body) while ((cl = skip_chunk(s + o, len - o, &pl, &dl)) > 0 && dl) o += cl; if (cl == 0) break; // No zero-len chunk, buffer more data if (cl < 0) { mg_error(c, "Invalid chunk"); break; } // Zero chunk found. Second pass: strip + relocate o = 0, hm.body.len = 0, hm.message.len = (size_t) n; while ((cl = skip_chunk(s + o, len - o, &pl, &dl)) > 0) { memmove(s + hm.body.len, s + o + pl, (size_t) dl); o += cl, hm.body.len += (size_t) dl, hm.message.len += (size_t) dl; if (dl == 0) break; } ofs += (size_t) (n + o); } else { // Normal, non-chunked data size_t len = c->recv.len - ofs - (size_t) n; if (hm.body.len > len) break; // Buffer more data ofs += (size_t) n + hm.body.len; } if (c->is_accepted) c->is_resp = 1; // Start generating response mg_call(c, MG_EV_HTTP_MSG, &hm); // User handler can clear is_resp } if (ofs > 0) mg_iobuf_del(&c->recv, 0, ofs); // Delete processed data } (void) evd, (void) fnd; } static void mg_hfn(struct mg_connection *c, int ev, void *ev_data, void *fnd) { if (ev == MG_EV_HTTP_MSG) { struct mg_http_message *hm = (struct mg_http_message *) ev_data; if (mg_http_match_uri(hm, "/quit")) { mg_http_reply(c, 200, "", "ok\n"); c->is_draining = 1; c->data[0] = 'X'; } else if (mg_http_match_uri(hm, "/debug")) { int level = (int) mg_json_get_long(hm->body, "$.level", MG_LL_DEBUG); mg_log_set(level); mg_http_reply(c, 200, "", "Debug level set to %d\n", level); } else { mg_http_reply(c, 200, "", "hi\n"); } } else if (ev == MG_EV_CLOSE) { if (c->data[0] == 'X') *(bool *) fnd = true; } } void mg_hello(const char *url) { struct mg_mgr mgr; bool done = false; mg_mgr_init(&mgr); if (mg_http_listen(&mgr, url, mg_hfn, &done) == NULL) done = true; while (done == false) mg_mgr_poll(&mgr, 100); mg_mgr_free(&mgr); } struct mg_connection *mg_http_connect(struct mg_mgr *mgr, const char *url, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = mg_connect(mgr, url, fn, fn_data); if (c != NULL) c->pfn = http_cb; return c; } struct mg_connection *mg_http_listen(struct mg_mgr *mgr, const char *url, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = mg_listen(mgr, url, fn, fn_data); if (c != NULL) c->pfn = http_cb; return c; } #ifdef MG_ENABLE_LINES #line 1 "src/iobuf.c" #endif static size_t roundup(size_t size, size_t align) { return align == 0 ? size : (size + align - 1) / align * align; } int mg_iobuf_resize(struct mg_iobuf *io, size_t new_size) { int ok = 1; new_size = roundup(new_size, io->align); if (new_size == 0) { mg_bzero(io->buf, io->size); free(io->buf); io->buf = NULL; io->len = io->size = 0; } else if (new_size != io->size) { // NOTE(lsm): do not use realloc here. Use calloc/free only, to ease the // porting to some obscure platforms like FreeRTOS void *p = calloc(1, new_size); if (p != NULL) { size_t len = new_size < io->len ? new_size : io->len; if (len > 0 && io->buf != NULL) memmove(p, io->buf, len); mg_bzero(io->buf, io->size); free(io->buf); io->buf = (unsigned char *) p; io->size = new_size; } else { ok = 0; MG_ERROR(("%lld->%lld", (uint64_t) io->size, (uint64_t) new_size)); } } return ok; } int mg_iobuf_init(struct mg_iobuf *io, size_t size, size_t align) { io->buf = NULL; io->align = align; io->size = io->len = 0; return mg_iobuf_resize(io, size); } size_t mg_iobuf_add(struct mg_iobuf *io, size_t ofs, const void *buf, size_t len) { size_t new_size = roundup(io->len + len, io->align); mg_iobuf_resize(io, new_size); // Attempt to resize if (new_size != io->size) len = 0; // Resize failure, append nothing if (ofs < io->len) memmove(io->buf + ofs + len, io->buf + ofs, io->len - ofs); if (buf != NULL) memmove(io->buf + ofs, buf, len); if (ofs > io->len) io->len += ofs - io->len; io->len += len; return len; } size_t mg_iobuf_del(struct mg_iobuf *io, size_t ofs, size_t len) { if (ofs > io->len) ofs = io->len; if (ofs + len > io->len) len = io->len - ofs; if (io->buf) memmove(io->buf + ofs, io->buf + ofs + len, io->len - ofs - len); if (io->buf) mg_bzero(io->buf + io->len - len, len); io->len -= len; return len; } void mg_iobuf_free(struct mg_iobuf *io) { mg_iobuf_resize(io, 0); } #ifdef MG_ENABLE_LINES #line 1 "src/json.c" #endif static const char *escapeseq(int esc) { return esc ? "\b\f\n\r\t\\\"" : "bfnrt\\\""; } static char json_esc(int c, int esc) { const char *p, *esc1 = escapeseq(esc), *esc2 = escapeseq(!esc); for (p = esc1; *p != '\0'; p++) { if (*p == c) return esc2[p - esc1]; } return 0; } static int mg_pass_string(const char *s, int len) { int i; for (i = 0; i < len; i++) { if (s[i] == '\\' && i + 1 < len && json_esc(s[i + 1], 1)) { i++; } else if (s[i] == '\0') { return MG_JSON_INVALID; } else if (s[i] == '"') { return i; } } return MG_JSON_INVALID; } static double mg_atod(const char *p, int len, int *numlen) { double d = 0.0; int i = 0, sign = 1; // Sign if (i < len && *p == '-') { sign = -1, i++; } else if (i < len && *p == '+') { i++; } // Decimal for (; i < len && p[i] >= '0' && p[i] <= '9'; i++) { d *= 10.0; d += p[i] - '0'; } d *= sign; // Fractional if (i < len && p[i] == '.') { double frac = 0.0, base = 0.1; i++; for (; i < len && p[i] >= '0' && p[i] <= '9'; i++) { frac += base * (p[i] - '0'); base /= 10.0; } d += frac * sign; } // Exponential if (i < len && (p[i] == 'e' || p[i] == 'E')) { int j, exp = 0, minus = 0; i++; if (i < len && p[i] == '-') minus = 1, i++; if (i < len && p[i] == '+') i++; while (i < len && p[i] >= '0' && p[i] <= '9' && exp < 308) exp = exp * 10 + (p[i++] - '0'); if (minus) exp = -exp; for (j = 0; j < exp; j++) d *= 10.0; for (j = 0; j < -exp; j++) d /= 10.0; } if (numlen != NULL) *numlen = i; return d; } // Iterate over object or array elements size_t mg_json_next(struct mg_str obj, size_t ofs, struct mg_str *key, struct mg_str *val) { if (ofs >= obj.len) { ofs = 0; // Out of boundaries, stop scanning } else if (obj.len < 2 || (*obj.ptr != '{' && *obj.ptr != '[')) { ofs = 0; // Not an array or object, stop } else { struct mg_str sub = mg_str_n(obj.ptr + ofs, obj.len - ofs); if (ofs == 0) ofs++, sub.ptr++, sub.len--; if (*obj.ptr == '[') { // Iterate over an array int n = 0, o = mg_json_get(sub, "$", &n); if (n < 0 || o < 0 || (size_t) (o + n) > sub.len) { ofs = 0; // Error parsing key, stop scanning } else { if (key) *key = mg_str_n(NULL, 0); if (val) *val = mg_str_n(sub.ptr + o, (size_t) n); ofs = (size_t) (&sub.ptr[o + n] - obj.ptr); } } else { // Iterate over an object int n = 0, o = mg_json_get(sub, "$", &n); if (n < 0 || o < 0 || (size_t) (o + n) > sub.len) { ofs = 0; // Error parsing key, stop scanning } else { if (key) *key = mg_str_n(sub.ptr + o, (size_t) n); sub.ptr += o + n, sub.len -= (size_t) (o + n); while (sub.len > 0 && *sub.ptr != ':') sub.len--, sub.ptr++; if (sub.len > 0 && *sub.ptr == ':') sub.len--, sub.ptr++; n = 0, o = mg_json_get(sub, "$", &n); if (n < 0 || o < 0 || (size_t) (o + n) > sub.len) { ofs = 0; // Error parsing value, stop scanning } else { if (val) *val = mg_str_n(sub.ptr + o, (size_t) n); ofs = (size_t) (&sub.ptr[o + n] - obj.ptr); } } } //MG_INFO(("SUB ofs %u %.*s", ofs, sub.len, sub.ptr)); while (ofs && ofs < obj.len && (obj.ptr[ofs] == ' ' || obj.ptr[ofs] == '\t' || obj.ptr[ofs] == '\n' || obj.ptr[ofs] == '\r')) { ofs++; } if (ofs && ofs < obj.len && obj.ptr[ofs] == ',') ofs++; if (ofs > obj.len) ofs = 0; } return ofs; } int mg_json_get(struct mg_str json, const char *path, int *toklen) { const char *s = json.ptr; int len = (int) json.len; enum { S_VALUE, S_KEY, S_COLON, S_COMMA_OR_EOO } expecting = S_VALUE; unsigned char nesting[MG_JSON_MAX_DEPTH]; int i = 0; // Current offset in `s` int j = 0; // Offset in `s` we're looking for (return value) int depth = 0; // Current depth (nesting level) int ed = 0; // Expected depth int pos = 1; // Current position in `path` int ci = -1, ei = -1; // Current and expected index in array if (toklen) *toklen = 0; if (path[0] != '$') return MG_JSON_INVALID; #define MG_CHECKRET(x) \ do { \ if (depth == ed && path[pos] == '\0' && ci == ei) { \ if (toklen) *toklen = i - j + 1; \ return j; \ } \ } while (0) // In the ascii table, the distance between `[` and `]` is 2. // Ditto for `{` and `}`. Hence +2 in the code below. #define MG_EOO(x) \ do { \ if (depth == ed && ci != ei) return MG_JSON_NOT_FOUND; \ if (c != nesting[depth - 1] + 2) return MG_JSON_INVALID; \ depth--; \ MG_CHECKRET(x); \ } while (0) for (i = 0; i < len; i++) { unsigned char c = ((unsigned char *) s)[i]; if (c == ' ' || c == '\t' || c == '\n' || c == '\r') continue; switch (expecting) { case S_VALUE: // p("V %s [%.*s] %d %d %d %d\n", path, pos, path, depth, ed, ci, ei); if (depth == ed) j = i; if (c == '{') { if (depth >= (int) sizeof(nesting)) return MG_JSON_TOO_DEEP; if (depth == ed && path[pos] == '.' && ci == ei) { // If we start the object, reset array indices ed++, pos++, ci = ei = -1; } nesting[depth++] = c; expecting = S_KEY; break; } else if (c == '[') { if (depth >= (int) sizeof(nesting)) return MG_JSON_TOO_DEEP; if (depth == ed && path[pos] == '[' && ei == ci) { ed++, pos++, ci = 0; for (ei = 0; path[pos] != ']' && path[pos] != '\0'; pos++) { ei *= 10; ei += path[pos] - '0'; } if (path[pos] != 0) pos++; } nesting[depth++] = c; break; } else if (c == ']' && depth > 0) { // Empty array MG_EOO(']'); } else if (c == 't' && i + 3 < len && memcmp(&s[i], "true", 4) == 0) { i += 3; } else if (c == 'n' && i + 3 < len && memcmp(&s[i], "null", 4) == 0) { i += 3; } else if (c == 'f' && i + 4 < len && memcmp(&s[i], "false", 5) == 0) { i += 4; } else if (c == '-' || ((c >= '0' && c <= '9'))) { int numlen = 0; mg_atod(&s[i], len - i, &numlen); i += numlen - 1; } else if (c == '"') { int n = mg_pass_string(&s[i + 1], len - i - 1); if (n < 0) return n; i += n + 1; } else { return MG_JSON_INVALID; } MG_CHECKRET('V'); if (depth == ed && ei >= 0) ci++; expecting = S_COMMA_OR_EOO; break; case S_KEY: if (c == '"') { int n = mg_pass_string(&s[i + 1], len - i - 1); if (n < 0) return n; if (i + 1 + n >= len) return MG_JSON_NOT_FOUND; if (depth < ed) return MG_JSON_NOT_FOUND; if (depth == ed && path[pos - 1] != '.') return MG_JSON_NOT_FOUND; // printf("K %s [%.*s] [%.*s] %d %d %d %d %d\n", path, pos, path, n, // &s[i + 1], n, depth, ed, ci, ei); // NOTE(cpq): in the check sequence below is important. // strncmp() must go first: it fails fast if the remaining length // of the path is smaller than `n`. if (depth == ed && path[pos - 1] == '.' && strncmp(&s[i + 1], &path[pos], (size_t) n) == 0 && (path[pos + n] == '\0' || path[pos + n] == '.' || path[pos + n] == '[')) { pos += n; } i += n + 1; expecting = S_COLON; } else if (c == '}') { // Empty object MG_EOO('}'); expecting = S_COMMA_OR_EOO; if (depth == ed && ei >= 0) ci++; } else { return MG_JSON_INVALID; } break; case S_COLON: if (c == ':') { expecting = S_VALUE; } else { return MG_JSON_INVALID; } break; case S_COMMA_OR_EOO: if (depth <= 0) { return MG_JSON_INVALID; } else if (c == ',') { expecting = (nesting[depth - 1] == '{') ? S_KEY : S_VALUE; } else if (c == ']' || c == '}') { if (depth == ed && c == '}' && path[pos - 1] == '.') return MG_JSON_NOT_FOUND; if (depth == ed && c == ']' && path[pos - 1] == ',') return MG_JSON_NOT_FOUND; MG_EOO('O'); if (depth == ed && ei >= 0) ci++; } else { return MG_JSON_INVALID; } break; } } return MG_JSON_NOT_FOUND; } bool mg_json_get_num(struct mg_str json, const char *path, double *v) { int n, toklen, found = 0; if ((n = mg_json_get(json, path, &toklen)) >= 0 && (json.ptr[n] == '-' || (json.ptr[n] >= '0' && json.ptr[n] <= '9'))) { if (v != NULL) *v = mg_atod(json.ptr + n, toklen, NULL); found = 1; } return found; } bool mg_json_get_bool(struct mg_str json, const char *path, bool *v) { int found = 0, off = mg_json_get(json, path, NULL); if (off >= 0 && (json.ptr[off] == 't' || json.ptr[off] == 'f')) { if (v != NULL) *v = json.ptr[off] == 't'; found = 1; } return found; } bool mg_json_unescape(struct mg_str s, char *to, size_t n) { size_t i, j; for (i = 0, j = 0; i < s.len && j < n; i++, j++) { if (s.ptr[i] == '\\' && i + 5 < s.len && s.ptr[i + 1] == 'u') { // \uXXXX escape. We could process a simple one-byte chars // \u00xx from the ASCII range. More complex chars would require // dragging in a UTF8 library, which is too much for us if (s.ptr[i + 2] != '0' || s.ptr[i + 3] != '0') return false; // Give up ((unsigned char *) to)[j] = (unsigned char) mg_unhexn(s.ptr + i + 4, 2); i += 5; } else if (s.ptr[i] == '\\' && i + 1 < s.len) { char c = json_esc(s.ptr[i + 1], 0); if (c == 0) return false; to[j] = c; i++; } else { to[j] = s.ptr[i]; } } if (j >= n) return false; if (n > 0) to[j] = '\0'; return true; } char *mg_json_get_str(struct mg_str json, const char *path) { char *result = NULL; int len = 0, off = mg_json_get(json, path, &len); if (off >= 0 && len > 1 && json.ptr[off] == '"') { if ((result = (char *) calloc(1, (size_t) len)) != NULL && !mg_json_unescape(mg_str_n(json.ptr + off + 1, (size_t) (len - 2)), result, (size_t) len)) { free(result); result = NULL; } } return result; } char *mg_json_get_b64(struct mg_str json, const char *path, int *slen) { char *result = NULL; int len = 0, off = mg_json_get(json, path, &len); if (off >= 0 && json.ptr[off] == '"' && len > 1 && (result = (char *) calloc(1, (size_t) len)) != NULL) { size_t k = mg_base64_decode(json.ptr + off + 1, (size_t) (len - 2), result, (size_t) len); if (slen != NULL) *slen = (int) k; } return result; } char *mg_json_get_hex(struct mg_str json, const char *path, int *slen) { char *result = NULL; int len = 0, off = mg_json_get(json, path, &len); if (off >= 0 && json.ptr[off] == '"' && len > 1 && (result = (char *) calloc(1, (size_t) len / 2)) != NULL) { mg_unhex(json.ptr + off + 1, (size_t) (len - 2), (uint8_t *) result); result[len / 2 - 1] = '\0'; if (slen != NULL) *slen = len / 2 - 1; } return result; } long mg_json_get_long(struct mg_str json, const char *path, long dflt) { double dv; long result = dflt; if (mg_json_get_num(json, path, &dv)) result = (long) dv; return result; } #ifdef MG_ENABLE_LINES #line 1 "src/log.c" #endif static int s_level = MG_LL_INFO; static mg_pfn_t s_log_func = mg_pfn_stdout; static void *s_log_func_param = NULL; void mg_log_set_fn(mg_pfn_t fn, void *param) { s_log_func = fn; s_log_func_param = param; } static void logc(unsigned char c) { s_log_func((char) c, s_log_func_param); } static void logs(const char *buf, size_t len) { size_t i; for (i = 0; i < len; i++) logc(((unsigned char *) buf)[i]); } void mg_log_set(int log_level) { MG_DEBUG(("Setting log level to %d", log_level)); s_level = log_level; } bool mg_log_prefix(int level, const char *file, int line, const char *fname) { if (level <= s_level) { const char *p = strrchr(file, '/'); char buf[41]; size_t n; if (p == NULL) p = strrchr(file, '\\'); n = mg_snprintf(buf, sizeof(buf), "%-6llx %d %s:%d:%s", mg_millis(), level, p == NULL ? file : p + 1, line, fname); if (n > sizeof(buf) - 2) n = sizeof(buf) - 2; while (n < sizeof(buf)) buf[n++] = ' '; logs(buf, n - 1); return true; } else { return false; } } void mg_log(const char *fmt, ...) { va_list ap; va_start(ap, fmt); mg_vxprintf(s_log_func, s_log_func_param, fmt, &ap); va_end(ap); logs("\r\n", 2); } static unsigned char nibble(unsigned c) { return (unsigned char) (c < 10 ? c + '0' : c + 'W'); } #define ISPRINT(x) ((x) >= ' ' && (x) <= '~') void mg_hexdump(const void *buf, size_t len) { const unsigned char *p = (const unsigned char *) buf; unsigned char ascii[16], alen = 0; size_t i; for (i = 0; i < len; i++) { if ((i % 16) == 0) { // Print buffered ascii chars if (i > 0) logs(" ", 2), logs((char *) ascii, 16), logc('\n'), alen = 0; // Print hex address, then \t logc(nibble((i >> 12) & 15)), logc(nibble((i >> 8) & 15)), logc(nibble((i >> 4) & 15)), logc('0'), logs(" ", 3); } logc(nibble(p[i] >> 4)), logc(nibble(p[i] & 15)); // Two nibbles, e.g. c5 logc(' '); // Space after hex number ascii[alen++] = ISPRINT(p[i]) ? p[i] : '.'; // Add to the ascii buf } while (alen < 16) logs(" ", 3), ascii[alen++] = ' '; logs(" ", 2), logs((char *) ascii, 16), logc('\n'); } #ifdef MG_ENABLE_LINES #line 1 "src/md5.c" #endif // This code implements the MD5 message-digest algorithm. // The algorithm is due to Ron Rivest. This code was // written by Colin Plumb in 1993, no copyright is claimed. // This code is in the public domain; do with it what you wish. // // Equivalent code is available from RSA Data Security, Inc. // This code has been tested against that, and is equivalent, // except that you don't need to include two pages of legalese // with every copy. // // To compute the message digest of a chunk of bytes, declare an // MD5Context structure, pass it to MD5Init, call MD5Update as // needed on buffers full of bytes, and then call MD5Final, which // will fill a supplied 16-byte array with the digest. #if defined(MG_ENABLE_MD5) && MG_ENABLE_MD5 static void mg_byte_reverse(unsigned char *buf, unsigned longs) { if (MG_BIG_ENDIAN) { do { uint32_t t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | ((unsigned) buf[1] << 8 | buf[0]); *(uint32_t *) buf = t; buf += 4; } while (--longs); } else { (void) buf, (void) longs; // Little endian. Do nothing } } #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void mg_md5_init(mg_md5_ctx *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } static void mg_md5_transform(uint32_t buf[4], uint32_t const in[16]) { uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } void mg_md5_update(mg_md5_ctx *ctx, const unsigned char *buf, size_t len) { uint32_t t; t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) ctx->bits[1]++; ctx->bits[1] += (uint32_t) len >> 29; t = (t >> 3) & 0x3f; if (t) { unsigned char *p = (unsigned char *) ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); mg_byte_reverse(ctx->in, 16); mg_md5_transform(ctx->buf, (uint32_t *) ctx->in); buf += t; len -= t; } while (len >= 64) { memcpy(ctx->in, buf, 64); mg_byte_reverse(ctx->in, 16); mg_md5_transform(ctx->buf, (uint32_t *) ctx->in); buf += 64; len -= 64; } memcpy(ctx->in, buf, len); } void mg_md5_final(mg_md5_ctx *ctx, unsigned char digest[16]) { unsigned count; unsigned char *p; uint32_t *a; count = (ctx->bits[0] >> 3) & 0x3F; p = ctx->in + count; *p++ = 0x80; count = 64 - 1 - count; if (count < 8) { memset(p, 0, count); mg_byte_reverse(ctx->in, 16); mg_md5_transform(ctx->buf, (uint32_t *) ctx->in); memset(ctx->in, 0, 56); } else { memset(p, 0, count - 8); } mg_byte_reverse(ctx->in, 14); a = (uint32_t *) ctx->in; a[14] = ctx->bits[0]; a[15] = ctx->bits[1]; mg_md5_transform(ctx->buf, (uint32_t *) ctx->in); mg_byte_reverse((unsigned char *) ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset((char *) ctx, 0, sizeof(*ctx)); } #endif #ifdef MG_ENABLE_LINES #line 1 "src/mqtt.c" #endif #define MQTT_CLEAN_SESSION 0x02 #define MQTT_HAS_WILL 0x04 #define MQTT_WILL_RETAIN 0x20 #define MQTT_HAS_PASSWORD 0x40 #define MQTT_HAS_USER_NAME 0x80 struct mg_mqtt_pmap { uint8_t id; uint8_t type; }; static const struct mg_mqtt_pmap s_prop_map[] = { {MQTT_PROP_PAYLOAD_FORMAT_INDICATOR, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_MESSAGE_EXPIRY_INTERVAL, MQTT_PROP_TYPE_INT}, {MQTT_PROP_CONTENT_TYPE, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_RESPONSE_TOPIC, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_CORRELATION_DATA, MQTT_PROP_TYPE_BINARY_DATA}, {MQTT_PROP_SUBSCRIPTION_IDENTIFIER, MQTT_PROP_TYPE_VARIABLE_INT}, {MQTT_PROP_SESSION_EXPIRY_INTERVAL, MQTT_PROP_TYPE_INT}, {MQTT_PROP_ASSIGNED_CLIENT_IDENTIFIER, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_SERVER_KEEP_ALIVE, MQTT_PROP_TYPE_SHORT}, {MQTT_PROP_AUTHENTICATION_METHOD, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_AUTHENTICATION_DATA, MQTT_PROP_TYPE_BINARY_DATA}, {MQTT_PROP_REQUEST_PROBLEM_INFORMATION, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_WILL_DELAY_INTERVAL, MQTT_PROP_TYPE_INT}, {MQTT_PROP_REQUEST_RESPONSE_INFORMATION, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_RESPONSE_INFORMATION, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_SERVER_REFERENCE, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_REASON_STRING, MQTT_PROP_TYPE_STRING}, {MQTT_PROP_RECEIVE_MAXIMUM, MQTT_PROP_TYPE_SHORT}, {MQTT_PROP_TOPIC_ALIAS_MAXIMUM, MQTT_PROP_TYPE_SHORT}, {MQTT_PROP_TOPIC_ALIAS, MQTT_PROP_TYPE_SHORT}, {MQTT_PROP_MAXIMUM_QOS, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_RETAIN_AVAILABLE, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_USER_PROPERTY, MQTT_PROP_TYPE_STRING_PAIR}, {MQTT_PROP_MAXIMUM_PACKET_SIZE, MQTT_PROP_TYPE_INT}, {MQTT_PROP_WILDCARD_SUBSCRIPTION_AVAILABLE, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_SUBSCRIPTION_IDENTIFIER_AVAILABLE, MQTT_PROP_TYPE_BYTE}, {MQTT_PROP_SHARED_SUBSCRIPTION_AVAILABLE, MQTT_PROP_TYPE_BYTE}}; void mg_mqtt_send_header(struct mg_connection *c, uint8_t cmd, uint8_t flags, uint32_t len) { uint8_t buf[1 + sizeof(len)], *vlen = &buf[1]; buf[0] = (uint8_t) ((cmd << 4) | flags); do { *vlen = len % 0x80; len /= 0x80; if (len > 0) *vlen |= 0x80; vlen++; } while (len > 0 && vlen < &buf[sizeof(buf)]); mg_send(c, buf, (size_t) (vlen - buf)); } static void mg_send_u16(struct mg_connection *c, uint16_t value) { mg_send(c, &value, sizeof(value)); } static void mg_send_u32(struct mg_connection *c, uint32_t value) { mg_send(c, &value, sizeof(value)); } static uint8_t varint_size(size_t length) { uint8_t bytes_needed = 0; do { bytes_needed++; length /= 0x80; } while (length > 0); return bytes_needed; } static size_t encode_varint(uint8_t *buf, size_t value) { size_t len = 0; do { uint8_t byte = (uint8_t) (value % 128); value /= 128; if (value > 0) byte |= 0x80; buf[len++] = byte; } while (value > 0); return len; } static size_t decode_varint(const uint8_t *buf, size_t len, size_t *value) { size_t multiplier = 1, offset; *value = 0; for (offset = 0; offset < 4 && offset < len; offset++) { uint8_t encoded_byte = buf[offset]; *value += (encoded_byte & 0x7f) * multiplier; multiplier *= 128; if ((encoded_byte & 0x80) == 0) return offset + 1; } return 0; } static int mqtt_prop_type_by_id(uint8_t prop_id) { size_t i, num_properties = sizeof(s_prop_map) / sizeof(s_prop_map[0]); for (i = 0; i < num_properties; ++i) { if (s_prop_map[i].id == prop_id) return s_prop_map[i].type; } return -1; // Property ID not found } // Returns the size of the properties section, without the // size of the content's length static size_t get_properties_length(struct mg_mqtt_prop *props, size_t count) { size_t i, size = 0; for (i = 0; i < count; i++) { size++; // identifier switch (mqtt_prop_type_by_id(props[i].id)) { case MQTT_PROP_TYPE_STRING_PAIR: size += (uint32_t) (props[i].val.len + props[i].key.len + 2 * sizeof(uint16_t)); break; case MQTT_PROP_TYPE_STRING: size += (uint32_t) (props[i].val.len + sizeof(uint16_t)); break; case MQTT_PROP_TYPE_BINARY_DATA: size += (uint32_t) (props[i].val.len + sizeof(uint16_t)); break; case MQTT_PROP_TYPE_VARIABLE_INT: size += varint_size((uint32_t) props[i].iv); break; case MQTT_PROP_TYPE_INT: size += (uint32_t) sizeof(uint32_t); break; case MQTT_PROP_TYPE_SHORT: size += (uint32_t) sizeof(uint16_t); break; case MQTT_PROP_TYPE_BYTE: size += (uint32_t) sizeof(uint8_t); break; default: return size; // cannot parse further down } } return size; } // returns the entire size of the properties section, including the // size of the variable length of the content static size_t get_props_size(struct mg_mqtt_prop *props, size_t count) { size_t size = get_properties_length(props, count); size += varint_size(size); return size; } static void mg_send_mqtt_properties(struct mg_connection *c, struct mg_mqtt_prop *props, size_t nprops) { size_t total_size = get_properties_length(props, nprops); uint8_t buf_v[4] = {0, 0, 0, 0}; uint8_t buf[4] = {0, 0, 0, 0}; size_t i, len = encode_varint(buf, total_size); mg_send(c, buf, (size_t) len); for (i = 0; i < nprops; i++) { mg_send(c, &props[i].id, sizeof(props[i].id)); switch (mqtt_prop_type_by_id(props[i].id)) { case MQTT_PROP_TYPE_STRING_PAIR: mg_send_u16(c, mg_htons((uint16_t) props[i].key.len)); mg_send(c, props[i].key.ptr, props[i].key.len); mg_send_u16(c, mg_htons((uint16_t) props[i].val.len)); mg_send(c, props[i].val.ptr, props[i].val.len); break; case MQTT_PROP_TYPE_BYTE: mg_send(c, &props[i].iv, sizeof(uint8_t)); break; case MQTT_PROP_TYPE_SHORT: mg_send_u16(c, mg_htons((uint16_t) props[i].iv)); break; case MQTT_PROP_TYPE_INT: mg_send_u32(c, mg_htonl((uint32_t) props[i].iv)); break; case MQTT_PROP_TYPE_STRING: mg_send_u16(c, mg_htons((uint16_t) props[i].val.len)); mg_send(c, props[i].val.ptr, props[i].val.len); break; case MQTT_PROP_TYPE_BINARY_DATA: mg_send_u16(c, mg_htons((uint16_t) props[i].val.len)); mg_send(c, props[i].val.ptr, props[i].val.len); break; case MQTT_PROP_TYPE_VARIABLE_INT: len = encode_varint(buf_v, props[i].iv); mg_send(c, buf_v, (size_t) len); break; } } } size_t mg_mqtt_next_prop(struct mg_mqtt_message *msg, struct mg_mqtt_prop *prop, size_t ofs) { uint8_t *i = (uint8_t *) msg->dgram.ptr + msg->props_start + ofs; uint8_t *end = (uint8_t *) msg->dgram.ptr + msg->dgram.len; size_t new_pos = ofs, len; prop->id = i[0]; if (ofs >= msg->dgram.len || ofs >= msg->props_start + msg->props_size) return 0; i++, new_pos++; switch (mqtt_prop_type_by_id(prop->id)) { case MQTT_PROP_TYPE_STRING_PAIR: prop->key.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]); prop->key.ptr = (char *) i + 2; i += 2 + prop->key.len; prop->val.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]); prop->val.ptr = (char *) i + 2; new_pos += 2 * sizeof(uint16_t) + prop->val.len + prop->key.len; break; case MQTT_PROP_TYPE_BYTE: prop->iv = (uint8_t) i[0]; new_pos++; break; case MQTT_PROP_TYPE_SHORT: prop->iv = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]); new_pos += sizeof(uint16_t); break; case MQTT_PROP_TYPE_INT: prop->iv = ((uint32_t) i[0] << 24) | ((uint32_t) i[1] << 16) | ((uint32_t) i[2] << 8) | i[3]; new_pos += sizeof(uint32_t); break; case MQTT_PROP_TYPE_STRING: prop->val.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]); prop->val.ptr = (char *) i + 2; new_pos += 2 + prop->val.len; break; case MQTT_PROP_TYPE_BINARY_DATA: prop->val.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]); prop->val.ptr = (char *) i + 2; new_pos += 2 + prop->val.len; break; case MQTT_PROP_TYPE_VARIABLE_INT: len = decode_varint(i, (size_t) (end - i), (size_t *) &prop->iv); new_pos = (!len) ? 0 : new_pos + len; break; default: new_pos = 0; } return new_pos; } void mg_mqtt_login(struct mg_connection *c, const struct mg_mqtt_opts *opts) { char rnd[10], client_id[21]; struct mg_str cid = opts->client_id; size_t total_len = 7 + 1 + 2 + 2; uint8_t hdr[8] = {0, 4, 'M', 'Q', 'T', 'T', opts->version, 0}; if (cid.len == 0) { mg_random(rnd, sizeof(rnd)); mg_hex(rnd, sizeof(rnd), client_id); client_id[sizeof(client_id) - 1] = '\0'; cid = mg_str(client_id); } if (hdr[6] == 0) hdr[6] = 4; // If version is not set, use 4 (3.1.1) c->is_mqtt5 = hdr[6] == 5; // Set version 5 flag hdr[7] = (uint8_t) ((opts->qos & 3) << 3); // Connection flags if (opts->user.len > 0) { total_len += 2 + (uint32_t) opts->user.len; hdr[7] |= MQTT_HAS_USER_NAME; } if (opts->pass.len > 0) { total_len += 2 + (uint32_t) opts->pass.len; hdr[7] |= MQTT_HAS_PASSWORD; } if (opts->topic.len > 0 && opts->message.len > 0) { total_len += 4 + (uint32_t) opts->topic.len + (uint32_t) opts->message.len; hdr[7] |= MQTT_HAS_WILL; } if (opts->clean || cid.len == 0) hdr[7] |= MQTT_CLEAN_SESSION; if (opts->retain) hdr[7] |= MQTT_WILL_RETAIN; total_len += (uint32_t) cid.len; if (c->is_mqtt5) { total_len += get_props_size(opts->props, opts->num_props); if (hdr[7] & MQTT_HAS_WILL) total_len += get_props_size(opts->will_props, opts->num_will_props); } mg_mqtt_send_header(c, MQTT_CMD_CONNECT, 0, (uint32_t) total_len); mg_send(c, hdr, sizeof(hdr)); // keepalive == 0 means "do not disconnect us!" mg_send_u16(c, mg_htons((uint16_t) opts->keepalive)); if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->props, opts->num_props); mg_send_u16(c, mg_htons((uint16_t) cid.len)); mg_send(c, cid.ptr, cid.len); if (hdr[7] & MQTT_HAS_WILL) { if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->will_props, opts->num_will_props); mg_send_u16(c, mg_htons((uint16_t) opts->topic.len)); mg_send(c, opts->topic.ptr, opts->topic.len); mg_send_u16(c, mg_htons((uint16_t) opts->message.len)); mg_send(c, opts->message.ptr, opts->message.len); } if (opts->user.len > 0) { mg_send_u16(c, mg_htons((uint16_t) opts->user.len)); mg_send(c, opts->user.ptr, opts->user.len); } if (opts->pass.len > 0) { mg_send_u16(c, mg_htons((uint16_t) opts->pass.len)); mg_send(c, opts->pass.ptr, opts->pass.len); } } void mg_mqtt_pub(struct mg_connection *c, const struct mg_mqtt_opts *opts) { uint8_t flags = (uint8_t) (((opts->qos & 3) << 1) | (opts->retain ? 1 : 0)); size_t len = 2 + opts->topic.len + opts->message.len; MG_DEBUG(("%lu [%.*s] -> [%.*s]", c->id, (int) opts->topic.len, (char *) opts->topic.ptr, (int) opts->message.len, (char *) opts->message.ptr)); if (opts->qos > 0) len += 2; if (c->is_mqtt5) len += get_props_size(opts->props, opts->num_props); mg_mqtt_send_header(c, MQTT_CMD_PUBLISH, flags, (uint32_t) len); mg_send_u16(c, mg_htons((uint16_t) opts->topic.len)); mg_send(c, opts->topic.ptr, opts->topic.len); if (opts->qos > 0) { if (++c->mgr->mqtt_id == 0) ++c->mgr->mqtt_id; mg_send_u16(c, mg_htons(c->mgr->mqtt_id)); } if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->props, opts->num_props); mg_send(c, opts->message.ptr, opts->message.len); } void mg_mqtt_sub(struct mg_connection *c, const struct mg_mqtt_opts *opts) { uint8_t qos_ = opts->qos & 3; size_t plen = c->is_mqtt5 ? get_props_size(opts->props, opts->num_props) : 0; size_t len = 2 + opts->topic.len + 2 + 1 + plen; mg_mqtt_send_header(c, MQTT_CMD_SUBSCRIBE, 2, (uint32_t) len); if (++c->mgr->mqtt_id == 0) ++c->mgr->mqtt_id; mg_send_u16(c, mg_htons(c->mgr->mqtt_id)); if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->props, opts->num_props); mg_send_u16(c, mg_htons((uint16_t) opts->topic.len)); mg_send(c, opts->topic.ptr, opts->topic.len); mg_send(c, &qos_, sizeof(qos_)); } int mg_mqtt_parse(const uint8_t *buf, size_t len, uint8_t version, struct mg_mqtt_message *m) { uint8_t lc = 0, *p, *end; uint32_t n = 0, len_len = 0; memset(m, 0, sizeof(*m)); m->dgram.ptr = (char *) buf; if (len < 2) return MQTT_INCOMPLETE; m->cmd = (uint8_t) (buf[0] >> 4); m->qos = (buf[0] >> 1) & 3; n = len_len = 0; p = (uint8_t *) buf + 1; while ((size_t) (p - buf) < len) { lc = *((uint8_t *) p++); n += (uint32_t) ((lc & 0x7f) << 7 * len_len); len_len++; if (!(lc & 0x80)) break; if (len_len >= 4) return MQTT_MALFORMED; } end = p + n; if ((lc & 0x80) || (end > buf + len)) return MQTT_INCOMPLETE; m->dgram.len = (size_t) (end - buf); switch (m->cmd) { case MQTT_CMD_CONNACK: if (end - p < 2) return MQTT_MALFORMED; m->ack = p[1]; break; case MQTT_CMD_PUBACK: case MQTT_CMD_PUBREC: case MQTT_CMD_PUBREL: case MQTT_CMD_PUBCOMP: case MQTT_CMD_SUBSCRIBE: case MQTT_CMD_SUBACK: case MQTT_CMD_UNSUBSCRIBE: case MQTT_CMD_UNSUBACK: if (p + 2 > end) return MQTT_MALFORMED; m->id = (uint16_t) ((((uint16_t) p[0]) << 8) | p[1]); p += 2; break; case MQTT_CMD_PUBLISH: { if (p + 2 > end) return MQTT_MALFORMED; m->topic.len = (uint16_t) ((((uint16_t) p[0]) << 8) | p[1]); m->topic.ptr = (char *) p + 2; p += 2 + m->topic.len; if (p > end) return MQTT_MALFORMED; if (m->qos > 0) { if (p + 2 > end) return MQTT_MALFORMED; m->id = (uint16_t) ((((uint16_t) p[0]) << 8) | p[1]); p += 2; } if (p > end) return MQTT_MALFORMED; if (version == 5 && p + 2 < end) { len_len = (uint32_t) decode_varint(p, (size_t) (end - p), &m->props_size); if (!len_len) return MQTT_MALFORMED; m->props_start = (size_t) (p + len_len - buf); p += len_len + m->props_size; } if (p > end) return MQTT_MALFORMED; m->data.ptr = (char *) p; m->data.len = (size_t) (end - p); break; } default: break; } return MQTT_OK; } static void mqtt_cb(struct mg_connection *c, int ev, void *ev_data, void *fn_data) { if (ev == MG_EV_READ) { for (;;) { uint8_t version = c->is_mqtt5 ? 5 : 4; struct mg_mqtt_message mm; int rc = mg_mqtt_parse(c->recv.buf, c->recv.len, version, &mm); if (rc == MQTT_MALFORMED) { MG_ERROR(("%lu MQTT malformed message", c->id)); c->is_closing = 1; break; } else if (rc == MQTT_OK) { MG_VERBOSE(("%lu MQTT CMD %d len %d [%.*s]", c->id, mm.cmd, (int) mm.dgram.len, (int) mm.data.len, mm.data.ptr)); switch (mm.cmd) { case MQTT_CMD_CONNACK: mg_call(c, MG_EV_MQTT_OPEN, &mm.ack); if (mm.ack == 0) { MG_DEBUG(("%lu Connected", c->id)); } else { MG_ERROR(("%lu MQTT auth failed, code %d", c->id, mm.ack)); c->is_closing = 1; } break; case MQTT_CMD_PUBLISH: { MG_DEBUG(("%lu [%.*s] -> [%.*s]", c->id, (int) mm.topic.len, mm.topic.ptr, (int) mm.data.len, mm.data.ptr)); if (mm.qos > 0) { uint16_t id = mg_ntohs(mm.id); uint32_t remaining_len = sizeof(id); if (c->is_mqtt5) remaining_len += 2; // 3.4.2 mg_mqtt_send_header( c, (uint8_t) (mm.qos == 2 ? MQTT_CMD_PUBREC : MQTT_CMD_PUBACK), 0, remaining_len); mg_send(c, &id, sizeof(id)); if (c->is_mqtt5) { uint16_t zero = 0; mg_send(c, &zero, sizeof(zero)); } } mg_call(c, MG_EV_MQTT_MSG, &mm); // let the app handle qos stuff break; } case MQTT_CMD_PUBREC: { // MQTT5: 3.5.2-1 TODO(): variable header rc uint16_t id = mg_ntohs(mm.id); uint32_t remaining_len = sizeof(id); // MQTT5 3.6.2-1 mg_mqtt_send_header(c, MQTT_CMD_PUBREL, 2, remaining_len); mg_send(c, &id, sizeof(id)); // MQTT5 3.6.1-1, flags = 2 break; } case MQTT_CMD_PUBREL: { // MQTT5: 3.6.2-1 TODO(): variable header rc uint16_t id = mg_ntohs(mm.id); uint32_t remaining_len = sizeof(id); // MQTT5 3.7.2-1 mg_mqtt_send_header(c, MQTT_CMD_PUBCOMP, 0, remaining_len); mg_send(c, &id, sizeof(id)); break; } } mg_call(c, MG_EV_MQTT_CMD, &mm); mg_iobuf_del(&c->recv, 0, mm.dgram.len); } else { break; } } } (void) ev_data; (void) fn_data; } void mg_mqtt_ping(struct mg_connection *nc) { mg_mqtt_send_header(nc, MQTT_CMD_PINGREQ, 0, 0); } void mg_mqtt_pong(struct mg_connection *nc) { mg_mqtt_send_header(nc, MQTT_CMD_PINGRESP, 0, 0); } void mg_mqtt_disconnect(struct mg_connection *c, const struct mg_mqtt_opts *opts) { size_t len = 0; if (c->is_mqtt5) len = 1 + get_props_size(opts->props, opts->num_props); mg_mqtt_send_header(c, MQTT_CMD_DISCONNECT, 0, (uint32_t) len); if (c->is_mqtt5) { uint8_t zero = 0; mg_send(c, &zero, sizeof(zero)); // reason code mg_send_mqtt_properties(c, opts->props, opts->num_props); } } struct mg_connection *mg_mqtt_connect(struct mg_mgr *mgr, const char *url, const struct mg_mqtt_opts *opts, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = mg_connect(mgr, url, fn, fn_data); if (c != NULL) { struct mg_mqtt_opts empty; memset(&empty, 0, sizeof(empty)); mg_mqtt_login(c, opts == NULL ? &empty : opts); c->pfn = mqtt_cb; } return c; } struct mg_connection *mg_mqtt_listen(struct mg_mgr *mgr, const char *url, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = mg_listen(mgr, url, fn, fn_data); if (c != NULL) c->pfn = mqtt_cb, c->pfn_data = mgr; return c; } #ifdef MG_ENABLE_LINES #line 1 "src/net.c" #endif size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) { size_t old = c->send.len; mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap); return c->send.len - old; } size_t mg_printf(struct mg_connection *c, const char *fmt, ...) { size_t len = 0; va_list ap; va_start(ap, fmt); len = mg_vprintf(c, fmt, &ap); va_end(ap); return len; } static bool mg_atonl(struct mg_str str, struct mg_addr *addr) { uint32_t localhost = mg_htonl(0x7f000001); if (mg_vcasecmp(&str, "localhost") != 0) return false; memcpy(addr->ip, &localhost, sizeof(uint32_t)); addr->is_ip6 = false; return true; } static bool mg_atone(struct mg_str str, struct mg_addr *addr) { if (str.len > 0) return false; memset(addr->ip, 0, sizeof(addr->ip)); addr->is_ip6 = false; return true; } static bool mg_aton4(struct mg_str str, struct mg_addr *addr) { uint8_t data[4] = {0, 0, 0, 0}; size_t i, num_dots = 0; for (i = 0; i < str.len; i++) { if (str.ptr[i] >= '0' && str.ptr[i] <= '9') { int octet = data[num_dots] * 10 + (str.ptr[i] - '0'); if (octet > 255) return false; data[num_dots] = (uint8_t) octet; } else if (str.ptr[i] == '.') { if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false; num_dots++; } else { return false; } } if (num_dots != 3 || str.ptr[i - 1] == '.') return false; memcpy(&addr->ip, data, sizeof(data)); addr->is_ip6 = false; return true; } static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) { int i; uint32_t ipv4; if (str.len < 14) return false; if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false; for (i = 2; i < 6; i++) { if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false; } // struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7); if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false; memcpy(&ipv4, addr->ip, sizeof(ipv4)); memset(addr->ip, 0, sizeof(addr->ip)); addr->ip[10] = addr->ip[11] = 255; memcpy(&addr->ip[12], &ipv4, 4); addr->is_ip6 = true; return true; } static bool mg_aton6(struct mg_str str, struct mg_addr *addr) { size_t i, j = 0, n = 0, dc = 42; addr->scope_id = 0; if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2; if (mg_v4mapped(str, addr)) return true; for (i = 0; i < str.len; i++) { if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') || (str.ptr[i] >= 'a' && str.ptr[i] <= 'f') || (str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) { unsigned long val; if (i > j + 3) return false; // MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j])); val = mg_unhexn(&str.ptr[j], i - j + 1); addr->ip[n] = (uint8_t) ((val >> 8) & 255); addr->ip[n + 1] = (uint8_t) (val & 255); } else if (str.ptr[i] == ':') { j = i + 1; if (i > 0 && str.ptr[i - 1] == ':') { dc = n; // Double colon if (i > 1 && str.ptr[i - 2] == ':') return false; } else if (i > 0) { n += 2; } if (n > 14) return false; addr->ip[n] = addr->ip[n + 1] = 0; // For trailing :: } else if (str.ptr[i] == '%') { // Scope ID for (i = i + 1; i < str.len; i++) { if (str.ptr[i] < '0' || str.ptr[i] > '9') return false; addr->scope_id *= 10, addr->scope_id += (uint8_t) (str.ptr[i] - '0'); } } else { return false; } } if (n < 14 && dc == 42) return false; if (n < 14) { memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2); memset(&addr->ip[dc], 0, 14 - n); } addr->is_ip6 = true; return true; } bool mg_aton(struct mg_str str, struct mg_addr *addr) { // MG_INFO(("[%.*s]", (int) str.len, str.ptr)); return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) || mg_aton6(str, addr); } struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) { struct mg_connection *c = (struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize); if (c != NULL) { c->mgr = mgr; c->send.align = c->recv.align = MG_IO_SIZE; c->id = ++mgr->nextid; } return c; } void mg_close_conn(struct mg_connection *c) { mg_resolve_cancel(c); // Close any pending DNS query LIST_DELETE(struct mg_connection, &c->mgr->conns, c); if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL; if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL; // Order of operations is important. `MG_EV_CLOSE` event must be fired // before we deallocate received data, see #1331 mg_call(c, MG_EV_CLOSE, NULL); MG_DEBUG(("%lu %ld closed", c->id, c->fd)); mg_tls_free(c); mg_iobuf_free(&c->recv); mg_iobuf_free(&c->send); mg_bzero((unsigned char *) c, sizeof(*c)); free(c); } struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = NULL; if (url == NULL || url[0] == '\0') { MG_ERROR(("null url")); } else if ((c = mg_alloc_conn(mgr)) == NULL) { MG_ERROR(("OOM")); } else { LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c); c->is_udp = (strncmp(url, "udp:", 4) == 0); c->fd = (void *) (size_t) MG_INVALID_SOCKET; c->fn = fn; c->is_client = true; c->fn_data = fn_data; MG_DEBUG(("%lu %ld %s", c->id, c->fd, url)); mg_call(c, MG_EV_OPEN, (void *) url); mg_resolve(c, url); } return c; } struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = NULL; if ((c = mg_alloc_conn(mgr)) == NULL) { MG_ERROR(("OOM %s", url)); } else if (!mg_open_listener(c, url)) { MG_ERROR(("Failed: %s, errno %d", url, errno)); free(c); c = NULL; } else { c->is_listening = 1; c->is_udp = strncmp(url, "udp:", 4) == 0; LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c); c->fn = fn; c->fn_data = fn_data; mg_call(c, MG_EV_OPEN, NULL); if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must MG_DEBUG(("%lu %ld %s", c->id, c->fd, url)); } return c; } struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd, mg_event_handler_t fn, void *fn_data) { struct mg_connection *c = mg_alloc_conn(mgr); if (c != NULL) { c->fd = (void *) (size_t) fd; c->fn = fn; c->fn_data = fn_data; MG_EPOLL_ADD(c); mg_call(c, MG_EV_OPEN, NULL); LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c); } return c; } struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds, unsigned flags, void (*fn)(void *), void *arg) { struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t)); if (t != NULL) { mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg); t->id = mgr->timerid++; } return t; } void mg_mgr_free(struct mg_mgr *mgr) { struct mg_connection *c; struct mg_timer *tmp, *t = mgr->timers; while (t != NULL) tmp = t->next, free(t), t = tmp; mgr->timers = NULL; // Important. Next call to poll won't touch timers for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1; mg_mgr_poll(mgr, 0); #if MG_ENABLE_FREERTOS_TCP FreeRTOS_DeleteSocketSet(mgr->ss); #endif MG_DEBUG(("All connections closed")); #if MG_ENABLE_EPOLL if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1; #endif mg_tls_ctx_free(mgr); } void mg_mgr_init(struct mg_mgr *mgr) { memset(mgr, 0, sizeof(*mgr)); #if MG_ENABLE_EPOLL if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0) MG_ERROR(("epoll_create1 errno %d", errno)); #else mgr->epoll_fd = -1; #endif #if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK // clang-format off { WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); } // clang-format on #elif MG_ENABLE_FREERTOS_TCP mgr->ss = FreeRTOS_CreateSocketSet(); #elif defined(__unix) || defined(__unix__) || defined(__APPLE__) // Ignore SIGPIPE signal, so if client cancels the request, it // won't kill the whole process. signal(SIGPIPE, SIG_IGN); #endif mgr->dnstimeout = 3000; mgr->dns4.url = "udp://8.8.8.8:53"; mgr->dns6.url = "udp://[2001:4860:4860::8888]:53"; mg_tls_ctx_init(mgr); } #ifdef MG_ENABLE_LINES #line 1 "src/net_builtin.c" #endif #if defined(MG_ENABLE_TCPIP) && MG_ENABLE_TCPIP #define MG_EPHEMERAL_PORT_BASE 32768 #define PDIFF(a, b) ((size_t) (((char *) (b)) - ((char *) (a)))) #ifndef MIP_TCP_KEEPALIVE_MS #define MIP_TCP_KEEPALIVE_MS 45000 // TCP keep-alive period, ms #endif #define MIP_TCP_ACK_MS 150 // Timeout for ACKing #define MIP_TCP_ARP_MS 100 // Timeout for ARP response #define MIP_TCP_SYN_MS 15000 // Timeout for connection establishment #define MIP_TCP_FIN_MS 1000 // Timeout for closing connection struct connstate { uint32_t seq, ack; // TCP seq/ack counters uint64_t timer; // TCP keep-alive / ACK timer uint8_t mac[6]; // Peer MAC address uint8_t ttype; // Timer type. 0: ack, 1: keep-alive #define MIP_TTYPE_KEEPALIVE 0 // Connection is idle for long, send keepalive #define MIP_TTYPE_ACK 1 // Peer sent us data, we have to ack it soon #define MIP_TTYPE_ARP 2 // ARP resolve sent, waiting for response #define MIP_TTYPE_SYN 3 // SYN sent, waiting for response #define MIP_TTYPE_FIN 4 // FIN sent, waiting until terminating the connection uint8_t tmiss; // Number of keep-alive misses struct mg_iobuf raw; // For TLS only. Incoming raw data }; #pragma pack(push, 1) struct lcp { uint8_t addr, ctrl, proto[2], code, id, len[2]; }; struct eth { uint8_t dst[6]; // Destination MAC address uint8_t src[6]; // Source MAC address uint16_t type; // Ethernet type }; struct ip { uint8_t ver; // Version uint8_t tos; // Unused uint16_t len; // Length uint16_t id; // Unused uint16_t frag; // Fragmentation #define IP_FRAG_OFFSET_MSK 0xFF1F #define IP_MORE_FRAGS_MSK 0x20 uint8_t ttl; // Time to live uint8_t proto; // Upper level protocol uint16_t csum; // Checksum uint32_t src; // Source IP uint32_t dst; // Destination IP }; struct ip6 { uint8_t ver; // Version uint8_t opts[3]; // Options uint16_t len; // Length uint8_t proto; // Upper level protocol uint8_t ttl; // Time to live uint8_t src[16]; // Source IP uint8_t dst[16]; // Destination IP }; struct icmp { uint8_t type; uint8_t code; uint16_t csum; }; struct arp { uint16_t fmt; // Format of hardware address uint16_t pro; // Format of protocol address uint8_t hlen; // Length of hardware address uint8_t plen; // Length of protocol address uint16_t op; // Operation uint8_t sha[6]; // Sender hardware address uint32_t spa; // Sender protocol address uint8_t tha[6]; // Target hardware address uint32_t tpa; // Target protocol address }; struct tcp { uint16_t sport; // Source port uint16_t dport; // Destination port uint32_t seq; // Sequence number uint32_t ack; // Acknowledgement number uint8_t off; // Data offset uint8_t flags; // TCP flags #define TH_FIN 0x01 #define TH_SYN 0x02 #define TH_RST 0x04 #define TH_PUSH 0x08 #define TH_ACK 0x10 #define TH_URG 0x20 #define TH_ECE 0x40 #define TH_CWR 0x80 uint16_t win; // Window uint16_t csum; // Checksum uint16_t urp; // Urgent pointer }; struct udp { uint16_t sport; // Source port uint16_t dport; // Destination port uint16_t len; // UDP length uint16_t csum; // UDP checksum }; struct dhcp { uint8_t op, htype, hlen, hops; uint32_t xid; uint16_t secs, flags; uint32_t ciaddr, yiaddr, siaddr, giaddr; uint8_t hwaddr[208]; uint32_t magic; uint8_t options[32]; }; #pragma pack(pop) struct pkt { struct mg_str raw; // Raw packet data struct mg_str pay; // Payload data struct eth *eth; struct llc *llc; struct arp *arp; struct ip *ip; struct ip6 *ip6; struct icmp *icmp; struct tcp *tcp; struct udp *udp; struct dhcp *dhcp; }; static void send_syn(struct mg_connection *c); static void mkpay(struct pkt *pkt, void *p) { pkt->pay = mg_str_n((char *) p, (size_t) (&pkt->raw.ptr[pkt->raw.len] - (char *) p)); } static uint32_t csumup(uint32_t sum, const void *buf, size_t len) { const uint8_t *p = (const uint8_t *) buf; for (size_t i = 0; i < len; i++) sum += i & 1 ? p[i] : (uint32_t) (p[i] << 8); return sum; } static uint16_t csumfin(uint32_t sum) { while (sum >> 16) sum = (sum & 0xffff) + (sum >> 16); return mg_htons(~sum & 0xffff); } static uint16_t ipcsum(const void *buf, size_t len) { uint32_t sum = csumup(0, buf, len); return csumfin(sum); } static void settmout(struct mg_connection *c, uint8_t type) { struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; struct connstate *s = (struct connstate *) (c + 1); unsigned n = type == MIP_TTYPE_ACK ? MIP_TCP_ACK_MS : type == MIP_TTYPE_ARP ? MIP_TCP_ARP_MS : type == MIP_TTYPE_SYN ? MIP_TCP_SYN_MS : type == MIP_TTYPE_FIN ? MIP_TCP_FIN_MS : MIP_TCP_KEEPALIVE_MS; s->timer = ifp->now + n; s->ttype = type; MG_VERBOSE(("%lu %d -> %llx", c->id, type, s->timer)); } static size_t ether_output(struct mg_tcpip_if *ifp, size_t len) { // size_t min = 64; // Pad short frames to 64 bytes (minimum Ethernet size) // if (len < min) memset(ifp->tx.ptr + len, 0, min - len), len = min; // mg_hexdump(ifp->tx.ptr, len); size_t n = ifp->driver->tx(ifp->tx.ptr, len, ifp); if (n == len) ifp->nsent++; return n; } static void arp_ask(struct mg_tcpip_if *ifp, uint32_t ip) { struct eth *eth = (struct eth *) ifp->tx.ptr; struct arp *arp = (struct arp *) (eth + 1); memset(eth->dst, 255, sizeof(eth->dst)); memcpy(eth->src, ifp->mac, sizeof(eth->src)); eth->type = mg_htons(0x806); memset(arp, 0, sizeof(*arp)); arp->fmt = mg_htons(1), arp->pro = mg_htons(0x800), arp->hlen = 6, arp->plen = 4; arp->op = mg_htons(1), arp->tpa = ip, arp->spa = ifp->ip; memcpy(arp->sha, ifp->mac, sizeof(arp->sha)); ether_output(ifp, PDIFF(eth, arp + 1)); } static void onstatechange(struct mg_tcpip_if *ifp) { if (ifp->state == MG_TCPIP_STATE_READY) { MG_INFO(("READY, IP: %M", mg_print_ip4, &ifp->ip)); MG_INFO((" GW: %M", mg_print_ip4, &ifp->gw)); MG_INFO((" MAC: %M", mg_print_mac, &ifp->mac)); arp_ask(ifp, ifp->gw); } else if (ifp->state == MG_TCPIP_STATE_UP) { MG_ERROR(("Link up")); srand((unsigned int) mg_millis()); } else if (ifp->state == MG_TCPIP_STATE_DOWN) { MG_ERROR(("Link down")); } } static struct ip *tx_ip(struct mg_tcpip_if *ifp, uint8_t *mac_dst, uint8_t proto, uint32_t ip_src, uint32_t ip_dst, size_t plen) { struct eth *eth = (struct eth *) ifp->tx.ptr; struct ip *ip = (struct ip *) (eth + 1); memcpy(eth->dst, mac_dst, sizeof(eth->dst)); memcpy(eth->src, ifp->mac, sizeof(eth->src)); // Use our MAC eth->type = mg_htons(0x800); memset(ip, 0, sizeof(*ip)); ip->ver = 0x45; // Version 4, header length 5 words ip->frag = 0x40; // Don't fragment ip->len = mg_htons((uint16_t) (sizeof(*ip) + plen)); ip->ttl = 64; ip->proto = proto; ip->src = ip_src; ip->dst = ip_dst; ip->csum = ipcsum(ip, sizeof(*ip)); return ip; } static void tx_udp(struct mg_tcpip_if *ifp, uint8_t *mac_dst, uint32_t ip_src, uint16_t sport, uint32_t ip_dst, uint16_t dport, const void *buf, size_t len) { struct ip *ip = tx_ip(ifp, mac_dst, 17, ip_src, ip_dst, len + sizeof(struct udp)); struct udp *udp = (struct udp *) (ip + 1); // MG_DEBUG(("UDP XX LEN %d %d", (int) len, (int) ifp->tx.len)); udp->sport = sport; udp->dport = dport; udp->len = mg_htons((uint16_t) (sizeof(*udp) + len)); udp->csum = 0; uint32_t cs = csumup(0, udp, sizeof(*udp)); cs = csumup(cs, buf, len); cs = csumup(cs, &ip->src, sizeof(ip->src)); cs = csumup(cs, &ip->dst, sizeof(ip->dst)); cs += (uint32_t) (ip->proto + sizeof(*udp) + len); udp->csum = csumfin(cs); memmove(udp + 1, buf, len); // MG_DEBUG(("UDP LEN %d %d", (int) len, (int) ifp->frame_len)); ether_output(ifp, sizeof(struct eth) + sizeof(*ip) + sizeof(*udp) + len); } static void tx_dhcp(struct mg_tcpip_if *ifp, uint8_t *mac_dst, uint32_t ip_src, uint32_t ip_dst, uint8_t *opts, size_t optslen, bool ciaddr) { // https://datatracker.ietf.org/doc/html/rfc2132#section-9.6 struct dhcp dhcp = {1, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, {0}, 0, {0}}; dhcp.magic = mg_htonl(0x63825363); memcpy(&dhcp.hwaddr, ifp->mac, sizeof(ifp->mac)); memcpy(&dhcp.xid, ifp->mac + 2, sizeof(dhcp.xid)); memcpy(&dhcp.options, opts, optslen); if (ciaddr) dhcp.ciaddr = ip_src; tx_udp(ifp, mac_dst, ip_src, mg_htons(68), ip_dst, mg_htons(67), &dhcp, sizeof(dhcp)); } static const uint8_t broadcast[] = {255, 255, 255, 255, 255, 255}; // RFC-2131 #4.3.6, #4.4.1 static void tx_dhcp_request_sel(struct mg_tcpip_if *ifp, uint32_t ip_req, uint32_t ip_srv) { uint8_t opts[] = { 53, 1, 3, // Type: DHCP request 55, 2, 1, 3, // GW and mask 12, 3, 'm', 'i', 'p', // Host name: "mip" 54, 4, 0, 0, 0, 0, // DHCP server ID 50, 4, 0, 0, 0, 0, // Requested IP 255 // End of options }; memcpy(opts + 14, &ip_srv, sizeof(ip_srv)); memcpy(opts + 20, &ip_req, sizeof(ip_req)); tx_dhcp(ifp, (uint8_t *) broadcast, 0, 0xffffffff, opts, sizeof(opts), false); MG_DEBUG(("DHCP req sent")); } // RFC-2131 #4.3.6, #4.4.5 (renewing: unicast, rebinding: bcast) static void tx_dhcp_request_re(struct mg_tcpip_if *ifp, uint8_t *mac_dst, uint32_t ip_src, uint32_t ip_dst) { uint8_t opts[] = { 53, 1, 3, // Type: DHCP request 255 // End of options }; tx_dhcp(ifp, mac_dst, ip_src, ip_dst, opts, sizeof(opts), true); MG_DEBUG(("DHCP req sent")); } static void tx_dhcp_discover(struct mg_tcpip_if *ifp) { uint8_t opts[] = { 53, 1, 1, // Type: DHCP discover 55, 2, 1, 3, // Parameters: ip, mask 255 // End of options }; tx_dhcp(ifp, (uint8_t *) broadcast, 0, 0xffffffff, opts, sizeof(opts), false); MG_DEBUG(("DHCP discover sent. Our MAC: %M", mg_print_mac, ifp->mac)); } static struct mg_connection *getpeer(struct mg_mgr *mgr, struct pkt *pkt, bool lsn) { struct mg_connection *c = NULL; for (c = mgr->conns; c != NULL; c = c->next) { if (c->is_arplooking && pkt->arp && memcmp(&pkt->arp->spa, c->rem.ip, sizeof(pkt->arp->spa)) == 0) break; if (c->is_udp && pkt->udp && c->loc.port == pkt->udp->dport) break; if (!c->is_udp && pkt->tcp && c->loc.port == pkt->tcp->dport && lsn == c->is_listening && (lsn || c->rem.port == pkt->tcp->sport)) break; } return c; } static void rx_arp(struct mg_tcpip_if *ifp, struct pkt *pkt) { if (pkt->arp->op == mg_htons(1) && pkt->arp->tpa == ifp->ip) { // ARP request. Make a response, then send // MG_DEBUG(("ARP op %d %M: %M", mg_ntohs(pkt->arp->op), mg_print_ip4, // &pkt->arp->spa, mg_print_ip4, &pkt->arp->tpa)); struct eth *eth = (struct eth *) ifp->tx.ptr; struct arp *arp = (struct arp *) (eth + 1); memcpy(eth->dst, pkt->eth->src, sizeof(eth->dst)); memcpy(eth->src, ifp->mac, sizeof(eth->src)); eth->type = mg_htons(0x806); *arp = *pkt->arp; arp->op = mg_htons(2); memcpy(arp->tha, pkt->arp->sha, sizeof(pkt->arp->tha)); memcpy(arp->sha, ifp->mac, sizeof(pkt->arp->sha)); arp->tpa = pkt->arp->spa; arp->spa = ifp->ip; MG_DEBUG(("ARP: tell %M we're %M", mg_print_ip4, &arp->tpa, mg_print_mac, &ifp->mac)); ether_output(ifp, PDIFF(eth, arp + 1)); } else if (pkt->arp->op == mg_htons(2)) { if (memcmp(pkt->arp->tha, ifp->mac, sizeof(pkt->arp->tha)) != 0) return; if (pkt->arp->spa == ifp->gw) { // Got response for the GW ARP request. Set ifp->gwmac memcpy(ifp->gwmac, pkt->arp->sha, sizeof(ifp->gwmac)); } else { struct mg_connection *c = getpeer(ifp->mgr, pkt, false); if (c != NULL && c->is_arplooking) { struct connstate *s = (struct connstate *) (c + 1); memcpy(s->mac, pkt->arp->sha, sizeof(s->mac)); MG_DEBUG(("%lu ARP resolved %M -> %M", c->id, mg_print_ip4, c->rem.ip, mg_print_mac, s->mac)); c->is_arplooking = 0; send_syn(c); settmout(c, MIP_TTYPE_SYN); } } } } static void rx_icmp(struct mg_tcpip_if *ifp, struct pkt *pkt) { // MG_DEBUG(("ICMP %d", (int) len)); if (pkt->icmp->type == 8 && pkt->ip != NULL && pkt->ip->dst == ifp->ip) { size_t hlen = sizeof(struct eth) + sizeof(struct ip) + sizeof(struct icmp); size_t space = ifp->tx.len - hlen, plen = pkt->pay.len; if (plen > space) plen = space; struct ip *ip = tx_ip(ifp, pkt->eth->src, 1, ifp->ip, pkt->ip->src, sizeof(struct icmp) + plen); struct icmp *icmp = (struct icmp *) (ip + 1); memset(icmp, 0, sizeof(*icmp)); // Set csum to 0 memcpy(icmp + 1, pkt->pay.ptr, plen); // Copy RX payload to TX icmp->csum = ipcsum(icmp, sizeof(*icmp) + plen); ether_output(ifp, hlen + plen); } } static void rx_dhcp_client(struct mg_tcpip_if *ifp, struct pkt *pkt) { uint32_t ip = 0, gw = 0, mask = 0, lease = 0; uint8_t msgtype = 0, state = ifp->state; // perform size check first, then access fields uint8_t *p = pkt->dhcp->options, *end = (uint8_t *) &pkt->raw.ptr[pkt->raw.len]; if (end < (uint8_t *) (pkt->dhcp + 1)) return; if (memcmp(&pkt->dhcp->xid, ifp->mac + 2, sizeof(pkt->dhcp->xid))) return; while (p + 1 < end && p[0] != 255) { // Parse options RFC-1533 #9 if (p[0] == 1 && p[1] == sizeof(ifp->mask) && p + 6 < end) { // Mask memcpy(&mask, p + 2, sizeof(mask)); } else if (p[0] == 3 && p[1] == sizeof(ifp->gw) && p + 6 < end) { // GW memcpy(&gw, p + 2, sizeof(gw)); ip = pkt->dhcp->yiaddr; } else if (p[0] == 51 && p[1] == 4 && p + 6 < end) { // Lease memcpy(&lease, p + 2, sizeof(lease)); lease = mg_ntohl(lease); } else if (p[0] == 53 && p[1] == 1 && p + 6 < end) { // Msg Type msgtype = p[2]; } p += p[1] + 2; } // Process message type, RFC-1533 (9.4); RFC-2131 (3.1, 4) if (msgtype == 6 && ifp->ip == ip) { // DHCPNACK, release IP ifp->state = MG_TCPIP_STATE_UP, ifp->ip = 0; } else if (msgtype == 2 && ifp->state == MG_TCPIP_STATE_UP && ip && gw && lease) { // DHCPOFFER tx_dhcp_request_sel(ifp, ip, pkt->dhcp->siaddr); // select IP, (4.4.1) ifp->state = MG_TCPIP_STATE_REQ; // REQUESTING state } else if (msgtype == 5) { // DHCPACK if (ifp->state == MG_TCPIP_STATE_REQ && ip && gw && lease) { // got an IP ifp->lease_expire = ifp->now + lease * 1000; MG_INFO(("Lease: %u sec (%lld)", lease, ifp->lease_expire / 1000)); // assume DHCP server = router until ARP resolves memcpy(ifp->gwmac, pkt->eth->src, sizeof(ifp->gwmac)); ifp->ip = ip, ifp->gw = gw, ifp->mask = mask; ifp->state = MG_TCPIP_STATE_READY; // BOUND state uint64_t rand; mg_random(&rand, sizeof(rand)); srand((unsigned int) (rand + mg_millis())); } else if (ifp->state == MG_TCPIP_STATE_READY && ifp->ip == ip) { // renew ifp->lease_expire = ifp->now + lease * 1000; MG_INFO(("Lease: %u sec (%lld)", lease, ifp->lease_expire / 1000)); } // TODO(): accept provided T1/T2 and store server IP for renewal (4.4) } if (ifp->state != state) onstatechange(ifp); } // Simple DHCP server that assigns a next IP address: ifp->ip + 1 static void rx_dhcp_server(struct mg_tcpip_if *ifp, struct pkt *pkt) { uint8_t op = 0, *p = pkt->dhcp->options, *end = (uint8_t *) &pkt->raw.ptr[pkt->raw.len]; if (end < (uint8_t *) (pkt->dhcp + 1)) return; // struct dhcp *req = pkt->dhcp; struct dhcp res = {2, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, {0}, 0, {0}}; res.yiaddr = ifp->ip; ((uint8_t *) (&res.yiaddr))[3]++; // Offer our IP + 1 while (p + 1 < end && p[0] != 255) { // Parse options if (p[0] == 53 && p[1] == 1 && p + 2 < end) { // Message type op = p[2]; } p += p[1] + 2; } if (op == 1 || op == 3) { // DHCP Discover or DHCP Request uint8_t msg = op == 1 ? 2 : 5; // Message type: DHCP OFFER or DHCP ACK uint8_t opts[] = { 53, 1, msg, // Message type 1, 4, 0, 0, 0, 0, // Subnet mask 54, 4, 0, 0, 0, 0, // Server ID 12, 3, 'm', 'i', 'p', // Host name: "mip" 51, 4, 255, 255, 255, 255, // Lease time 255 // End of options }; memcpy(&res.hwaddr, pkt->dhcp->hwaddr, 6); memcpy(opts + 5, &ifp->mask, sizeof(ifp->mask)); memcpy(opts + 11, &ifp->ip, sizeof(ifp->ip)); memcpy(&res.options, opts, sizeof(opts)); res.magic = pkt->dhcp->magic; res.xid = pkt->dhcp->xid; // memcpy(ifp->gwmac, pkt->eth->src, sizeof(ifp->gwmac)); tx_udp(ifp, pkt->eth->src, ifp->ip, mg_htons(67), op == 1 ? ~0U : res.yiaddr, mg_htons(68), &res, sizeof(res)); } } static void rx_udp(struct mg_tcpip_if *ifp, struct pkt *pkt) { struct mg_connection *c = getpeer(ifp->mgr, pkt, true); if (c == NULL) { // No UDP listener on this port. Should send ICMP, but keep silent. } else { c->rem.port = pkt->udp->sport; memcpy(c->rem.ip, &pkt->ip->src, sizeof(uint32_t)); struct connstate *s = (struct connstate *) (c + 1); memcpy(s->mac, pkt->eth->src, sizeof(s->mac)); if (c->recv.len >= MG_MAX_RECV_SIZE) { mg_error(c, "max_recv_buf_size reached"); } else if (c->recv.size - c->recv.len < pkt->pay.len && !mg_iobuf_resize(&c->recv, c->recv.len + pkt->pay.len)) { mg_error(c, "oom"); } else { memcpy(&c->recv.buf[c->recv.len], pkt->pay.ptr, pkt->pay.len); c->recv.len += pkt->pay.len; mg_call(c, MG_EV_READ, &pkt->pay.len); } } } static size_t tx_tcp(struct mg_tcpip_if *ifp, uint8_t *dst_mac, uint32_t dst_ip, uint8_t flags, uint16_t sport, uint16_t dport, uint32_t seq, uint32_t ack, const void *buf, size_t len) { struct ip *ip = tx_ip(ifp, dst_mac, 6, ifp->ip, dst_ip, sizeof(struct tcp) + len); struct tcp *tcp = (struct tcp *) (ip + 1); memset(tcp, 0, sizeof(*tcp)); if (buf != NULL && len) memmove(tcp + 1, buf, len); tcp->sport = sport; tcp->dport = dport; tcp->seq = seq; tcp->ack = ack; tcp->flags = flags; tcp->win = mg_htons(8192); tcp->off = (uint8_t) (sizeof(*tcp) / 4 << 4); uint32_t cs = 0; uint16_t n = (uint16_t) (sizeof(*tcp) + len); uint8_t pseudo[] = {0, ip->proto, (uint8_t) (n >> 8), (uint8_t) (n & 255)}; cs = csumup(cs, tcp, n); cs = csumup(cs, &ip->src, sizeof(ip->src)); cs = csumup(cs, &ip->dst, sizeof(ip->dst)); cs = csumup(cs, pseudo, sizeof(pseudo)); tcp->csum = csumfin(cs); MG_VERBOSE(("TCP %M:%hu -> %M:%hu fl %x len %u", mg_print_ip4, &ip->src, mg_ntohs(tcp->sport), mg_print_ip4, &ip->dst, mg_ntohs(tcp->dport), tcp->flags, (int) len)); // mg_hexdump(ifp->tx.ptr, PDIFF(ifp->tx.ptr, tcp + 1) + len); return ether_output(ifp, PDIFF(ifp->tx.ptr, tcp + 1) + len); } static size_t tx_tcp_pkt(struct mg_tcpip_if *ifp, struct pkt *pkt, uint8_t flags, uint32_t seq, const void *buf, size_t len) { uint32_t delta = (pkt->tcp->flags & (TH_SYN | TH_FIN)) ? 1 : 0; return tx_tcp(ifp, pkt->eth->src, pkt->ip->src, flags, pkt->tcp->dport, pkt->tcp->sport, seq, mg_htonl(mg_ntohl(pkt->tcp->seq) + delta), buf, len); } static struct mg_connection *accept_conn(struct mg_connection *lsn, struct pkt *pkt) { struct mg_connection *c = mg_alloc_conn(lsn->mgr); if (c == NULL) { MG_ERROR(("OOM")); return NULL; } struct connstate *s = (struct connstate *) (c + 1); s->seq = mg_ntohl(pkt->tcp->ack), s->ack = mg_ntohl(pkt->tcp->seq); memcpy(s->mac, pkt->eth->src, sizeof(s->mac)); settmout(c, MIP_TTYPE_KEEPALIVE); memcpy(c->rem.ip, &pkt->ip->src, sizeof(uint32_t)); c->rem.port = pkt->tcp->sport; MG_DEBUG(("%lu accepted %M", c->id, mg_print_ip_port, &c->rem)); LIST_ADD_HEAD(struct mg_connection, &lsn->mgr->conns, c); c->is_accepted = 1; c->is_hexdumping = lsn->is_hexdumping; c->pfn = lsn->pfn; c->loc = lsn->loc; c->pfn_data = lsn->pfn_data; c->fn = lsn->fn; c->fn_data = lsn->fn_data; mg_call(c, MG_EV_OPEN, NULL); mg_call(c, MG_EV_ACCEPT, NULL); return c; } static size_t trim_len(struct mg_connection *c, size_t len) { struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; size_t eth_h_len = 14, ip_max_h_len = 24, tcp_max_h_len = 60, udp_h_len = 8; size_t max_headers_len = eth_h_len + ip_max_h_len + (c->is_udp ? udp_h_len : tcp_max_h_len); size_t min_mtu = c->is_udp ? 68 /* RFC-791 */ : max_headers_len - eth_h_len; // If the frame exceeds the available buffer, trim the length if (len + max_headers_len > ifp->tx.len) { len = ifp->tx.len - max_headers_len; } // Ensure the MTU isn't lower than the minimum allowed value if (ifp->mtu < min_mtu) { MG_ERROR(("MTU is lower than minimum possible value. Setting it to %d.", min_mtu)); ifp->mtu = (uint16_t) min_mtu; } // If the total packet size exceeds the MTU, trim the length if (len + max_headers_len - eth_h_len > ifp->mtu) { len = ifp->mtu - max_headers_len + eth_h_len; if (c->is_udp) { MG_ERROR(("UDP datagram exceeds MTU. Truncating it.")); } } return len; } long mg_io_send(struct mg_connection *c, const void *buf, size_t len) { struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; struct connstate *s = (struct connstate *) (c + 1); uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); len = trim_len(c, len); if (c->is_udp) { tx_udp(ifp, s->mac, ifp->ip, c->loc.port, rem_ip, c->rem.port, buf, len); } else { if (tx_tcp(ifp, s->mac, rem_ip, TH_PUSH | TH_ACK, c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), buf, len) > 0) { s->seq += (uint32_t) len; if (s->ttype == MIP_TTYPE_ACK) settmout(c, MIP_TTYPE_KEEPALIVE); } else { return MG_IO_ERR; } } return (long) len; } long mg_io_recv(struct mg_connection *c, void *buf, size_t len) { struct connstate *s = (struct connstate *) (c + 1); if (s->raw.len == 0) return MG_IO_WAIT; if (len > s->raw.len) len = s->raw.len; memcpy(buf, s->raw.buf, len); mg_iobuf_del(&s->raw, 0, len); return (long) len; } static void read_conn(struct mg_connection *c, struct pkt *pkt) { struct connstate *s = (struct connstate *) (c + 1); struct mg_iobuf *io = c->is_tls ? &s->raw : &c->recv; uint32_t seq = mg_ntohl(pkt->tcp->seq); s->raw.align = c->recv.align; uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); if (pkt->tcp->flags & TH_FIN) { // If we initiated the closure, we reply with ACK upon receiving FIN // If we didn't initiate it, we reply with FIN as part of the normal TCP // closure process uint8_t flags = TH_ACK; s->ack = (uint32_t) (mg_htonl(pkt->tcp->seq) + pkt->pay.len + 1); if (c->is_draining && s->ttype == MIP_TTYPE_FIN) { if (s->seq == mg_htonl(pkt->tcp->ack)) { // Simultaneous closure ? s->seq++; // Yes. Increment our SEQ } else { // Otherwise, s->seq = mg_htonl(pkt->tcp->ack); // Set to peer's ACK } } else { flags |= TH_FIN; c->is_draining = 1; settmout(c, MIP_TTYPE_FIN); } tx_tcp((struct mg_tcpip_if *) c->mgr->priv, s->mac, rem_ip, flags, c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), "", 0); } else if (pkt->pay.len == 0) { // TODO(cpq): handle this peer's ACK } else if (seq != s->ack) { uint32_t ack = (uint32_t) (mg_htonl(pkt->tcp->seq) + pkt->pay.len); if (s->ack == ack) { MG_VERBOSE(("ignoring duplicate pkt")); } else { MG_VERBOSE(("SEQ != ACK: %x %x %x", seq, s->ack, ack)); tx_tcp((struct mg_tcpip_if *) c->mgr->priv, s->mac, rem_ip, TH_ACK, c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), "", 0); } } else if (io->size - io->len < pkt->pay.len && !mg_iobuf_resize(io, io->len + pkt->pay.len)) { mg_error(c, "oom"); } else { // Copy TCP payload into the IO buffer. If the connection is plain text, // we copy to c->recv. If the connection is TLS, this data is encrypted, // therefore we copy that encrypted data to the s->raw iobuffer instead, // and then call mg_tls_recv() to decrypt it. NOTE: mg_tls_recv() will // call back mg_io_recv() which grabs raw data from s->raw memcpy(&io->buf[io->len], pkt->pay.ptr, pkt->pay.len); io->len += pkt->pay.len; MG_VERBOSE(("%lu SEQ %x -> %x", c->id, mg_htonl(pkt->tcp->seq), s->ack)); // Advance ACK counter s->ack = (uint32_t) (mg_htonl(pkt->tcp->seq) + pkt->pay.len); #if 0 // Send ACK immediately uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); MG_DEBUG((" imm ACK", c->id, mg_htonl(pkt->tcp->seq), s->ack)); tx_tcp((struct mg_tcpip_if *) c->mgr->priv, s->mac, rem_ip, TH_ACK, c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), "", 0); #else // if not already running, setup a timer to send an ACK later if (s->ttype != MIP_TTYPE_ACK) settmout(c, MIP_TTYPE_ACK); #endif if (c->is_tls) { // TLS connection. Make room for decrypted data in c->recv io = &c->recv; if (io->size - io->len < pkt->pay.len && !mg_iobuf_resize(io, io->len + pkt->pay.len)) { mg_error(c, "oom"); } else { // Decrypt data directly into c->recv long n = mg_tls_recv(c, &io->buf[io->len], io->size - io->len); if (n == MG_IO_ERR) { mg_error(c, "TLS recv error"); } else if (n > 0) { // Decrypted successfully - trigger MG_EV_READ io->len += (size_t) n; mg_call(c, MG_EV_READ, &n); } } } else { // Plain text connection, data is already in c->recv, trigger // MG_EV_READ mg_call(c, MG_EV_READ, &pkt->pay.len); } } } static void rx_tcp(struct mg_tcpip_if *ifp, struct pkt *pkt) { struct mg_connection *c = getpeer(ifp->mgr, pkt, false); struct connstate *s = c == NULL ? NULL : (struct connstate *) (c + 1); #if 0 MG_INFO(("%lu %hhu %d", c ? c->id : 0, pkt->tcp->flags, (int) pkt->pay.len)); #endif if (c != NULL && c->is_connecting && pkt->tcp->flags == (TH_SYN | TH_ACK)) { s->seq = mg_ntohl(pkt->tcp->ack), s->ack = mg_ntohl(pkt->tcp->seq) + 1; tx_tcp_pkt(ifp, pkt, TH_ACK, pkt->tcp->ack, NULL, 0); c->is_connecting = 0; // Client connected settmout(c, MIP_TTYPE_KEEPALIVE); mg_call(c, MG_EV_CONNECT, NULL); // Let user know } else if (c != NULL && c->is_connecting && pkt->tcp->flags != TH_ACK) { // mg_hexdump(pkt->raw.ptr, pkt->raw.len); tx_tcp_pkt(ifp, pkt, TH_RST | TH_ACK, pkt->tcp->ack, NULL, 0); } else if (c != NULL && pkt->tcp->flags & TH_RST) { mg_error(c, "peer RST"); // RFC-1122 4.2.2.13 } else if (c != NULL) { #if 0 MG_DEBUG(("%lu %d %M:%hu -> %M:%hu", c->id, (int) pkt->raw.len, mg_print_ip4, &pkt->ip->src, mg_ntohs(pkt->tcp->sport), mg_print_ip4, &pkt->ip->dst, mg_ntohs(pkt->tcp->dport))); mg_hexdump(pkt->pay.ptr, pkt->pay.len); #endif s->tmiss = 0; // Reset missed keep-alive counter if (s->ttype == MIP_TTYPE_KEEPALIVE) // Advance keep-alive timer settmout(c, MIP_TTYPE_KEEPALIVE); // unless a former ACK timeout is pending read_conn(c, pkt); // Override timer with ACK timeout if needed } else if ((c = getpeer(ifp->mgr, pkt, true)) == NULL) { tx_tcp_pkt(ifp, pkt, TH_RST | TH_ACK, pkt->tcp->ack, NULL, 0); } else if (pkt->tcp->flags & TH_RST) { if (c->is_accepted) mg_error(c, "peer RST"); // RFC-1122 4.2.2.13 // ignore RST if not connected } else if (pkt->tcp->flags & TH_SYN) { // Use peer's source port as ISN, in order to recognise the handshake uint32_t isn = mg_htonl((uint32_t) mg_ntohs(pkt->tcp->sport)); tx_tcp_pkt(ifp, pkt, TH_SYN | TH_ACK, isn, NULL, 0); } else if (pkt->tcp->flags & TH_FIN) { tx_tcp_pkt(ifp, pkt, TH_FIN | TH_ACK, pkt->tcp->ack, NULL, 0); } else if (mg_htonl(pkt->tcp->ack) == mg_htons(pkt->tcp->sport) + 1U) { accept_conn(c, pkt); } else if (!c->is_accepted) { // no peer tx_tcp_pkt(ifp, pkt, TH_RST | TH_ACK, pkt->tcp->ack, NULL, 0); } else { // MG_VERBOSE(("dropped silently..")); } } static void rx_ip(struct mg_tcpip_if *ifp, struct pkt *pkt) { if (pkt->ip->frag & IP_MORE_FRAGS_MSK || pkt->ip->frag & IP_FRAG_OFFSET_MSK) { if (pkt->ip->proto == 17) pkt->udp = (struct udp *) (pkt->ip + 1); if (pkt->ip->proto == 6) pkt->tcp = (struct tcp *) (pkt->ip + 1); struct mg_connection *c = getpeer(ifp->mgr, pkt, false); if (c) mg_error(c, "Received fragmented packet"); } else if (pkt->ip->proto == 1) { pkt->icmp = (struct icmp *) (pkt->ip + 1); if (pkt->pay.len < sizeof(*pkt->icmp)) return; mkpay(pkt, pkt->icmp + 1); rx_icmp(ifp, pkt); } else if (pkt->ip->proto == 17) { pkt->udp = (struct udp *) (pkt->ip + 1); if (pkt->pay.len < sizeof(*pkt->udp)) return; mkpay(pkt, pkt->udp + 1); MG_VERBOSE(("UDP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src, mg_ntohs(pkt->udp->sport), mg_print_ip4, &pkt->ip->dst, mg_ntohs(pkt->udp->dport), (int) pkt->pay.len)); if (ifp->enable_dhcp_client && pkt->udp->dport == mg_htons(68)) { pkt->dhcp = (struct dhcp *) (pkt->udp + 1); mkpay(pkt, pkt->dhcp + 1); rx_dhcp_client(ifp, pkt); } else if (ifp->enable_dhcp_server && pkt->udp->dport == mg_htons(67)) { pkt->dhcp = (struct dhcp *) (pkt->udp + 1); mkpay(pkt, pkt->dhcp + 1); rx_dhcp_server(ifp, pkt); } else { rx_udp(ifp, pkt); } } else if (pkt->ip->proto == 6) { pkt->tcp = (struct tcp *) (pkt->ip + 1); if (pkt->pay.len < sizeof(*pkt->tcp)) return; mkpay(pkt, pkt->tcp + 1); uint16_t iplen = mg_ntohs(pkt->ip->len); uint16_t off = (uint16_t) (sizeof(*pkt->ip) + ((pkt->tcp->off >> 4) * 4U)); if (iplen >= off) pkt->pay.len = (size_t) (iplen - off); MG_VERBOSE(("TCP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src, mg_ntohs(pkt->tcp->sport), mg_print_ip4, &pkt->ip->dst, mg_ntohs(pkt->tcp->dport), (int) pkt->pay.len)); rx_tcp(ifp, pkt); } } static void rx_ip6(struct mg_tcpip_if *ifp, struct pkt *pkt) { // MG_DEBUG(("IP %d", (int) len)); if (pkt->ip6->proto == 1 || pkt->ip6->proto == 58) { pkt->icmp = (struct icmp *) (pkt->ip6 + 1); if (pkt->pay.len < sizeof(*pkt->icmp)) return; mkpay(pkt, pkt->icmp + 1); rx_icmp(ifp, pkt); } else if (pkt->ip6->proto == 17) { pkt->udp = (struct udp *) (pkt->ip6 + 1); if (pkt->pay.len < sizeof(*pkt->udp)) return; // MG_DEBUG((" UDP %u %u -> %u", len, mg_htons(udp->sport), // mg_htons(udp->dport))); mkpay(pkt, pkt->udp + 1); } } static void mg_tcpip_rx(struct mg_tcpip_if *ifp, void *buf, size_t len) { struct pkt pkt; memset(&pkt, 0, sizeof(pkt)); pkt.raw.ptr = (char *) buf; pkt.raw.len = len; pkt.eth = (struct eth *) buf; // mg_hexdump(buf, len > 16 ? 16: len); if (pkt.raw.len < sizeof(*pkt.eth)) return; // Truncated - runt? if (ifp->enable_mac_check && memcmp(pkt.eth->dst, ifp->mac, sizeof(pkt.eth->dst)) != 0 && memcmp(pkt.eth->dst, broadcast, sizeof(pkt.eth->dst)) != 0) return; if (ifp->enable_crc32_check && len > 4) { len -= 4; // TODO(scaprile): check on bigendian uint32_t crc = mg_crc32(0, (const char *) buf, len); if (memcmp((void *) ((size_t) buf + len), &crc, sizeof(crc))) return; } if (pkt.eth->type == mg_htons(0x806)) { pkt.arp = (struct arp *) (pkt.eth + 1); if (sizeof(*pkt.eth) + sizeof(*pkt.arp) > pkt.raw.len) return; // Truncated rx_arp(ifp, &pkt); } else if (pkt.eth->type == mg_htons(0x86dd)) { pkt.ip6 = (struct ip6 *) (pkt.eth + 1); if (pkt.raw.len < sizeof(*pkt.eth) + sizeof(*pkt.ip6)) return; // Truncated if ((pkt.ip6->ver >> 4) != 0x6) return; // Not IP mkpay(&pkt, pkt.ip6 + 1); rx_ip6(ifp, &pkt); } else if (pkt.eth->type == mg_htons(0x800)) { pkt.ip = (struct ip *) (pkt.eth + 1); if (pkt.raw.len < sizeof(*pkt.eth) + sizeof(*pkt.ip)) return; // Truncated // Truncate frame to what IP header tells us if ((size_t) mg_ntohs(pkt.ip->len) + sizeof(struct eth) < pkt.raw.len) { pkt.raw.len = (size_t) mg_ntohs(pkt.ip->len) + sizeof(struct eth); } if (pkt.raw.len < sizeof(*pkt.eth) + sizeof(*pkt.ip)) return; // Truncated if ((pkt.ip->ver >> 4) != 4) return; // Not IP mkpay(&pkt, pkt.ip + 1); rx_ip(ifp, &pkt); } else { MG_DEBUG(("Unknown eth type %x", mg_htons(pkt.eth->type))); mg_hexdump(buf, len >= 32 ? 32 : len); } } static void mg_tcpip_poll(struct mg_tcpip_if *ifp, uint64_t uptime_ms) { if (ifp == NULL || ifp->driver == NULL) return; bool expired_1000ms = mg_timer_expired(&ifp->timer_1000ms, 1000, uptime_ms); ifp->now = uptime_ms; // Handle physical interface up/down status if (expired_1000ms && ifp->driver->up) { bool up = ifp->driver->up(ifp); bool current = ifp->state != MG_TCPIP_STATE_DOWN; if (up != current) { ifp->state = up == false ? MG_TCPIP_STATE_DOWN : ifp->enable_dhcp_client ? MG_TCPIP_STATE_UP : MG_TCPIP_STATE_READY; if (!up && ifp->enable_dhcp_client) ifp->ip = 0; onstatechange(ifp); } } if (ifp->state == MG_TCPIP_STATE_DOWN) return; // DHCP RFC-2131 (4.4) if (ifp->state == MG_TCPIP_STATE_UP && expired_1000ms) { tx_dhcp_discover(ifp); // INIT (4.4.1) } else if (expired_1000ms && ifp->state == MG_TCPIP_STATE_READY && ifp->lease_expire > 0) { // BOUND / RENEWING / REBINDING if (ifp->now >= ifp->lease_expire) { ifp->state = MG_TCPIP_STATE_UP, ifp->ip = 0; // expired, release IP onstatechange(ifp); } else if (ifp->now + 30UL * 60UL * 1000UL > ifp->lease_expire && ((ifp->now / 1000) % 60) == 0) { // hack: 30 min before deadline, try to rebind (4.3.6) every min tx_dhcp_request_re(ifp, (uint8_t *) broadcast, ifp->ip, 0xffffffff); } // TODO(): Handle T1 (RENEWING) and T2 (REBINDING) (4.4.5) } // Read data from the network if (ifp->driver->rx != NULL) { // Polling driver. We must call it size_t len = ifp->driver->rx(ifp->recv_queue.buf, ifp->recv_queue.size, ifp); if (len > 0) { ifp->nrecv++; mg_tcpip_rx(ifp, ifp->recv_queue.buf, len); } } else { // Interrupt-based driver. Fills recv queue itself char *buf; size_t len = mg_queue_next(&ifp->recv_queue, &buf); if (len > 0) { mg_tcpip_rx(ifp, buf, len); mg_queue_del(&ifp->recv_queue, len); } } // Process timeouts for (struct mg_connection *c = ifp->mgr->conns; c != NULL; c = c->next) { if (c->is_udp || c->is_listening || c->is_resolving) continue; struct connstate *s = (struct connstate *) (c + 1); uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); if (uptime_ms > s->timer) { if (s->ttype == MIP_TTYPE_ACK) { MG_VERBOSE(("%lu ack %x %x", c->id, s->seq, s->ack)); tx_tcp(ifp, s->mac, rem_ip, TH_ACK, c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), "", 0); } else if (s->ttype == MIP_TTYPE_ARP) { mg_error(c, "ARP timeout"); } else if (s->ttype == MIP_TTYPE_SYN) { mg_error(c, "Connection timeout"); } else if (s->ttype == MIP_TTYPE_FIN) { c->is_closing = 1; continue; } else { if (s->tmiss++ > 2) { mg_error(c, "keepalive"); } else { MG_VERBOSE(("%lu keepalive", c->id)); tx_tcp(ifp, s->mac, rem_ip, TH_ACK, c->loc.port, c->rem.port, mg_htonl(s->seq - 1), mg_htonl(s->ack), "", 0); } } settmout(c, MIP_TTYPE_KEEPALIVE); } } } // This function executes in interrupt context, thus it should copy data // somewhere fast. Note that newlib's malloc is not thread safe, thus use // our lock-free queue with preallocated buffer to copy data and return asap void mg_tcpip_qwrite(void *buf, size_t len, struct mg_tcpip_if *ifp) { char *p; if (mg_queue_book(&ifp->recv_queue, &p, len) >= len) { memcpy(p, buf, len); mg_queue_add(&ifp->recv_queue, len); ifp->nrecv++; } else { ifp->ndrop++; } } void mg_tcpip_init(struct mg_mgr *mgr, struct mg_tcpip_if *ifp) { // If MAC address is not set, make a random one if (ifp->mac[0] == 0 && ifp->mac[1] == 0 && ifp->mac[2] == 0 && ifp->mac[3] == 0 && ifp->mac[4] == 0 && ifp->mac[5] == 0) { ifp->mac[0] = 0x02; // Locally administered, unicast mg_random(&ifp->mac[1], sizeof(ifp->mac) - 1); MG_INFO(("MAC not set. Generated random: %M", mg_print_mac, ifp->mac)); } if (ifp->driver->init && !ifp->driver->init(ifp)) { MG_ERROR(("driver init failed")); } else { size_t framesize = 1540; ifp->tx.ptr = (char *) calloc(1, framesize), ifp->tx.len = framesize; if (ifp->recv_queue.size == 0) ifp->recv_queue.size = ifp->driver->rx ? framesize : 8192; ifp->recv_queue.buf = (char *) calloc(1, ifp->recv_queue.size); ifp->timer_1000ms = mg_millis(); mgr->priv = ifp; ifp->mgr = mgr; ifp->mtu = MG_TCPIP_MTU_DEFAULT; mgr->extraconnsize = sizeof(struct connstate); if (ifp->ip == 0) ifp->enable_dhcp_client = true; memset(ifp->gwmac, 255, sizeof(ifp->gwmac)); // Set to broadcast mg_random(&ifp->eport, sizeof(ifp->eport)); // Random from 0 to 65535 ifp->eport |= MG_EPHEMERAL_PORT_BASE; // Random from // MG_EPHEMERAL_PORT_BASE to 65535 if (ifp->tx.ptr == NULL || ifp->recv_queue.buf == NULL) MG_ERROR(("OOM")); } } void mg_tcpip_free(struct mg_tcpip_if *ifp) { free(ifp->recv_queue.buf); free((char *) ifp->tx.ptr); } int mg_mkpipe(struct mg_mgr *m, mg_event_handler_t fn, void *d, bool udp) { (void) m, (void) fn, (void) d, (void) udp; MG_ERROR(("Not implemented")); return -1; } static void send_syn(struct mg_connection *c) { struct connstate *s = (struct connstate *) (c + 1); uint32_t isn = mg_htonl((uint32_t) mg_ntohs(c->loc.port)); struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); tx_tcp(ifp, s->mac, rem_ip, TH_SYN, c->loc.port, c->rem.port, isn, 0, NULL, 0); } void mg_connect_resolved(struct mg_connection *c) { struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); c->is_resolving = 0; if (ifp->eport < MG_EPHEMERAL_PORT_BASE) ifp->eport = MG_EPHEMERAL_PORT_BASE; memcpy(c->loc.ip, &ifp->ip, sizeof(uint32_t)); c->loc.port = mg_htons(ifp->eport++); MG_DEBUG(("%lu %M -> %M", c->id, mg_print_ip_port, &c->loc, mg_print_ip_port, &c->rem)); mg_call(c, MG_EV_RESOLVE, NULL); if (c->is_udp && (rem_ip == 0xffffffff || rem_ip == (ifp->ip | ~ifp->mask))) { struct connstate *s = (struct connstate *) (c + 1); memset(s->mac, 0xFF, sizeof(s->mac)); // global or local broadcast } else if (((rem_ip & ifp->mask) == (ifp->ip & ifp->mask))) { // If we're in the same LAN, fire an ARP lookup. MG_DEBUG(("%lu ARP lookup...", c->id)); arp_ask(ifp, rem_ip); settmout(c, MIP_TTYPE_ARP); c->is_arplooking = 1; c->is_connecting = 1; } else if ((*((uint8_t *) &rem_ip) & 0xE0) == 0xE0) { struct connstate *s = (struct connstate *) (c + 1); // 224 to 239, E0 to EF uint8_t mcastp[3] = {0x01, 0x00, 0x5E}; // multicast group memcpy(s->mac, mcastp, 3); memcpy(s->mac + 3, ((uint8_t *) &rem_ip) + 1, 3); // 23 LSb s->mac[3] &= 0x7F; } else { struct connstate *s = (struct connstate *) (c + 1); memcpy(s->mac, ifp->gwmac, sizeof(ifp->gwmac)); if (c->is_udp) { mg_call(c, MG_EV_CONNECT, NULL); } else { send_syn(c); settmout(c, MIP_TTYPE_SYN); c->is_connecting = 1; } } } bool mg_open_listener(struct mg_connection *c, const char *url) { c->loc.port = mg_htons(mg_url_port(url)); return true; } static void write_conn(struct mg_connection *c) { long len = c->is_tls ? mg_tls_send(c, c->send.buf, c->send.len) : mg_io_send(c, c->send.buf, c->send.len); if (len > 0) { mg_iobuf_del(&c->send, 0, (size_t) len); mg_call(c, MG_EV_WRITE, &len); } } static void init_closure(struct mg_connection *c) { struct connstate *s = (struct connstate *) (c + 1); if (c->is_udp == false && c->is_listening == false && c->is_connecting == false) { // For TCP conns, struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; // send TCP FIN uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); tx_tcp(ifp, s->mac, rem_ip, TH_FIN | TH_ACK, c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), NULL, 0); settmout(c, MIP_TTYPE_FIN); } } static void close_conn(struct mg_connection *c) { struct connstate *s = (struct connstate *) (c + 1); mg_iobuf_free(&s->raw); // For TLS connections, release raw data mg_close_conn(c); } static bool can_write(struct mg_connection *c) { return c->is_connecting == 0 && c->is_resolving == 0 && c->send.len > 0 && c->is_tls_hs == 0 && c->is_arplooking == 0; } void mg_mgr_poll(struct mg_mgr *mgr, int ms) { struct mg_connection *c, *tmp; uint64_t now = mg_millis(); mg_tcpip_poll((struct mg_tcpip_if *) mgr->priv, now); mg_timer_poll(&mgr->timers, now); for (c = mgr->conns; c != NULL; c = tmp) { tmp = c->next; struct connstate *s = (struct connstate *) (c + 1); mg_call(c, MG_EV_POLL, &now); MG_VERBOSE(("%lu .. %c%c%c%c%c", c->id, c->is_tls ? 'T' : 't', c->is_connecting ? 'C' : 'c', c->is_tls_hs ? 'H' : 'h', c->is_resolving ? 'R' : 'r', c->is_closing ? 'C' : 'c')); if (c->is_tls_hs) mg_tls_handshake(c); if (can_write(c)) write_conn(c); if (c->is_draining && c->send.len == 0 && s->ttype != MIP_TTYPE_FIN) init_closure(c); if (c->is_closing) close_conn(c); } (void) ms; } bool mg_send(struct mg_connection *c, const void *buf, size_t len) { struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv; bool res = false; uint32_t rem_ip; memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t)); if (ifp->ip == 0 || ifp->state != MG_TCPIP_STATE_READY) { mg_error(c, "net down"); } else if (c->is_udp) { struct connstate *s = (struct connstate *) (c + 1); len = trim_len(c, len); // Trimming length if necessary tx_udp(ifp, s->mac, ifp->ip, c->loc.port, rem_ip, c->rem.port, buf, len); res = true; } else { res = mg_iobuf_add(&c->send, c->send.len, buf, len); } return res; } #endif // MG_ENABLE_TCPIP #ifdef MG_ENABLE_LINES #line 1 "src/ota_dummy.c" #endif #if MG_OTA == MG_OTA_NONE bool mg_ota_begin(size_t new_firmware_size) { (void) new_firmware_size; return true; } bool mg_ota_write(const void *buf, size_t len) { (void) buf, (void) len; return true; } bool mg_ota_end(void) { return true; } bool mg_ota_commit(void) { return true; } bool mg_ota_rollback(void) { return true; } int mg_ota_status(int fw) { (void) fw; return 0; } uint32_t mg_ota_crc32(int fw) { (void) fw; return 0; } uint32_t mg_ota_timestamp(int fw) { (void) fw; return 0; } size_t mg_ota_size(int fw) { (void) fw; return 0; } #endif #ifdef MG_ENABLE_LINES #line 1 "src/ota_flash.c" #endif // This OTA implementation uses the internal flash API outlined in device.h // It splits flash into 2 equal partitions, and stores OTA status in the // last sector of the partition. #if MG_OTA == MG_OTA_FLASH #define MG_OTADATA_KEY 0xb07afed0 static char *s_addr; // Current address to write to static size_t s_size; // Firmware size to flash. In-progress indicator static uint32_t s_crc32; // Firmware checksum struct mg_otadata { uint32_t crc32, size, timestamp, status; }; bool mg_ota_begin(size_t new_firmware_size) { bool ok = false; if (s_size) { MG_ERROR(("OTA already in progress. Call mg_ota_end()")); } else { size_t half = mg_flash_size() / 2, max = half - mg_flash_sector_size(); s_crc32 = 0; s_addr = (char *) mg_flash_start() + half; MG_DEBUG(("Firmware %lu bytes, max %lu", s_size, max)); if (new_firmware_size < max) { ok = true; s_size = new_firmware_size; MG_INFO(("Starting OTA, firmware size %lu", s_size)); } else { MG_ERROR(("Firmware %lu is too big to fit %lu", new_firmware_size, max)); } } return ok; } bool mg_ota_write(const void *buf, size_t len) { bool ok = false; if (s_size == 0) { MG_ERROR(("OTA is not started, call mg_ota_begin()")); } else { size_t align = mg_flash_write_align(); size_t len_aligned_down = MG_ROUND_DOWN(len, align); if (len_aligned_down) ok = mg_flash_write(s_addr, buf, len_aligned_down); if (len_aligned_down < len) { size_t left = len - len_aligned_down; char tmp[align]; memset(tmp, 0xff, sizeof(tmp)); memcpy(tmp, (char *) buf + len_aligned_down, left); ok = mg_flash_write(s_addr + len_aligned_down, tmp, sizeof(tmp)); } s_crc32 = mg_crc32(s_crc32, (char *) buf, len); // Update CRC MG_DEBUG(("%#x %p %lu -> %d", s_addr - len, buf, len, ok)); s_addr += len; } return ok; } bool mg_ota_end(void) { char *base = (char *) mg_flash_start() + mg_flash_size() / 2; bool ok = false; if (s_size) { size_t size = s_addr - base; uint32_t crc32 = mg_crc32(0, base, s_size); if (size == s_size && crc32 == s_crc32) { uint32_t now = (uint32_t) (mg_now() / 1000); struct mg_otadata od = {crc32, size, now, MG_OTA_FIRST_BOOT}; uint32_t key = MG_OTADATA_KEY + (mg_flash_bank() == 2 ? 1 : 2); ok = mg_flash_save(NULL, key, &od, sizeof(od)); } MG_DEBUG(("CRC: %x/%x, size: %lu/%lu, status: %s", s_crc32, crc32, s_size, size, ok ? "ok" : "fail")); s_size = 0; if (ok) ok = mg_flash_swap_bank(); } MG_INFO(("Finishing OTA: %s", ok ? "ok" : "fail")); return ok; } static struct mg_otadata mg_otadata(int fw) { struct mg_otadata od = {}; int bank = mg_flash_bank(); uint32_t key = MG_OTADATA_KEY + 1; if ((fw == MG_FIRMWARE_CURRENT && bank == 2)) key++; if ((fw == MG_FIRMWARE_PREVIOUS && bank == 1)) key++; mg_flash_load(NULL, key, &od, sizeof(od)); // MG_DEBUG(("Loaded OTA data. fw %d, bank %d, key %p", fw, bank, key)); // mg_hexdump(&od, sizeof(od)); return od; } int mg_ota_status(int fw) { struct mg_otadata od = mg_otadata(fw); return od.status; } uint32_t mg_ota_crc32(int fw) { struct mg_otadata od = mg_otadata(fw); return od.crc32; } uint32_t mg_ota_timestamp(int fw) { struct mg_otadata od = mg_otadata(fw); return od.timestamp; } size_t mg_ota_size(int fw) { struct mg_otadata od = mg_otadata(fw); return od.size; } bool mg_ota_commit(void) { struct mg_otadata od = mg_otadata(MG_FIRMWARE_CURRENT); od.status = MG_OTA_COMMITTED; uint32_t key = MG_OTADATA_KEY + mg_flash_bank(); return mg_flash_save(NULL, key, &od, sizeof(od)); } bool mg_ota_rollback(void) { MG_DEBUG(("Rolling firmware back")); return mg_flash_swap_bank(); } #endif #ifdef MG_ENABLE_LINES #line 1 "src/printf.c" #endif size_t mg_queue_vprintf(struct mg_queue *q, const char *fmt, va_list *ap) { size_t len = mg_snprintf(NULL, 0, fmt, ap); char *buf; if (len == 0 || mg_queue_book(q, &buf, len + 1) < len + 1) { len = 0; // Nah. Not enough space } else { len = mg_vsnprintf((char *) buf, len + 1, fmt, ap); mg_queue_add(q, len); } return len; } size_t mg_queue_printf(struct mg_queue *q, const char *fmt, ...) { va_list ap; size_t len; va_start(ap, fmt); len = mg_queue_vprintf(q, fmt, &ap); va_end(ap); return len; } static void mg_pfn_iobuf_private(char ch, void *param, bool expand) { struct mg_iobuf *io = (struct mg_iobuf *) param; if (expand && io->len + 2 > io->size) mg_iobuf_resize(io, io->len + 2); if (io->len + 2 <= io->size) { io->buf[io->len++] = (uint8_t) ch; io->buf[io->len] = 0; } else if (io->len < io->size) { io->buf[io->len++] = 0; // Guarantee to 0-terminate } } static void mg_putchar_iobuf_static(char ch, void *param) { mg_pfn_iobuf_private(ch, param, false); } void mg_pfn_iobuf(char ch, void *param) { mg_pfn_iobuf_private(ch, param, true); } size_t mg_vsnprintf(char *buf, size_t len, const char *fmt, va_list *ap) { struct mg_iobuf io = {(uint8_t *) buf, len, 0, 0}; size_t n = mg_vxprintf(mg_putchar_iobuf_static, &io, fmt, ap); if (n < len) buf[n] = '\0'; return n; } size_t mg_snprintf(char *buf, size_t len, const char *fmt, ...) { va_list ap; size_t n; va_start(ap, fmt); n = mg_vsnprintf(buf, len, fmt, &ap); va_end(ap); return n; } char *mg_vmprintf(const char *fmt, va_list *ap) { struct mg_iobuf io = {0, 0, 0, 256}; mg_vxprintf(mg_pfn_iobuf, &io, fmt, ap); return (char *) io.buf; } char *mg_mprintf(const char *fmt, ...) { char *s; va_list ap; va_start(ap, fmt); s = mg_vmprintf(fmt, &ap); va_end(ap); return s; } void mg_pfn_stdout(char c, void *param) { putchar(c); (void) param; } static size_t print_ip4(void (*out)(char, void *), void *arg, uint8_t *p) { return mg_xprintf(out, arg, "%d.%d.%d.%d", p[0], p[1], p[2], p[3]); } static size_t print_ip6(void (*out)(char, void *), void *arg, uint16_t *p) { return mg_xprintf(out, arg, "[%x:%x:%x:%x:%x:%x:%x:%x]", mg_ntohs(p[0]), mg_ntohs(p[1]), mg_ntohs(p[2]), mg_ntohs(p[3]), mg_ntohs(p[4]), mg_ntohs(p[5]), mg_ntohs(p[6]), mg_ntohs(p[7])); } size_t mg_print_ip4(void (*out)(char, void *), void *arg, va_list *ap) { uint8_t *p = va_arg(*ap, uint8_t *); return print_ip4(out, arg, p); } size_t mg_print_ip6(void (*out)(char, void *), void *arg, va_list *ap) { uint16_t *p = va_arg(*ap, uint16_t *); return print_ip6(out, arg, p); } size_t mg_print_ip(void (*out)(char, void *), void *arg, va_list *ap) { struct mg_addr *addr = va_arg(*ap, struct mg_addr *); if (addr->is_ip6) return print_ip6(out, arg, (uint16_t *) addr->ip); return print_ip4(out, arg, (uint8_t *) &addr->ip); } size_t mg_print_ip_port(void (*out)(char, void *), void *arg, va_list *ap) { struct mg_addr *a = va_arg(*ap, struct mg_addr *); return mg_xprintf(out, arg, "%M:%hu", mg_print_ip, a, mg_ntohs(a->port)); } size_t mg_print_mac(void (*out)(char, void *), void *arg, va_list *ap) { uint8_t *p = va_arg(*ap, uint8_t *); return mg_xprintf(out, arg, "%02x:%02x:%02x:%02x:%02x:%02x", p[0], p[1], p[2], p[3], p[4], p[5]); } static char mg_esc(int c, bool esc) { const char *p, *esc1 = "\b\f\n\r\t\\\"", *esc2 = "bfnrt\\\""; for (p = esc ? esc1 : esc2; *p != '\0'; p++) { if (*p == c) return esc ? esc2[p - esc1] : esc1[p - esc2]; } return 0; } static char mg_escape(int c) { return mg_esc(c, true); } static size_t qcpy(void (*out)(char, void *), void *ptr, char *buf, size_t len) { size_t i = 0, extra = 0; for (i = 0; i < len && buf[i] != '\0'; i++) { char c = mg_escape(buf[i]); if (c) { out('\\', ptr), out(c, ptr), extra++; } else { out(buf[i], ptr); } } return i + extra; } static size_t bcpy(void (*out)(char, void *), void *arg, uint8_t *buf, size_t len) { size_t i, j, n = 0; const char *t = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; for (i = 0; i < len; i += 3) { uint8_t c1 = buf[i], c2 = i + 1 < len ? buf[i + 1] : 0, c3 = i + 2 < len ? buf[i + 2] : 0; char tmp[4] = {t[c1 >> 2], t[(c1 & 3) << 4 | (c2 >> 4)], '=', '='}; if (i + 1 < len) tmp[2] = t[(c2 & 15) << 2 | (c3 >> 6)]; if (i + 2 < len) tmp[3] = t[c3 & 63]; for (j = 0; j < sizeof(tmp) && tmp[j] != '\0'; j++) out(tmp[j], arg); n += j; } return n; } size_t mg_print_hex(void (*out)(char, void *), void *arg, va_list *ap) { size_t bl = (size_t) va_arg(*ap, int); uint8_t *p = va_arg(*ap, uint8_t *); const char *hex = "0123456789abcdef"; size_t j; for (j = 0; j < bl; j++) { out(hex[(p[j] >> 4) & 0x0F], arg); out(hex[p[j] & 0x0F], arg); } return 2 * bl; } size_t mg_print_base64(void (*out)(char, void *), void *arg, va_list *ap) { size_t len = (size_t) va_arg(*ap, int); uint8_t *buf = va_arg(*ap, uint8_t *); return bcpy(out, arg, buf, len); } size_t mg_print_esc(void (*out)(char, void *), void *arg, va_list *ap) { size_t len = (size_t) va_arg(*ap, int); char *p = va_arg(*ap, char *); if (len == 0) len = p == NULL ? 0 : strlen(p); return qcpy(out, arg, p, len); } #ifdef MG_ENABLE_LINES #line 1 "src/queue.c" #endif #if defined(__GNUC__) || defined(__clang__) #define MG_MEMORY_BARRIER() __sync_synchronize() #elif defined(_MSC_VER) && _MSC_VER >= 1700 #define MG_MEMORY_BARRIER() MemoryBarrier() #elif !defined(MG_MEMORY_BARRIER) #define MG_MEMORY_BARRIER() #endif // Every message in a queue is prepended by a 32-bit message length (ML). // If ML is 0, then it is the end, and reader must wrap to the beginning. // // Queue when q->tail <= q->head: // |----- free -----| ML | message1 | ML | message2 | ----- free ------| // ^ ^ ^ ^ // buf tail head len // // Queue when q->tail > q->head: // | ML | message2 |----- free ------| ML | message1 | 0 |---- free ----| // ^ ^ ^ ^ // buf head tail len void mg_queue_init(struct mg_queue *q, char *buf, size_t size) { q->size = size; q->buf = buf; q->head = q->tail = 0; } static size_t mg_queue_read_len(struct mg_queue *q) { uint32_t n = 0; MG_MEMORY_BARRIER(); memcpy(&n, q->buf + q->tail, sizeof(n)); assert(q->tail + n + sizeof(n) <= q->size); return n; } static void mg_queue_write_len(struct mg_queue *q, size_t len) { uint32_t n = (uint32_t) len; memcpy(q->buf + q->head, &n, sizeof(n)); MG_MEMORY_BARRIER(); } size_t mg_queue_book(struct mg_queue *q, char **buf, size_t len) { size_t space = 0, hs = sizeof(uint32_t) * 2; // *2 is for the 0 marker if (q->head >= q->tail && q->head + len + hs <= q->size) { space = q->size - q->head - hs; // There is enough space } else if (q->head >= q->tail && q->tail > hs) { mg_queue_write_len(q, 0); // Not enough space ahead q->head = 0; // Wrap head to the beginning } if (q->head + hs + len < q->tail) space = q->tail - q->head - hs; if (buf != NULL) *buf = q->buf + q->head + sizeof(uint32_t); return space; } size_t mg_queue_next(struct mg_queue *q, char **buf) { size_t len = 0; if (q->tail != q->head) { len = mg_queue_read_len(q); if (len == 0) { // Zero (head wrapped) ? q->tail = 0; // Reset tail to the start if (q->head > q->tail) len = mg_queue_read_len(q); // Read again } } if (buf != NULL) *buf = q->buf + q->tail + sizeof(uint32_t); assert(q->tail + len <= q->size); return len; } void mg_queue_add(struct mg_queue *q, size_t len) { assert(len > 0); mg_queue_write_len(q, len); assert(q->head + sizeof(uint32_t) * 2 + len <= q->size); q->head += len + sizeof(uint32_t); } void mg_queue_del(struct mg_queue *q, size_t len) { q->tail += len + sizeof(uint32_t); assert(q->tail + sizeof(uint32_t) <= q->size); } #ifdef MG_ENABLE_LINES #line 1 "src/rpc.c" #endif void mg_rpc_add(struct mg_rpc **head, struct mg_str method, void (*fn)(struct mg_rpc_req *), void *fn_data) { struct mg_rpc *rpc = (struct mg_rpc *) calloc(1, sizeof(*rpc)); if (rpc != NULL) { rpc->method = mg_strdup(method), rpc->fn = fn, rpc->fn_data = fn_data; rpc->next = *head, *head = rpc; } } void mg_rpc_del(struct mg_rpc **head, void (*fn)(struct mg_rpc_req *)) { struct mg_rpc *r; while ((r = *head) != NULL) { if (r->fn == fn || fn == NULL) { *head = r->next; free((void *) r->method.ptr); free(r); } else { head = &(*head)->next; } } } static void mg_rpc_call(struct mg_rpc_req *r, struct mg_str method) { struct mg_rpc *h = r->head == NULL ? NULL : *r->head; while (h != NULL && !mg_match(method, h->method, NULL)) h = h->next; if (h != NULL) { r->rpc = h; h->fn(r); } else { mg_rpc_err(r, -32601, "\"%.*s not found\"", (int) method.len, method.ptr); } } void mg_rpc_process(struct mg_rpc_req *r) { int len, off = mg_json_get(r->frame, "$.method", &len); if (off > 0 && r->frame.ptr[off] == '"') { struct mg_str method = mg_str_n(&r->frame.ptr[off + 1], (size_t) len - 2); mg_rpc_call(r, method); } else if ((off = mg_json_get(r->frame, "$.result", &len)) > 0 || (off = mg_json_get(r->frame, "$.error", &len)) > 0) { mg_rpc_call(r, mg_str("")); // JSON response! call "" method handler } else { mg_rpc_err(r, -32700, "%m", mg_print_esc, (int) r->frame.len, r->frame.ptr); // Invalid } } void mg_rpc_vok(struct mg_rpc_req *r, const char *fmt, va_list *ap) { int len, off = mg_json_get(r->frame, "$.id", &len); if (off > 0) { mg_xprintf(r->pfn, r->pfn_data, "{%m:%.*s,%m:", mg_print_esc, 0, "id", len, &r->frame.ptr[off], mg_print_esc, 0, "result"); mg_vxprintf(r->pfn, r->pfn_data, fmt == NULL ? "null" : fmt, ap); mg_xprintf(r->pfn, r->pfn_data, "}"); } } void mg_rpc_ok(struct mg_rpc_req *r, const char *fmt, ...) { va_list ap; va_start(ap, fmt); mg_rpc_vok(r, fmt, &ap); va_end(ap); } void mg_rpc_verr(struct mg_rpc_req *r, int code, const char *fmt, va_list *ap) { int len, off = mg_json_get(r->frame, "$.id", &len); mg_xprintf(r->pfn, r->pfn_data, "{"); if (off > 0) { mg_xprintf(r->pfn, r->pfn_data, "%m:%.*s,", mg_print_esc, 0, "id", len, &r->frame.ptr[off]); } mg_xprintf(r->pfn, r->pfn_data, "%m:{%m:%d,%m:", mg_print_esc, 0, "error", mg_print_esc, 0, "code", code, mg_print_esc, 0, "message"); mg_vxprintf(r->pfn, r->pfn_data, fmt == NULL ? "null" : fmt, ap); mg_xprintf(r->pfn, r->pfn_data, "}}"); } void mg_rpc_err(struct mg_rpc_req *r, int code, const char *fmt, ...) { va_list ap; va_start(ap, fmt); mg_rpc_verr(r, code, fmt, &ap); va_end(ap); } static size_t print_methods(mg_pfn_t pfn, void *pfn_data, va_list *ap) { struct mg_rpc *h, **head = (struct mg_rpc **) va_arg(*ap, void **); size_t len = 0; for (h = *head; h != NULL; h = h->next) { if (h->method.len == 0) continue; // Ignore response handler len += mg_xprintf(pfn, pfn_data, "%s%m", h == *head ? "" : ",", mg_print_esc, (int) h->method.len, h->method.ptr); } return len; } void mg_rpc_list(struct mg_rpc_req *r) { mg_rpc_ok(r, "[%M]", print_methods, r->head); } #ifdef MG_ENABLE_LINES #line 1 "src/sha1.c" #endif /* Copyright(c) By Steve Reid */ /* 100% Public Domain */ union char64long16 { unsigned char c[64]; uint32_t l[16]; }; #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) static uint32_t blk0(union char64long16 *block, int i) { if (MG_BIG_ENDIAN) { } else { block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | (rol(block->l[i], 8) & 0x00FF00FF); } return block->l[i]; } /* Avoid redefine warning (ARM /usr/include/sys/ucontext.h define R0~R4) */ #undef blk #undef R0 #undef R1 #undef R2 #undef R3 #undef R4 #define blk(i) \ (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ block->l[(i + 8) & 15] ^ \ block->l[(i + 2) & 15] ^ block->l[i & 15], \ 1)) #define R0(v, w, x, y, z, i) \ z += ((w & (x ^ y)) ^ y) + blk0(block, i) + 0x5A827999 + rol(v, 5); \ w = rol(w, 30); #define R1(v, w, x, y, z, i) \ z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \ w = rol(w, 30); #define R2(v, w, x, y, z, i) \ z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \ w = rol(w, 30); #define R3(v, w, x, y, z, i) \ z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \ w = rol(w, 30); #define R4(v, w, x, y, z, i) \ z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \ w = rol(w, 30); static void mg_sha1_transform(uint32_t state[5], const unsigned char *buffer) { uint32_t a, b, c, d, e; union char64long16 block[1]; memcpy(block, buffer, 64); a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; R0(a, b, c, d, e, 0); R0(e, a, b, c, d, 1); R0(d, e, a, b, c, 2); R0(c, d, e, a, b, 3); R0(b, c, d, e, a, 4); R0(a, b, c, d, e, 5); R0(e, a, b, c, d, 6); R0(d, e, a, b, c, 7); R0(c, d, e, a, b, 8); R0(b, c, d, e, a, 9); R0(a, b, c, d, e, 10); R0(e, a, b, c, d, 11); R0(d, e, a, b, c, 12); R0(c, d, e, a, b, 13); R0(b, c, d, e, a, 14); R0(a, b, c, d, e, 15); R1(e, a, b, c, d, 16); R1(d, e, a, b, c, 17); R1(c, d, e, a, b, 18); R1(b, c, d, e, a, 19); R2(a, b, c, d, e, 20); R2(e, a, b, c, d, 21); R2(d, e, a, b, c, 22); R2(c, d, e, a, b, 23); R2(b, c, d, e, a, 24); R2(a, b, c, d, e, 25); R2(e, a, b, c, d, 26); R2(d, e, a, b, c, 27); R2(c, d, e, a, b, 28); R2(b, c, d, e, a, 29); R2(a, b, c, d, e, 30); R2(e, a, b, c, d, 31); R2(d, e, a, b, c, 32); R2(c, d, e, a, b, 33); R2(b, c, d, e, a, 34); R2(a, b, c, d, e, 35); R2(e, a, b, c, d, 36); R2(d, e, a, b, c, 37); R2(c, d, e, a, b, 38); R2(b, c, d, e, a, 39); R3(a, b, c, d, e, 40); R3(e, a, b, c, d, 41); R3(d, e, a, b, c, 42); R3(c, d, e, a, b, 43); R3(b, c, d, e, a, 44); R3(a, b, c, d, e, 45); R3(e, a, b, c, d, 46); R3(d, e, a, b, c, 47); R3(c, d, e, a, b, 48); R3(b, c, d, e, a, 49); R3(a, b, c, d, e, 50); R3(e, a, b, c, d, 51); R3(d, e, a, b, c, 52); R3(c, d, e, a, b, 53); R3(b, c, d, e, a, 54); R3(a, b, c, d, e, 55); R3(e, a, b, c, d, 56); R3(d, e, a, b, c, 57); R3(c, d, e, a, b, 58); R3(b, c, d, e, a, 59); R4(a, b, c, d, e, 60); R4(e, a, b, c, d, 61); R4(d, e, a, b, c, 62); R4(c, d, e, a, b, 63); R4(b, c, d, e, a, 64); R4(a, b, c, d, e, 65); R4(e, a, b, c, d, 66); R4(d, e, a, b, c, 67); R4(c, d, e, a, b, 68); R4(b, c, d, e, a, 69); R4(a, b, c, d, e, 70); R4(e, a, b, c, d, 71); R4(d, e, a, b, c, 72); R4(c, d, e, a, b, 73); R4(b, c, d, e, a, 74); R4(a, b, c, d, e, 75); R4(e, a, b, c, d, 76); R4(d, e, a, b, c, 77); R4(c, d, e, a, b, 78); R4(b, c, d, e, a, 79); state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Erase working structures. The order of operations is important, * used to ensure that compiler doesn't optimize those out. */ memset(block, 0, sizeof(block)); a = b = c = d = e = 0; (void) a; (void) b; (void) c; (void) d; (void) e; } void mg_sha1_init(mg_sha1_ctx *context) { context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } void mg_sha1_update(mg_sha1_ctx *context, const unsigned char *data, size_t len) { size_t i, j; j = context->count[0]; if ((context->count[0] += (uint32_t) len << 3) < j) context->count[1]++; context->count[1] += (uint32_t) (len >> 29); j = (j >> 3) & 63; if ((j + len) > 63) { memcpy(&context->buffer[j], data, (i = 64 - j)); mg_sha1_transform(context->state, context->buffer); for (; i + 63 < len; i += 64) { mg_sha1_transform(context->state, &data[i]); } j = 0; } else i = 0; memcpy(&context->buffer[j], &data[i], len - i); } void mg_sha1_final(unsigned char digest[20], mg_sha1_ctx *context) { unsigned i; unsigned char finalcount[8], c; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char) ((context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); } c = 0200; mg_sha1_update(context, &c, 1); while ((context->count[0] & 504) != 448) { c = 0000; mg_sha1_update(context, &c, 1); } mg_sha1_update(context, finalcount, 8); for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } memset(context, '\0', sizeof(*context)); memset(&finalcount, '\0', sizeof(finalcount)); } #ifdef MG_ENABLE_LINES #line 1 "src/sntp.c" #endif #define SNTP_TIME_OFFSET 2208988800U // (1970 - 1900) in seconds #define SNTP_MAX_FRAC 4294967295.0 // 2 ** 32 - 1 static int64_t gettimestamp(const uint32_t *data) { uint32_t sec = mg_ntohl(data[0]), frac = mg_ntohl(data[1]); if (sec) sec -= SNTP_TIME_OFFSET; return ((int64_t) sec) * 1000 + (int64_t) (frac / SNTP_MAX_FRAC * 1000.0); } int64_t mg_sntp_parse(const unsigned char *buf, size_t len) { int64_t res = -1; int mode = len > 0 ? buf[0] & 7 : 0; int version = len > 0 ? (buf[0] >> 3) & 7 : 0; if (len < 48) { MG_ERROR(("%s", "corrupt packet")); } else if (mode != 4 && mode != 5) { MG_ERROR(("%s", "not a server reply")); } else if (buf[1] == 0) { MG_ERROR(("%s", "server sent a kiss of death")); } else if (version == 4 || version == 3) { // int64_t ref = gettimestamp((uint32_t *) &buf[16]); int64_t t0 = gettimestamp((uint32_t *) &buf[24]); int64_t t1 = gettimestamp((uint32_t *) &buf[32]); int64_t t2 = gettimestamp((uint32_t *) &buf[40]); int64_t t3 = (int64_t) mg_millis(); int64_t delta = (t3 - t0) - (t2 - t1); MG_VERBOSE(("%lld %lld %lld %lld delta:%lld", t0, t1, t2, t3, delta)); res = t2 + delta / 2; } else { MG_ERROR(("unexpected version: %d", version)); } return res; } static void sntp_cb(struct mg_connection *c, int ev, void *evd, void *fnd) { if (ev == MG_EV_READ) { int64_t milliseconds = mg_sntp_parse(c->recv.buf, c->recv.len); if (milliseconds > 0) { MG_INFO(("%lu got time: %lld ms from epoch", c->id, milliseconds)); mg_call(c, MG_EV_SNTP_TIME, (uint64_t *) &milliseconds); MG_VERBOSE(("%u.%u", (unsigned) (milliseconds / 1000), (unsigned) (milliseconds % 1000))); } mg_iobuf_del(&c->recv, 0, c->recv.len); // Free receive buffer } else if (ev == MG_EV_CONNECT) { mg_sntp_request(c); } else if (ev == MG_EV_CLOSE) { } (void) fnd; (void) evd; } void mg_sntp_request(struct mg_connection *c) { if (c->is_resolving) { MG_ERROR(("%lu wait until resolved", c->id)); } else { int64_t now = (int64_t) mg_millis(); // Use int64_t, for vc98 uint8_t buf[48] = {0}; uint32_t *t = (uint32_t *) &buf[40]; double frac = ((double) (now % 1000)) / 1000.0 * SNTP_MAX_FRAC; buf[0] = (0 << 6) | (4 << 3) | 3; t[0] = mg_htonl((uint32_t) (now / 1000) + SNTP_TIME_OFFSET); t[1] = mg_htonl((uint32_t) frac); mg_send(c, buf, sizeof(buf)); } } struct mg_connection *mg_sntp_connect(struct mg_mgr *mgr, const char *url, mg_event_handler_t fn, void *fnd) { struct mg_connection *c = NULL; if (url == NULL) url = "udp://time.google.com:123"; if ((c = mg_connect(mgr, url, fn, fnd)) != NULL) c->pfn = sntp_cb; return c; } #ifdef MG_ENABLE_LINES #line 1 "src/sock.c" #endif #if MG_ENABLE_SOCKET #ifndef closesocket #define closesocket(x) close(x) #endif #define FD(c_) ((MG_SOCKET_TYPE) (size_t) (c_)->fd) #define S2PTR(s_) ((void *) (size_t) (s_)) #ifndef MSG_NONBLOCKING #define MSG_NONBLOCKING 0 #endif #ifndef AF_INET6 #define AF_INET6 10 #endif #ifndef MG_SOCK_ERR #define MG_SOCK_ERR(errcode) ((errcode) < 0 ? errno : 0) #endif #ifndef MG_SOCK_INTR #define MG_SOCK_INTR(fd) (fd == MG_INVALID_SOCKET && MG_SOCK_ERR(-1) == EINTR) #endif #ifndef MG_SOCK_PENDING #define MG_SOCK_PENDING(errcode) \ (((errcode) < 0) && (errno == EINPROGRESS || errno == EWOULDBLOCK)) #endif #ifndef MG_SOCK_RESET #define MG_SOCK_RESET(errcode) \ (((errcode) < 0) && (errno == EPIPE || errno == ECONNRESET)) #endif union usa { struct sockaddr sa; struct sockaddr_in sin; #if MG_ENABLE_IPV6 struct sockaddr_in6 sin6; #endif }; static socklen_t tousa(struct mg_addr *a, union usa *usa) { socklen_t len = sizeof(usa->sin); memset(usa, 0, sizeof(*usa)); usa->sin.sin_family = AF_INET; usa->sin.sin_port = a->port; memcpy(&usa->sin.sin_addr, a->ip, sizeof(uint32_t)); #if MG_ENABLE_IPV6 if (a->is_ip6) { usa->sin.sin_family = AF_INET6; usa->sin6.sin6_port = a->port; usa->sin6.sin6_scope_id = a->scope_id; memcpy(&usa->sin6.sin6_addr, a->ip, sizeof(a->ip)); len = sizeof(usa->sin6); } #endif return len; } static void tomgaddr(union usa *usa, struct mg_addr *a, bool is_ip6) { a->is_ip6 = is_ip6; a->port = usa->sin.sin_port; memcpy(&a->ip, &usa->sin.sin_addr, sizeof(uint32_t)); #if MG_ENABLE_IPV6 if (is_ip6) { memcpy(a->ip, &usa->sin6.sin6_addr, sizeof(a->ip)); a->port = usa->sin6.sin6_port; a->scope_id = (uint8_t) usa->sin6.sin6_scope_id; } #endif } static void setlocaddr(MG_SOCKET_TYPE fd, struct mg_addr *addr) { union usa usa; socklen_t n = sizeof(usa); if (getsockname(fd, &usa.sa, &n) == 0) { tomgaddr(&usa, addr, n != sizeof(usa.sin)); } } static void iolog(struct mg_connection *c, char *buf, long n, bool r) { if (n == MG_IO_WAIT) { // Do nothing } else if (n <= 0) { c->is_closing = 1; // Termination. Don't call mg_error(): #1529 } else if (n > 0) { if (c->is_hexdumping) { union usa usa; socklen_t slen = sizeof(usa.sin); if (getsockname(FD(c), &usa.sa, &slen) < 0) (void) 0; // Ignore result MG_INFO(("\n-- %lu %M %s %M %ld", c->id, mg_print_ip_port, &c->loc, r ? "<-" : "->", mg_print_ip_port, &c->rem, n)); mg_hexdump(buf, (size_t) n); } if (r) { c->recv.len += (size_t) n; mg_call(c, MG_EV_READ, &n); } else { mg_iobuf_del(&c->send, 0, (size_t) n); // if (c->send.len == 0) mg_iobuf_resize(&c->send, 0); if (c->send.len == 0) { MG_EPOLL_MOD(c, 0); } mg_call(c, MG_EV_WRITE, &n); } } } long mg_io_send(struct mg_connection *c, const void *buf, size_t len) { long n; if (c->is_udp) { union usa usa; socklen_t slen = tousa(&c->rem, &usa); n = sendto(FD(c), (char *) buf, len, 0, &usa.sa, slen); if (n > 0) setlocaddr(FD(c), &c->loc); } else { n = send(FD(c), (char *) buf, len, MSG_NONBLOCKING); } if (MG_SOCK_PENDING(n)) return MG_IO_WAIT; if (MG_SOCK_RESET(n)) return MG_IO_RESET; if (n <= 0) return MG_IO_ERR; return n; } bool mg_send(struct mg_connection *c, const void *buf, size_t len) { if (c->is_udp) { long n = mg_io_send(c, buf, len); MG_DEBUG(("%lu %ld %d:%d %ld err %d", c->id, c->fd, (int) c->send.len, (int) c->recv.len, n, MG_SOCK_ERR(n))); iolog(c, (char *) buf, n, false); return n > 0; } else { return mg_iobuf_add(&c->send, c->send.len, buf, len); } } static void mg_set_non_blocking_mode(MG_SOCKET_TYPE fd) { #if defined(MG_CUSTOM_NONBLOCK) MG_CUSTOM_NONBLOCK(fd); #elif MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK unsigned long on = 1; ioctlsocket(fd, FIONBIO, &on); #elif MG_ENABLE_RL unsigned long on = 1; ioctlsocket(fd, FIONBIO, &on); #elif MG_ENABLE_FREERTOS_TCP const BaseType_t off = 0; if (setsockopt(fd, 0, FREERTOS_SO_RCVTIMEO, &off, sizeof(off)) != 0) (void) 0; if (setsockopt(fd, 0, FREERTOS_SO_SNDTIMEO, &off, sizeof(off)) != 0) (void) 0; #elif MG_ENABLE_LWIP lwip_fcntl(fd, F_SETFL, O_NONBLOCK); #elif MG_ARCH == MG_ARCH_AZURERTOS fcntl(fd, F_SETFL, O_NONBLOCK); #elif MG_ARCH == MG_ARCH_TIRTOS int val = 0; setsockopt(fd, SOL_SOCKET, SO_BLOCKING, &val, sizeof(val)); // SPRU524J section 3.3.3 page 63, SO_SNDLOWAT int sz = sizeof(val); getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &val, &sz); val /= 2; // set send low-water mark at half send buffer size setsockopt(fd, SOL_SOCKET, SO_SNDLOWAT, &val, sizeof(val)); #else fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK); // Non-blocking mode fcntl(fd, F_SETFD, FD_CLOEXEC); // Set close-on-exec #endif } bool mg_open_listener(struct mg_connection *c, const char *url) { MG_SOCKET_TYPE fd = MG_INVALID_SOCKET; bool success = false; c->loc.port = mg_htons(mg_url_port(url)); if (!mg_aton(mg_url_host(url), &c->loc)) { MG_ERROR(("invalid listening URL: %s", url)); } else { union usa usa; socklen_t slen = tousa(&c->loc, &usa); int rc, on = 1, af = c->loc.is_ip6 ? AF_INET6 : AF_INET; int type = strncmp(url, "udp:", 4) == 0 ? SOCK_DGRAM : SOCK_STREAM; int proto = type == SOCK_DGRAM ? IPPROTO_UDP : IPPROTO_TCP; (void) on; if ((fd = socket(af, type, proto)) == MG_INVALID_SOCKET) { MG_ERROR(("socket: %d", MG_SOCK_ERR(-1))); #if defined(SO_EXCLUSIVEADDRUSE) } else if ((rc = setsockopt(fd, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (char *) &on, sizeof(on))) != 0) { // "Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE" MG_ERROR(("setsockopt(SO_EXCLUSIVEADDRUSE): %d %d", on, MG_SOCK_ERR(rc))); #elif defined(SO_REUSEADDR) && (!defined(LWIP_SOCKET) || SO_REUSE) } else if ((rc = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on))) != 0) { // 1. SO_REUSEADDR semantics on UNIX and Windows is different. On // Windows, SO_REUSEADDR allows to bind a socket to a port without error // even if the port is already open by another program. This is not the // behavior SO_REUSEADDR was designed for, and leads to hard-to-track // failure scenarios. // // 2. For LWIP, SO_REUSEADDR should be explicitly enabled by defining // SO_REUSE = 1 in lwipopts.h, otherwise the code below will compile but // won't work! (setsockopt will return EINVAL) MG_ERROR(("setsockopt(SO_REUSEADDR): %d", MG_SOCK_ERR(rc))); #endif #if MG_IPV6_V6ONLY // Bind only to the V6 address, not V4 address on this port } else if (c->loc.is_ip6 && (rc = setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &on, sizeof(on))) != 0) { // See #2089. Allow to bind v4 and v6 sockets on the same port MG_ERROR(("setsockopt(IPV6_V6ONLY): %d", MG_SOCK_ERR(rc))); #endif } else if ((rc = bind(fd, &usa.sa, slen)) != 0) { MG_ERROR(("bind: %d", MG_SOCK_ERR(rc))); } else if ((type == SOCK_STREAM && (rc = listen(fd, MG_SOCK_LISTEN_BACKLOG_SIZE)) != 0)) { // NOTE(lsm): FreeRTOS uses backlog value as a connection limit // In case port was set to 0, get the real port number MG_ERROR(("listen: %d", MG_SOCK_ERR(rc))); } else { setlocaddr(fd, &c->loc); mg_set_non_blocking_mode(fd); c->fd = S2PTR(fd); MG_EPOLL_ADD(c); success = true; } } if (success == false && fd != MG_INVALID_SOCKET) closesocket(fd); return success; } long mg_io_recv(struct mg_connection *c, void *buf, size_t len) { long n = 0; if (c->is_udp) { union usa usa; socklen_t slen = tousa(&c->rem, &usa); n = recvfrom(FD(c), (char *) buf, len, 0, &usa.sa, &slen); if (n > 0) tomgaddr(&usa, &c->rem, slen != sizeof(usa.sin)); } else { n = recv(FD(c), (char *) buf, len, MSG_NONBLOCKING); } if (MG_SOCK_PENDING(n)) return MG_IO_WAIT; if (MG_SOCK_RESET(n)) return MG_IO_RESET; if (n <= 0) return MG_IO_ERR; return n; } // NOTE(lsm): do only one iteration of reads, cause some systems // (e.g. FreeRTOS stack) return 0 instead of -1/EWOULDBLOCK when no data static void read_conn(struct mg_connection *c) { long n = -1; if (c->recv.len >= MG_MAX_RECV_SIZE) { mg_error(c, "max_recv_buf_size reached"); } else if (c->recv.size <= c->recv.len && !mg_iobuf_resize(&c->recv, c->recv.size + MG_IO_SIZE)) { mg_error(c, "oom"); } else { char *buf = (char *) &c->recv.buf[c->recv.len]; size_t len = c->recv.size - c->recv.len; n = c->is_tls ? mg_tls_recv(c, buf, len) : mg_io_recv(c, buf, len); MG_DEBUG(("%lu %ld snd %ld/%ld rcv %ld/%ld n=%ld err=%d", c->id, c->fd, (long) c->send.len, (long) c->send.size, (long) c->recv.len, (long) c->recv.size, n, MG_SOCK_ERR(n))); iolog(c, buf, n, true); } } static void write_conn(struct mg_connection *c) { char *buf = (char *) c->send.buf; size_t len = c->send.len; long n = c->is_tls ? mg_tls_send(c, buf, len) : mg_io_send(c, buf, len); MG_DEBUG(("%lu %ld snd %ld/%ld rcv %ld/%ld n=%ld err=%d", c->id, c->fd, (long) c->send.len, (long) c->send.size, (long) c->recv.len, (long) c->recv.size, n, MG_SOCK_ERR(n))); iolog(c, buf, n, false); } static void close_conn(struct mg_connection *c) { if (FD(c) != MG_INVALID_SOCKET) { #if MG_ENABLE_EPOLL epoll_ctl(c->mgr->epoll_fd, EPOLL_CTL_DEL, FD(c), NULL); #endif closesocket(FD(c)); #if MG_ENABLE_FREERTOS_TCP FreeRTOS_FD_CLR(c->fd, c->mgr->ss, eSELECT_ALL); #endif } mg_close_conn(c); } static void connect_conn(struct mg_connection *c) { union usa usa; socklen_t n = sizeof(usa); // Use getpeername() to test whether we have connected if (getpeername(FD(c), &usa.sa, &n) == 0) { c->is_connecting = 0; mg_call(c, MG_EV_CONNECT, NULL); MG_EPOLL_MOD(c, 0); if (c->is_tls_hs) mg_tls_handshake(c); } else { mg_error(c, "socket error"); } } static void setsockopts(struct mg_connection *c) { #if MG_ENABLE_FREERTOS_TCP || MG_ARCH == MG_ARCH_AZURERTOS || \ MG_ARCH == MG_ARCH_TIRTOS (void) c; #else int on = 1; #if !defined(SOL_TCP) #define SOL_TCP IPPROTO_TCP #endif if (setsockopt(FD(c), SOL_TCP, TCP_NODELAY, (char *) &on, sizeof(on)) != 0) (void) 0; if (setsockopt(FD(c), SOL_SOCKET, SO_KEEPALIVE, (char *) &on, sizeof(on)) != 0) (void) 0; #endif } void mg_connect_resolved(struct mg_connection *c) { int type = c->is_udp ? SOCK_DGRAM : SOCK_STREAM; int rc, af = c->rem.is_ip6 ? AF_INET6 : AF_INET; // c->rem has resolved IP c->fd = S2PTR(socket(af, type, 0)); // Create outbound socket c->is_resolving = 0; // Clear resolving flag if (FD(c) == MG_INVALID_SOCKET) { mg_error(c, "socket(): %d", MG_SOCK_ERR(-1)); } else if (c->is_udp) { MG_EPOLL_ADD(c); #if MG_ARCH == MG_ARCH_TIRTOS union usa usa; // TI-RTOS NDK requires binding to receive on UDP sockets socklen_t slen = tousa(&c->loc, &usa); if ((rc = bind(c->fd, &usa.sa, slen)) != 0) MG_ERROR(("bind: %d", MG_SOCK_ERR(rc))); #endif mg_call(c, MG_EV_RESOLVE, NULL); mg_call(c, MG_EV_CONNECT, NULL); } else { union usa usa; socklen_t slen = tousa(&c->rem, &usa); mg_set_non_blocking_mode(FD(c)); setsockopts(c); MG_EPOLL_ADD(c); mg_call(c, MG_EV_RESOLVE, NULL); rc = connect(FD(c), &usa.sa, slen); // Attempt to connect if (rc == 0) { // Success mg_call(c, MG_EV_CONNECT, NULL); // Send MG_EV_CONNECT to the user } else if (MG_SOCK_PENDING(rc)) { // Need to wait for TCP handshake MG_DEBUG(("%lu %ld -> %M pend", c->id, c->fd, mg_print_ip_port, &c->rem)); c->is_connecting = 1; } else { mg_error(c, "connect: %d", MG_SOCK_ERR(rc)); } } } static MG_SOCKET_TYPE raccept(MG_SOCKET_TYPE sock, union usa *usa, socklen_t *len) { MG_SOCKET_TYPE fd = MG_INVALID_SOCKET; do { memset(usa, 0, sizeof(*usa)); fd = accept(sock, &usa->sa, len); } while (MG_SOCK_INTR(fd)); return fd; } static void accept_conn(struct mg_mgr *mgr, struct mg_connection *lsn) { struct mg_connection *c = NULL; union usa usa; socklen_t sa_len = sizeof(usa); MG_SOCKET_TYPE fd = raccept(FD(lsn), &usa, &sa_len); if (fd == MG_INVALID_SOCKET) { #if MG_ARCH == MG_ARCH_AZURERTOS || defined(__ECOS) // AzureRTOS, in non-block socket mode can mark listening socket readable // even it is not. See comment for 'select' func implementation in // nx_bsd.c That's not an error, just should try later if (errno != EAGAIN) #endif MG_ERROR(("%lu accept failed, errno %d", lsn->id, MG_SOCK_ERR(-1))); #if (MG_ARCH != MG_ARCH_WIN32) && !MG_ENABLE_FREERTOS_TCP && \ (MG_ARCH != MG_ARCH_TIRTOS) && !MG_ENABLE_POLL && !MG_ENABLE_EPOLL } else if ((long) fd >= FD_SETSIZE) { MG_ERROR(("%ld > %ld", (long) fd, (long) FD_SETSIZE)); closesocket(fd); #endif } else if ((c = mg_alloc_conn(mgr)) == NULL) { MG_ERROR(("%lu OOM", lsn->id)); closesocket(fd); } else { tomgaddr(&usa, &c->rem, sa_len != sizeof(usa.sin)); LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c); c->fd = S2PTR(fd); MG_EPOLL_ADD(c); mg_set_non_blocking_mode(FD(c)); setsockopts(c); c->is_accepted = 1; c->is_hexdumping = lsn->is_hexdumping; c->loc = lsn->loc; c->pfn = lsn->pfn; c->pfn_data = lsn->pfn_data; c->fn = lsn->fn; c->fn_data = lsn->fn_data; MG_DEBUG(("%lu %ld accepted %M -> %M", c->id, c->fd, mg_print_ip_port, &c->rem, mg_print_ip_port, &c->loc)); mg_call(c, MG_EV_OPEN, NULL); mg_call(c, MG_EV_ACCEPT, NULL); } } static bool can_read(const struct mg_connection *c) { return c->is_full == false; } static bool can_write(const struct mg_connection *c) { return c->is_connecting || (c->send.len > 0 && c->is_tls_hs == 0); } static bool skip_iotest(const struct mg_connection *c) { return (c->is_closing || c->is_resolving || FD(c) == MG_INVALID_SOCKET) || (can_read(c) == false && can_write(c) == false); } static void mg_iotest(struct mg_mgr *mgr, int ms) { #if MG_ENABLE_FREERTOS_TCP struct mg_connection *c; for (c = mgr->conns; c != NULL; c = c->next) { c->is_readable = c->is_writable = 0; if (skip_iotest(c)) continue; if (can_read(c)) FreeRTOS_FD_SET(c->fd, mgr->ss, eSELECT_READ | eSELECT_EXCEPT); if (can_write(c)) FreeRTOS_FD_SET(c->fd, mgr->ss, eSELECT_WRITE); } FreeRTOS_select(mgr->ss, pdMS_TO_TICKS(ms)); for (c = mgr->conns; c != NULL; c = c->next) { EventBits_t bits = FreeRTOS_FD_ISSET(c->fd, mgr->ss); c->is_readable = bits & (eSELECT_READ | eSELECT_EXCEPT) ? 1U : 0; c->is_writable = bits & eSELECT_WRITE ? 1U : 0; if (c->fd != MG_INVALID_SOCKET) FreeRTOS_FD_CLR(c->fd, mgr->ss, eSELECT_READ | eSELECT_EXCEPT | eSELECT_WRITE); } #elif MG_ENABLE_EPOLL size_t max = 1; for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) { c->is_readable = c->is_writable = 0; if (mg_tls_pending(c) > 0) ms = 1, c->is_readable = 1; if (can_write(c)) MG_EPOLL_MOD(c, 1); max++; } struct epoll_event *evs = (struct epoll_event *) alloca(max * sizeof(evs[0])); int n = epoll_wait(mgr->epoll_fd, evs, (int) max, ms); for (int i = 0; i < n; i++) { struct mg_connection *c = (struct mg_connection *) evs[i].data.ptr; if (evs[i].events & EPOLLERR) { mg_error(c, "socket error"); } else if (c->is_readable == 0) { bool rd = evs[i].events & (EPOLLIN | EPOLLHUP); bool wr = evs[i].events & EPOLLOUT; c->is_readable = can_read(c) && rd ? 1U : 0; c->is_writable = can_write(c) && wr ? 1U : 0; } } (void) skip_iotest; #elif MG_ENABLE_POLL nfds_t n = 0; for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) n++; struct pollfd *fds = (struct pollfd *) alloca(n * sizeof(fds[0])); memset(fds, 0, n * sizeof(fds[0])); n = 0; for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) { c->is_readable = c->is_writable = 0; if (skip_iotest(c)) { // Socket not valid, ignore } else if (mg_tls_pending(c) > 0) { ms = 1; // Don't wait if TLS is ready } else { fds[n].fd = FD(c); if (can_read(c)) fds[n].events |= POLLIN; if (can_write(c)) fds[n].events |= POLLOUT; n++; } } // MG_INFO(("poll n=%d ms=%d", (int) n, ms)); if (poll(fds, n, ms) < 0) { #if MG_ARCH == MG_ARCH_WIN32 if (n == 0) Sleep(ms); // On Windows, poll fails if no sockets #endif memset(fds, 0, n * sizeof(fds[0])); } n = 0; for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) { if (skip_iotest(c)) { // Socket not valid, ignore } else if (mg_tls_pending(c) > 0) { c->is_readable = 1; } else { if (fds[n].revents & POLLERR) { mg_error(c, "socket error"); } else { c->is_readable = (unsigned) (fds[n].revents & (POLLIN | POLLHUP) ? 1 : 0); c->is_writable = (unsigned) (fds[n].revents & POLLOUT ? 1 : 0); } n++; } } #else struct timeval tv = {ms / 1000, (ms % 1000) * 1000}, tv_zero = {0, 0}, *tvp; struct mg_connection *c; fd_set rset, wset, eset; MG_SOCKET_TYPE maxfd = 0; int rc; FD_ZERO(&rset); FD_ZERO(&wset); FD_ZERO(&eset); tvp = ms < 0 ? NULL : &tv; for (c = mgr->conns; c != NULL; c = c->next) { c->is_readable = c->is_writable = 0; if (skip_iotest(c)) continue; FD_SET(FD(c), &eset); if (can_read(c)) FD_SET(FD(c), &rset); if (can_write(c)) FD_SET(FD(c), &wset); if (mg_tls_pending(c) > 0) tvp = &tv_zero; if (FD(c) > maxfd) maxfd = FD(c); } if ((rc = select((int) maxfd + 1, &rset, &wset, &eset, tvp)) < 0) { #if MG_ARCH == MG_ARCH_WIN32 if (maxfd == 0) Sleep(ms); // On Windows, select fails if no sockets #else MG_ERROR(("select: %d %d", rc, MG_SOCK_ERR(rc))); #endif FD_ZERO(&rset); FD_ZERO(&wset); FD_ZERO(&eset); } for (c = mgr->conns; c != NULL; c = c->next) { if (FD(c) != MG_INVALID_SOCKET && FD_ISSET(FD(c), &eset)) { mg_error(c, "socket error"); } else { c->is_readable = FD(c) != MG_INVALID_SOCKET && FD_ISSET(FD(c), &rset); c->is_writable = FD(c) != MG_INVALID_SOCKET && FD_ISSET(FD(c), &wset); if (mg_tls_pending(c) > 0) c->is_readable = 1; } } #endif } void mg_mgr_poll(struct mg_mgr *mgr, int ms) { struct mg_connection *c, *tmp; uint64_t now; mg_iotest(mgr, ms); now = mg_millis(); mg_timer_poll(&mgr->timers, now); for (c = mgr->conns; c != NULL; c = tmp) { bool is_resp = c->is_resp; tmp = c->next; mg_call(c, MG_EV_POLL, &now); if (is_resp && !c->is_resp) { long n = 0; mg_call(c, MG_EV_READ, &n); } MG_VERBOSE(("%lu %c%c %c%c%c%c%c", c->id, c->is_readable ? 'r' : '-', c->is_writable ? 'w' : '-', c->is_tls ? 'T' : 't', c->is_connecting ? 'C' : 'c', c->is_tls_hs ? 'H' : 'h', c->is_resolving ? 'R' : 'r', c->is_closing ? 'C' : 'c')); if (c->is_resolving || c->is_closing) { // Do nothing } else if (c->is_listening && c->is_udp == 0) { if (c->is_readable) accept_conn(mgr, c); } else if (c->is_connecting) { if (c->is_readable || c->is_writable) connect_conn(c); } else if (c->is_tls_hs) { if ((c->is_readable || c->is_writable)) mg_tls_handshake(c); } else { if (c->is_readable) read_conn(c); if (c->is_writable) write_conn(c); } if (c->is_draining && c->send.len == 0) c->is_closing = 1; if (c->is_closing) close_conn(c); } } #endif #ifdef MG_ENABLE_LINES #line 1 "src/ssi.c" #endif #ifndef MG_MAX_SSI_DEPTH #define MG_MAX_SSI_DEPTH 5 #endif #ifndef MG_SSI_BUFSIZ #define MG_SSI_BUFSIZ 1024 #endif #if MG_ENABLE_SSI static char *mg_ssi(const char *path, const char *root, int depth) { struct mg_iobuf b = {NULL, 0, 0, MG_IO_SIZE}; FILE *fp = fopen(path, "rb"); if (fp != NULL) { char buf[MG_SSI_BUFSIZ], arg[sizeof(buf)]; int ch, intag = 0; size_t len = 0; buf[0] = arg[0] = '\0'; while ((ch = fgetc(fp)) != EOF) { if (intag && ch == '>' && buf[len - 1] == '-' && buf[len - 2] == '-') { buf[len++] = (char) (ch & 0xff); buf[len] = '\0'; if (sscanf(buf, " %#x %#x", s_txdesc[s_txno][1], tsr)); if (!(s_txdesc[s_txno][1] & BIT(31))) s_txdesc[s_txno][1] |= BIT(31); } GMAC_REGS->GMAC_RSR = rsr; GMAC_REGS->GMAC_TSR = tsr; } struct mg_tcpip_driver mg_tcpip_driver_same54 = { mg_tcpip_driver_same54_init, mg_tcpip_driver_same54_tx, NULL, mg_tcpip_driver_same54_up}; #endif #ifdef MG_ENABLE_LINES #line 1 "src/drivers/stm32.c" #endif #if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_STM32) && MG_ENABLE_DRIVER_STM32 struct stm32_eth { volatile uint32_t MACCR, MACFFR, MACHTHR, MACHTLR, MACMIIAR, MACMIIDR, MACFCR, MACVLANTR, RESERVED0[2], MACRWUFFR, MACPMTCSR, RESERVED1, MACDBGR, MACSR, MACIMR, MACA0HR, MACA0LR, MACA1HR, MACA1LR, MACA2HR, MACA2LR, MACA3HR, MACA3LR, RESERVED2[40], MMCCR, MMCRIR, MMCTIR, MMCRIMR, MMCTIMR, RESERVED3[14], MMCTGFSCCR, MMCTGFMSCCR, RESERVED4[5], MMCTGFCR, RESERVED5[10], MMCRFCECR, MMCRFAECR, RESERVED6[10], MMCRGUFCR, RESERVED7[334], PTPTSCR, PTPSSIR, PTPTSHR, PTPTSLR, PTPTSHUR, PTPTSLUR, PTPTSAR, PTPTTHR, PTPTTLR, RESERVED8, PTPTSSR, PTPPPSCR, RESERVED9[564], DMABMR, DMATPDR, DMARPDR, DMARDLAR, DMATDLAR, DMASR, DMAOMR, DMAIER, DMAMFBOCR, DMARSWTR, RESERVED10[8], DMACHTDR, DMACHRDR, DMACHTBAR, DMACHRBAR; }; #undef ETH #define ETH ((struct stm32_eth *) (uintptr_t) 0x40028000) #undef DSB #if defined(__CC_ARM) #define DSB() __dsb(0xF) #elif defined(__ARMCC_VERSION) #define DSB() __builtin_arm_dsb(0xF) #elif defined(__GNUC__) && defined(__arm__) && defined(__thumb__) #define DSB() asm("DSB 0xF") #elif defined(__ICCARM__) #define DSB() __iar_builtin_DSB() #else #define DSB() #endif #undef BIT #define BIT(x) ((uint32_t) 1 << (x)) #define ETH_PKT_SIZE 1540 // Max frame size #define ETH_DESC_CNT 4 // Descriptors count #define ETH_DS 4 // Descriptor size (words) static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers static uint8_t s_txno; // Current TX descriptor static uint8_t s_rxno; // Current RX descriptor static struct mg_tcpip_if *s_ifp; // MIP interface enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1, PHY_CSCR = 31 }; static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) { ETH->MACMIIAR &= (7 << 2); ETH->MACMIIAR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6); ETH->MACMIIAR |= BIT(0); while (ETH->MACMIIAR & BIT(0)) (void) 0; return ETH->MACMIIDR; } static void eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) { ETH->MACMIIDR = val; ETH->MACMIIAR &= (7 << 2); ETH->MACMIIAR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | BIT(1); ETH->MACMIIAR |= BIT(0); while (ETH->MACMIIAR & BIT(0)) (void) 0; } static uint32_t get_hclk(void) { struct rcc { volatile uint32_t CR, PLLCFGR, CFGR; } *rcc = (struct rcc *) 0x40023800; uint32_t clk = 0, hsi = 16000000 /* 16 MHz */, hse = 8000000 /* 8MHz */; if (rcc->CFGR & (1 << 2)) { clk = hse; } else if (rcc->CFGR & (1 << 3)) { uint32_t vco, m, n, p; m = (rcc->PLLCFGR & (0x3f << 0)) >> 0; n = (rcc->PLLCFGR & (0x1ff << 6)) >> 6; p = (((rcc->PLLCFGR & (3 << 16)) >> 16) + 1) * 2; clk = (rcc->PLLCFGR & (1 << 22)) ? hse : hsi; vco = (uint32_t) ((uint64_t) clk * n / m); clk = vco / p; } else { clk = hsi; } uint32_t hpre = (rcc->CFGR & (15 << 4)) >> 4; if (hpre < 8) return clk; uint8_t ahbptab[8] = {1, 2, 3, 4, 6, 7, 8, 9}; // log2(div) return ((uint32_t) clk) >> ahbptab[hpre - 8]; } // Guess CR from HCLK. MDC clock is generated from HCLK (AHB); as per 802.3, // it must not exceed 2.5MHz As the AHB clock can be (and usually is) derived // from the HSI (internal RC), and it can go above specs, the datasheets // specify a range of frequencies and activate one of a series of dividers to // keep the MDC clock safely below 2.5MHz. We guess a divider setting based on // HCLK with a +5% drift. If the user uses a different clock from our // defaults, needs to set the macros on top Valid for STM32F74xxx/75xxx // (38.8.1) and STM32F42xxx/43xxx (33.8.1) (both 4.5% worst case drift) static int guess_mdc_cr(void) { uint8_t crs[] = {2, 3, 0, 1, 4, 5}; // ETH->MACMIIAR::CR values uint8_t div[] = {16, 26, 42, 62, 102, 124}; // Respective HCLK dividers uint32_t hclk = get_hclk(); // Guess system HCLK int result = -1; // Invalid CR value if (hclk < 25000000) { MG_ERROR(("HCLK too low")); } else { for (int i = 0; i < 6; i++) { if (hclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) { result = crs[i]; break; } } if (result < 0) MG_ERROR(("HCLK too high")); } MG_DEBUG(("HCLK: %u, CR: %d", hclk, result)); return result; } static bool mg_tcpip_driver_stm32_init(struct mg_tcpip_if *ifp) { struct mg_tcpip_driver_stm32_data *d = (struct mg_tcpip_driver_stm32_data *) ifp->driver_data; s_ifp = ifp; // Init RX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_rxdesc[i][0] = BIT(31); // Own s_rxdesc[i][1] = sizeof(s_rxbuf[i]) | BIT(14); // 2nd address chained s_rxdesc[i][2] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer s_rxdesc[i][3] = (uint32_t) (uintptr_t) s_rxdesc[(i + 1) % ETH_DESC_CNT]; // Chain } // Init TX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_txdesc[i][2] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer s_txdesc[i][3] = (uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain } ETH->DMABMR |= BIT(0); // Software reset while ((ETH->DMABMR & BIT(0)) != 0) (void) 0; // Wait until done // Set MDC clock divider. If user told us the value, use it. Otherwise, guess int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr; ETH->MACMIIAR = ((uint32_t) cr & 7) << 2; // NOTE(cpq): we do not use extended descriptor bit 7, and do not use // hardware checksum. Therefore, descriptor size is 4, not 8 // ETH->DMABMR = BIT(13) | BIT(16) | BIT(22) | BIT(23) | BIT(25); ETH->MACIMR = BIT(3) | BIT(9); // Mask timestamp & PMT IT ETH->MACFCR = BIT(7); // Disable zero quarta pause // ETH->MACFFR = BIT(31); // Receive all eth_write_phy(PHY_ADDR, PHY_BCR, BIT(15)); // Reset PHY eth_write_phy(PHY_ADDR, PHY_BCR, BIT(12)); // Set autonegotiation ETH->DMARDLAR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors ETH->DMATDLAR = (uint32_t) (uintptr_t) s_txdesc; // RX descriptors ETH->DMAIER = BIT(6) | BIT(16); // RIE, NISE ETH->MACCR = BIT(2) | BIT(3) | BIT(11) | BIT(14); // RE, TE, Duplex, Fast ETH->DMAOMR = BIT(1) | BIT(13) | BIT(21) | BIT(25); // SR, ST, TSF, RSF // MAC address filtering ETH->MACA0HR = ((uint32_t) ifp->mac[5] << 8U) | ifp->mac[4]; ETH->MACA0LR = (uint32_t) (ifp->mac[3] << 24) | ((uint32_t) ifp->mac[2] << 16) | ((uint32_t) ifp->mac[1] << 8) | ifp->mac[0]; return true; } static size_t mg_tcpip_driver_stm32_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) { if (len > sizeof(s_txbuf[s_txno])) { MG_ERROR(("Frame too big, %ld", (long) len)); len = 0; // Frame is too big } else if ((s_txdesc[s_txno][0] & BIT(31))) { ifp->nerr++; MG_ERROR(("No free descriptors")); // printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR); len = 0; // All descriptors are busy, fail } else { memcpy(s_txbuf[s_txno], buf, len); // Copy data s_txdesc[s_txno][1] = (uint32_t) len; // Set data len s_txdesc[s_txno][0] = BIT(20) | BIT(28) | BIT(29); // Chain,FS,LS s_txdesc[s_txno][0] |= BIT(31); // Set OWN bit - let DMA take over if (++s_txno >= ETH_DESC_CNT) s_txno = 0; } DSB(); // ensure descriptors have been written ETH->DMASR = BIT(2) | BIT(5); // Clear any prior TBUS/TUS ETH->DMATPDR = 0; // and resume return len; } static bool mg_tcpip_driver_stm32_up(struct mg_tcpip_if *ifp) { uint32_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR); bool up = bsr & BIT(2) ? 1 : 0; if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up uint32_t scsr = eth_read_phy(PHY_ADDR, PHY_CSCR); uint32_t maccr = ETH->MACCR | BIT(14) | BIT(11); // 100M, Full-duplex if ((scsr & BIT(3)) == 0) maccr &= ~BIT(14); // 10M if ((scsr & BIT(4)) == 0) maccr &= ~BIT(11); // Half-duplex ETH->MACCR = maccr; // IRQ handler does not fiddle with this register MG_DEBUG(("Link is %uM %s-duplex", maccr & BIT(14) ? 100 : 10, maccr & BIT(11) ? "full" : "half")); } return up; } void ETH_IRQHandler(void); void ETH_IRQHandler(void) { if (ETH->DMASR & BIT(6)) { // Frame received, loop ETH->DMASR = BIT(16) | BIT(6); // Clear flag for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever if (s_rxdesc[s_rxno][0] & BIT(31)) break; // exit when done if (((s_rxdesc[s_rxno][0] & (BIT(8) | BIT(9))) == (BIT(8) | BIT(9))) && !(s_rxdesc[s_rxno][0] & BIT(15))) { // skip partial/errored frames uint32_t len = ((s_rxdesc[s_rxno][0] >> 16) & (BIT(14) - 1)); // printf("%lx %lu %lx %.8lx\n", s_rxno, len, s_rxdesc[s_rxno][0], // ETH->DMASR); mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp); } s_rxdesc[s_rxno][0] = BIT(31); if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0; } } ETH->DMASR = BIT(7); // Clear possible RBUS while processing ETH->DMARPDR = 0; // and resume RX } struct mg_tcpip_driver mg_tcpip_driver_stm32 = {mg_tcpip_driver_stm32_init, mg_tcpip_driver_stm32_tx, NULL, mg_tcpip_driver_stm32_up}; #endif #ifdef MG_ENABLE_LINES #line 1 "src/drivers/stm32h.c" #endif #if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_STM32H) && \ MG_ENABLE_DRIVER_STM32H struct stm32h_eth { volatile uint32_t MACCR, MACECR, MACPFR, MACWTR, MACHT0R, MACHT1R, RESERVED1[14], MACVTR, RESERVED2, MACVHTR, RESERVED3, MACVIR, MACIVIR, RESERVED4[2], MACTFCR, RESERVED5[7], MACRFCR, RESERVED6[7], MACISR, MACIER, MACRXTXSR, RESERVED7, MACPCSR, MACRWKPFR, RESERVED8[2], MACLCSR, MACLTCR, MACLETR, MAC1USTCR, RESERVED9[12], MACVR, MACDR, RESERVED10, MACHWF0R, MACHWF1R, MACHWF2R, RESERVED11[54], MACMDIOAR, MACMDIODR, RESERVED12[2], MACARPAR, RESERVED13[59], MACA0HR, MACA0LR, MACA1HR, MACA1LR, MACA2HR, MACA2LR, MACA3HR, MACA3LR, RESERVED14[248], MMCCR, MMCRIR, MMCTIR, MMCRIMR, MMCTIMR, RESERVED15[14], MMCTSCGPR, MMCTMCGPR, RESERVED16[5], MMCTPCGR, RESERVED17[10], MMCRCRCEPR, MMCRAEPR, RESERVED18[10], MMCRUPGR, RESERVED19[9], MMCTLPIMSTR, MMCTLPITCR, MMCRLPIMSTR, MMCRLPITCR, RESERVED20[65], MACL3L4C0R, MACL4A0R, RESERVED21[2], MACL3A0R0R, MACL3A1R0R, MACL3A2R0R, MACL3A3R0R, RESERVED22[4], MACL3L4C1R, MACL4A1R, RESERVED23[2], MACL3A0R1R, MACL3A1R1R, MACL3A2R1R, MACL3A3R1R, RESERVED24[108], MACTSCR, MACSSIR, MACSTSR, MACSTNR, MACSTSUR, MACSTNUR, MACTSAR, RESERVED25, MACTSSR, RESERVED26[3], MACTTSSNR, MACTTSSSR, RESERVED27[2], MACACR, RESERVED28, MACATSNR, MACATSSR, MACTSIACR, MACTSEACR, MACTSICNR, MACTSECNR, RESERVED29[4], MACPPSCR, RESERVED30[3], MACPPSTTSR, MACPPSTTNR, MACPPSIR, MACPPSWR, RESERVED31[12], MACPOCR, MACSPI0R, MACSPI1R, MACSPI2R, MACLMIR, RESERVED32[11], MTLOMR, RESERVED33[7], MTLISR, RESERVED34[55], MTLTQOMR, MTLTQUR, MTLTQDR, RESERVED35[8], MTLQICSR, MTLRQOMR, MTLRQMPOCR, MTLRQDR, RESERVED36[177], DMAMR, DMASBMR, DMAISR, DMADSR, RESERVED37[60], DMACCR, DMACTCR, DMACRCR, RESERVED38[2], DMACTDLAR, RESERVED39, DMACRDLAR, DMACTDTPR, RESERVED40, DMACRDTPR, DMACTDRLR, DMACRDRLR, DMACIER, DMACRIWTR, DMACSFCSR, RESERVED41, DMACCATDR, RESERVED42, DMACCARDR, RESERVED43, DMACCATBR, RESERVED44, DMACCARBR, DMACSR, RESERVED45[2], DMACMFCR; }; #undef ETH #define ETH \ ((struct stm32h_eth *) (uintptr_t) (0x40000000UL + 0x00020000UL + 0x8000UL)) #undef BIT #define BIT(x) ((uint32_t) 1 << (x)) #define ETH_PKT_SIZE 1540 // Max frame size #define ETH_DESC_CNT 4 // Descriptors count #define ETH_DS 4 // Descriptor size (words) static volatile uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors static volatile uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers static struct mg_tcpip_if *s_ifp; // MIP interface enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1, PHY_CSCR = 31 }; // PHY constants static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) { ETH->MACMDIOAR &= (0xF << 8); ETH->MACMDIOAR |= ((uint32_t) addr << 21) | ((uint32_t) reg << 16) | 3 << 2; ETH->MACMDIOAR |= BIT(0); while (ETH->MACMDIOAR & BIT(0)) (void) 0; return ETH->MACMDIODR; } static void eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) { ETH->MACMDIODR = val; ETH->MACMDIOAR &= (0xF << 8); ETH->MACMDIOAR |= ((uint32_t) addr << 21) | ((uint32_t) reg << 16) | 1 << 2; ETH->MACMDIOAR |= BIT(0); while (ETH->MACMDIOAR & BIT(0)) (void) 0; } static uint32_t get_hclk(void) { struct rcc { volatile uint32_t CR, HSICFGR, CRRCR, CSICFGR, CFGR, RESERVED1, D1CFGR, D2CFGR, D3CFGR, RESERVED2, PLLCKSELR, PLLCFGR, PLL1DIVR, PLL1FRACR, PLL2DIVR, PLL2FRACR, PLL3DIVR, PLL3FRACR, RESERVED3, D1CCIPR, D2CCIP1R, D2CCIP2R, D3CCIPR, RESERVED4, CIER, CIFR, CICR, RESERVED5, BDCR, CSR, RESERVED6, AHB3RSTR, AHB1RSTR, AHB2RSTR, AHB4RSTR, APB3RSTR, APB1LRSTR, APB1HRSTR, APB2RSTR, APB4RSTR, GCR, RESERVED8, D3AMR, RESERVED11[9], RSR, AHB3ENR, AHB1ENR, AHB2ENR, AHB4ENR, APB3ENR, APB1LENR, APB1HENR, APB2ENR, APB4ENR, RESERVED12, AHB3LPENR, AHB1LPENR, AHB2LPENR, AHB4LPENR, APB3LPENR, APB1LLPENR, APB1HLPENR, APB2LPENR, APB4LPENR, RESERVED13[4]; } *rcc = ((struct rcc *) (0x40000000 + 0x18020000 + 0x4400)); uint32_t clk = 0, hsi = 64000000 /* 64 MHz */, hse = 8000000 /* 8MHz */, csi = 4000000 /* 4MHz */; unsigned int sel = (rcc->CFGR & (7 << 3)) >> 3; if (sel == 1) { clk = csi; } else if (sel == 2) { clk = hse; } else if (sel == 3) { uint32_t vco, m, n, p; unsigned int src = (rcc->PLLCKSELR & (3 << 0)) >> 0; m = ((rcc->PLLCKSELR & (0x3F << 4)) >> 4); n = ((rcc->PLL1DIVR & (0x1FF << 0)) >> 0) + 1 + ((rcc->PLLCFGR & BIT(0)) ? 1 : 0); // round-up in fractional mode p = ((rcc->PLL1DIVR & (0x7F << 9)) >> 9) + 1; if (src == 1) { clk = csi; } else if (src == 2) { clk = hse; } else { clk = hsi; clk >>= ((rcc->CR & 3) >> 3); } vco = (uint32_t) ((uint64_t) clk * n / m); clk = vco / p; } else { clk = hsi; clk >>= ((rcc->CR & 3) >> 3); } const uint8_t cptab[12] = {1, 2, 3, 4, 6, 7, 8, 9}; // log2(div) uint32_t d1cpre = (rcc->D1CFGR & (0x0F << 8)) >> 8; if (d1cpre >= 8) clk >>= cptab[d1cpre - 8]; MG_DEBUG(("D1 CLK: %u", clk)); uint32_t hpre = (rcc->D1CFGR & (0x0F << 0)) >> 0; if (hpre < 8) return clk; return ((uint32_t) clk) >> cptab[hpre - 8]; } // Guess CR from AHB1 clock. MDC clock is generated from the ETH peripheral // clock (AHB1); as per 802.3, it must not exceed 2. As the AHB clock can // be derived from HSI or CSI (internal RC) clocks, and those can go above // specs, the datasheets specify a range of frequencies and activate one of a // series of dividers to keep the MDC clock safely below 2.5MHz. We guess a // divider setting based on HCLK with some drift. If the user uses a different // clock from our defaults, needs to set the macros on top. Valid for // STM32H74xxx/75xxx (58.11.4)(4.5% worst case drift)(CSI clock has a 7.5 % // worst case drift @ max temp) static int guess_mdc_cr(void) { const uint8_t crs[] = {2, 3, 0, 1, 4, 5}; // ETH->MACMDIOAR::CR values const uint8_t div[] = {16, 26, 42, 62, 102, 124}; // Respective HCLK dividers uint32_t hclk = get_hclk(); // Guess system HCLK int result = -1; // Invalid CR value for (int i = 0; i < 6; i++) { if (hclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) { result = crs[i]; break; } } if (result < 0) MG_ERROR(("HCLK too high")); MG_DEBUG(("HCLK: %u, CR: %d", hclk, result)); return result; } static bool mg_tcpip_driver_stm32h_init(struct mg_tcpip_if *ifp) { struct mg_tcpip_driver_stm32h_data *d = (struct mg_tcpip_driver_stm32h_data *) ifp->driver_data; s_ifp = ifp; // Init RX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_rxdesc[i][0] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer s_rxdesc[i][3] = BIT(31) | BIT(30) | BIT(24); // OWN, IOC, BUF1V } // Init TX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_txdesc[i][0] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer } ETH->DMAMR |= BIT(0); // Software reset while ((ETH->DMAMR & BIT(0)) != 0) (void) 0; // Wait until done // Set MDC clock divider. If user told us the value, use it. Otherwise, guess int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr; ETH->MACMDIOAR = ((uint32_t) cr & 0xF) << 8; // NOTE(scaprile): We do not use timing facilities so the DMA engine does not // re-write buffer address ETH->DMAMR = 0 << 16; // use interrupt mode 0 (58.8.1) (reset value) ETH->DMASBMR |= BIT(12); // AAL NOTE(scaprile): is this actually needed ETH->MACIER = 0; // Do not enable additional irq sources (reset value) ETH->MACTFCR = BIT(7); // Disable zero-quanta pause // ETH->MACPFR = BIT(31); // Receive all eth_write_phy(PHY_ADDR, PHY_BCR, BIT(15)); // Reset PHY eth_write_phy(PHY_ADDR, PHY_BCR, BIT(12)); // Set autonegotiation ETH->DMACRDLAR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors start address ETH->DMACRDRLR = ETH_DESC_CNT - 1; // ring length ETH->DMACRDTPR = (uint32_t) (uintptr_t) &s_rxdesc[ETH_DESC_CNT - 1]; // last valid descriptor address ETH->DMACTDLAR = (uint32_t) (uintptr_t) s_txdesc; // TX descriptors start address ETH->DMACTDRLR = ETH_DESC_CNT - 1; // ring length ETH->DMACTDTPR = (uint32_t) (uintptr_t) s_txdesc; // first available descriptor address ETH->DMACCR = 0; // DSL = 0 (contiguous descriptor table) (reset value) ETH->DMACIER = BIT(6) | BIT(15); // RIE, NIE ETH->MACCR = BIT(0) | BIT(1) | BIT(13) | BIT(14) | BIT(15); // RE, TE, Duplex, Fast, Reserved ETH->MTLTQOMR |= BIT(1); // TSF ETH->MTLRQOMR |= BIT(5); // RSF ETH->DMACTCR |= BIT(0); // ST ETH->DMACRCR |= BIT(0); // SR // MAC address filtering ETH->MACA0HR = ((uint32_t) ifp->mac[5] << 8U) | ifp->mac[4]; ETH->MACA0LR = (uint32_t) (ifp->mac[3] << 24) | ((uint32_t) ifp->mac[2] << 16) | ((uint32_t) ifp->mac[1] << 8) | ifp->mac[0]; return true; } static uint32_t s_txno; static size_t mg_tcpip_driver_stm32h_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) { if (len > sizeof(s_txbuf[s_txno])) { MG_ERROR(("Frame too big, %ld", (long) len)); len = 0; // Frame is too big } else if ((s_txdesc[s_txno][3] & BIT(31))) { MG_ERROR(("No free descriptors: %u %08X %08X %08X", s_txno, s_txdesc[s_txno][3], ETH->DMACSR, ETH->DMACTCR)); for (int i = 0; i < ETH_DESC_CNT; i++) MG_ERROR(("%08X", s_txdesc[i][3])); len = 0; // All descriptors are busy, fail } else { memcpy(s_txbuf[s_txno], buf, len); // Copy data s_txdesc[s_txno][2] = (uint32_t) len; // Set data len s_txdesc[s_txno][3] = BIT(28) | BIT(29); // FD, LD s_txdesc[s_txno][3] |= BIT(31); // Set OWN bit - let DMA take over if (++s_txno >= ETH_DESC_CNT) s_txno = 0; } ETH->DMACSR |= BIT(2) | BIT(1); // Clear any prior TBU, TPS ETH->DMACTDTPR = (uint32_t) (uintptr_t) &s_txdesc[s_txno]; // and resume return len; (void) ifp; } static bool mg_tcpip_driver_stm32h_up(struct mg_tcpip_if *ifp) { uint32_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR); bool up = bsr & BIT(2) ? 1 : 0; if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up uint32_t scsr = eth_read_phy(PHY_ADDR, PHY_CSCR); uint32_t maccr = ETH->MACCR | BIT(14) | BIT(13); // 100M, Full-duplex if ((scsr & BIT(3)) == 0) maccr &= ~BIT(14); // 10M if ((scsr & BIT(4)) == 0) maccr &= ~BIT(13); // Half-duplex ETH->MACCR = maccr; // IRQ handler does not fiddle with this register MG_DEBUG(("Link is %uM %s-duplex", maccr & BIT(14) ? 100 : 10, maccr & BIT(13) ? "full" : "half")); } return up; } void ETH_IRQHandler(void); static uint32_t s_rxno; void ETH_IRQHandler(void) { if (ETH->DMACSR & BIT(6)) { // Frame received, loop ETH->DMACSR = BIT(15) | BIT(6); // Clear flag for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever if (s_rxdesc[s_rxno][3] & BIT(31)) break; // exit when done if (((s_rxdesc[s_rxno][3] & (BIT(28) | BIT(29))) == (BIT(28) | BIT(29))) && !(s_rxdesc[s_rxno][3] & BIT(15))) { // skip partial/errored frames uint32_t len = s_rxdesc[s_rxno][3] & (BIT(15) - 1); // MG_DEBUG(("%lx %lu %lx %08lx", s_rxno, len, s_rxdesc[s_rxno][3], // ETH->DMACSR)); mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp); } s_rxdesc[s_rxno][3] = BIT(31) | BIT(30) | BIT(24); // OWN, IOC, BUF1V if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0; } } ETH->DMACSR = BIT(7) | BIT(8); // Clear possible RBU RPS while processing ETH->DMACRDTPR = (uint32_t) (uintptr_t) &s_rxdesc[ETH_DESC_CNT - 1]; // and resume RX } struct mg_tcpip_driver mg_tcpip_driver_stm32h = { mg_tcpip_driver_stm32h_init, mg_tcpip_driver_stm32h_tx, NULL, mg_tcpip_driver_stm32h_up}; #endif #ifdef MG_ENABLE_LINES #line 1 "src/drivers/tm4c.c" #endif #if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C struct tm4c_emac { volatile uint32_t EMACCFG, EMACFRAMEFLTR, EMACHASHTBLH, EMACHASHTBLL, EMACMIIADDR, EMACMIIDATA, EMACFLOWCTL, EMACVLANTG, RESERVED0, EMACSTATUS, EMACRWUFF, EMACPMTCTLSTAT, RESERVED1[2], EMACRIS, EMACIM, EMACADDR0H, EMACADDR0L, EMACADDR1H, EMACADDR1L, EMACADDR2H, EMACADDR2L, EMACADDR3H, EMACADDR3L, RESERVED2[31], EMACWDOGTO, RESERVED3[8], EMACMMCCTRL, EMACMMCRXRIS, EMACMMCTXRIS, EMACMMCRXIM, EMACMMCTXIM, RESERVED4, EMACTXCNTGB, RESERVED5[12], EMACTXCNTSCOL, EMACTXCNTMCOL, RESERVED6[4], EMACTXOCTCNTG, RESERVED7[6], EMACRXCNTGB, RESERVED8[4], EMACRXCNTCRCERR, EMACRXCNTALGNERR, RESERVED9[10], EMACRXCNTGUNI, RESERVED10[239], EMACVLNINCREP, EMACVLANHASH, RESERVED11[93], EMACTIMSTCTRL, EMACSUBSECINC, EMACTIMSEC, EMACTIMNANO, EMACTIMSECU, EMACTIMNANOU, EMACTIMADD, EMACTARGSEC, EMACTARGNANO, EMACHWORDSEC, EMACTIMSTAT, EMACPPSCTRL, RESERVED12[12], EMACPPS0INTVL, EMACPPS0WIDTH, RESERVED13[294], EMACDMABUSMOD, EMACTXPOLLD, EMACRXPOLLD, EMACRXDLADDR, EMACTXDLADDR, EMACDMARIS, EMACDMAOPMODE, EMACDMAIM, EMACMFBOC, EMACRXINTWDT, RESERVED14[8], EMACHOSTXDESC, EMACHOSRXDESC, EMACHOSTXBA, EMACHOSRXBA, RESERVED15[218], EMACPP, EMACPC, EMACCC, RESERVED16, EMACEPHYRIS, EMACEPHYIM, EMACEPHYIMSC; }; #undef EMAC #define EMAC ((struct tm4c_emac *) (uintptr_t) 0x400EC000) #undef BIT #define BIT(x) ((uint32_t) 1 << (x)) #define ETH_PKT_SIZE 1540 // Max frame size #define ETH_DESC_CNT 4 // Descriptors count #define ETH_DS 4 // Descriptor size (words) static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers static struct mg_tcpip_if *s_ifp; // MIP interface enum { EPHY_ADDR = 0, EPHYBMCR = 0, EPHYBMSR = 1, EPHYSTS = 16 }; // PHY constants static inline void tm4cspin(volatile uint32_t count) { while (count--) (void) 0; } static uint32_t emac_read_phy(uint8_t addr, uint8_t reg) { EMAC->EMACMIIADDR &= (0xf << 2); EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6); EMAC->EMACMIIADDR |= BIT(0); while (EMAC->EMACMIIADDR & BIT(0)) tm4cspin(1); return EMAC->EMACMIIDATA; } static void emac_write_phy(uint8_t addr, uint8_t reg, uint32_t val) { EMAC->EMACMIIDATA = val; EMAC->EMACMIIADDR &= (0xf << 2); EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | BIT(1); EMAC->EMACMIIADDR |= BIT(0); while (EMAC->EMACMIIADDR & BIT(0)) tm4cspin(1); } static uint32_t get_sysclk(void) { struct sysctl { volatile uint32_t DONTCARE0[44], RSCLKCFG, DONTCARE1[43], PLLFREQ0, PLLFREQ1; } *sysctl = (struct sysctl *) 0x400FE000; uint32_t clk = 0, piosc = 16000000 /* 16 MHz */, mosc = 25000000 /* 25MHz */; if (sysctl->RSCLKCFG & (1 << 28)) { // USEPLL uint32_t fin, vco, mdiv, n, q, psysdiv; uint32_t pllsrc = (sysctl->RSCLKCFG & (0xf << 24)) >> 24; if (pllsrc == 0) { clk = piosc; } else if (pllsrc == 3) { clk = mosc; } else { MG_ERROR(("Unsupported clock source")); } q = (sysctl->PLLFREQ1 & (0x1f << 8)) >> 8; n = (sysctl->PLLFREQ1 & (0x1f << 0)) >> 0; fin = clk / ((q + 1) * (n + 1)); mdiv = (sysctl->PLLFREQ0 & (0x3ff << 0)) >> 0; // mint + (mfrac / 1024); MFRAC not supported psysdiv = (sysctl->RSCLKCFG & (0x3f << 0)) >> 0; vco = (uint32_t) ((uint64_t) fin * mdiv); return vco / (psysdiv + 1); } uint32_t oscsrc = (sysctl->RSCLKCFG & (0xf << 20)) >> 20; if (oscsrc == 0) { clk = piosc; } else if (oscsrc == 3) { clk = mosc; } else { MG_ERROR(("Unsupported clock source")); } uint32_t osysdiv = (sysctl->RSCLKCFG & (0xf << 16)) >> 16; return clk / (osysdiv + 1); } // Guess CR from SYSCLK. MDC clock is generated from SYSCLK (AHB); as per // 802.3, it must not exceed 2.5MHz (also 20.4.2.6) As the AHB clock can be // derived from the PIOSC (internal RC), and it can go above specs, the // datasheets specify a range of frequencies and activate one of a series of // dividers to keep the MDC clock safely below 2.5MHz. We guess a divider // setting based on SYSCLK with a +5% drift. If the user uses a different clock // from our defaults, needs to set the macros on top Valid for TM4C129x (20.7) // (4.5% worst case drift) // The PHY receives the main oscillator (MOSC) (20.3.1) static int guess_mdc_cr(void) { uint8_t crs[] = {2, 3, 0, 1}; // EMAC->MACMIIAR::CR values uint8_t div[] = {16, 26, 42, 62}; // Respective HCLK dividers uint32_t sysclk = get_sysclk(); // Guess system SYSCLK int result = -1; // Invalid CR value if (sysclk < 25000000) { MG_ERROR(("SYSCLK too low")); } else { for (int i = 0; i < 4; i++) { if (sysclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) { result = crs[i]; break; } } if (result < 0) MG_ERROR(("SYSCLK too high")); } MG_DEBUG(("SYSCLK: %u, CR: %d", sysclk, result)); return result; } static bool mg_tcpip_driver_tm4c_init(struct mg_tcpip_if *ifp) { struct mg_tcpip_driver_tm4c_data *d = (struct mg_tcpip_driver_tm4c_data *) ifp->driver_data; s_ifp = ifp; // Init RX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_rxdesc[i][0] = BIT(31); // Own s_rxdesc[i][1] = sizeof(s_rxbuf[i]) | BIT(14); // 2nd address chained s_rxdesc[i][2] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer s_rxdesc[i][3] = (uint32_t) (uintptr_t) s_rxdesc[(i + 1) % ETH_DESC_CNT]; // Chain // MG_DEBUG(("%d %p", i, s_rxdesc[i])); } // Init TX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_txdesc[i][2] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer s_txdesc[i][3] = (uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain } EMAC->EMACDMABUSMOD |= BIT(0); // Software reset while ((EMAC->EMACDMABUSMOD & BIT(0)) != 0) tm4cspin(1); // Wait until done // Set MDC clock divider. If user told us the value, use it. Otherwise, guess int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr; EMAC->EMACMIIADDR = ((uint32_t) cr & 0xf) << 2; // NOTE(cpq): we do not use extended descriptor bit 7, and do not use // hardware checksum. Therefore, descriptor size is 4, not 8 // EMAC->EMACDMABUSMOD = BIT(13) | BIT(16) | BIT(22) | BIT(23) | BIT(25); EMAC->EMACIM = BIT(3) | BIT(9); // Mask timestamp & PMT IT EMAC->EMACFLOWCTL = BIT(7); // Disable zero-quanta pause // EMAC->EMACFRAMEFLTR = BIT(31); // Receive all // EMAC->EMACPC defaults to internal PHY (EPHY) in MMI mode emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(15)); // Reset internal PHY (EPHY) emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(12)); // Set autonegotiation EMAC->EMACRXDLADDR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // TX descriptors EMAC->EMACDMAIM = BIT(6) | BIT(16); // RIE, NIE EMAC->EMACCFG = BIT(2) | BIT(3) | BIT(11) | BIT(14); // RE, TE, Duplex, Fast EMAC->EMACDMAOPMODE = BIT(1) | BIT(13) | BIT(21) | BIT(25); // SR, ST, TSF, RSF EMAC->EMACADDR0H = ((uint32_t) ifp->mac[5] << 8U) | ifp->mac[4]; EMAC->EMACADDR0L = (uint32_t) (ifp->mac[3] << 24) | ((uint32_t) ifp->mac[2] << 16) | ((uint32_t) ifp->mac[1] << 8) | ifp->mac[0]; // NOTE(scaprile) There are 3 additional slots for filtering, disabled by // default. This also applies to the STM32 driver (at least for F7) return true; } static uint32_t s_txno; static size_t mg_tcpip_driver_tm4c_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) { if (len > sizeof(s_txbuf[s_txno])) { MG_ERROR(("Frame too big, %ld", (long) len)); len = 0; // fail } else if ((s_txdesc[s_txno][0] & BIT(31))) { MG_ERROR(("No descriptors available")); // printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) // EMAC->EMACDMARIS); len = 0; // fail } else { memcpy(s_txbuf[s_txno], buf, len); // Copy data s_txdesc[s_txno][1] = (uint32_t) len; // Set data len s_txdesc[s_txno][0] = BIT(20) | BIT(28) | BIT(29) | BIT(30); // Chain,FS,LS,IC s_txdesc[s_txno][0] |= BIT(31); // Set OWN bit - let DMA take over if (++s_txno >= ETH_DESC_CNT) s_txno = 0; } EMAC->EMACDMARIS = BIT(2) | BIT(5); // Clear any prior TU/UNF EMAC->EMACTXPOLLD = 0; // and resume return len; (void) ifp; } static bool mg_tcpip_driver_tm4c_up(struct mg_tcpip_if *ifp) { uint32_t bmsr = emac_read_phy(EPHY_ADDR, EPHYBMSR); bool up = (bmsr & BIT(2)) ? 1 : 0; if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up uint32_t sts = emac_read_phy(EPHY_ADDR, EPHYSTS); uint32_t emaccfg = EMAC->EMACCFG | BIT(14) | BIT(11); // 100M, Full-duplex if (sts & BIT(1)) emaccfg &= ~BIT(14); // 10M if ((sts & BIT(2)) == 0) emaccfg &= ~BIT(11); // Half-duplex EMAC->EMACCFG = emaccfg; // IRQ handler does not fiddle with this register MG_DEBUG(("Link is %uM %s-duplex", emaccfg & BIT(14) ? 100 : 10, emaccfg & BIT(11) ? "full" : "half")); } return up; } void EMAC0_IRQHandler(void); static uint32_t s_rxno; void EMAC0_IRQHandler(void) { if (EMAC->EMACDMARIS & BIT(6)) { // Frame received, loop EMAC->EMACDMARIS = BIT(16) | BIT(6); // Clear flag for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever if (s_rxdesc[s_rxno][0] & BIT(31)) break; // exit when done if (((s_rxdesc[s_rxno][0] & (BIT(8) | BIT(9))) == (BIT(8) | BIT(9))) && !(s_rxdesc[s_rxno][0] & BIT(15))) { // skip partial/errored frames uint32_t len = ((s_rxdesc[s_rxno][0] >> 16) & (BIT(14) - 1)); // printf("%lx %lu %lx %.8lx\n", s_rxno, len, s_rxdesc[s_rxno][0], // EMAC->EMACDMARIS); mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp); } s_rxdesc[s_rxno][0] = BIT(31); if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0; } } EMAC->EMACDMARIS = BIT(7); // Clear possible RU while processing EMAC->EMACRXPOLLD = 0; // and resume RX } struct mg_tcpip_driver mg_tcpip_driver_tm4c = {mg_tcpip_driver_tm4c_init, mg_tcpip_driver_tm4c_tx, NULL, mg_tcpip_driver_tm4c_up}; #endif #ifdef MG_ENABLE_LINES #line 1 "src/drivers/w5500.c" #endif #if MG_ENABLE_TCPIP enum { W5500_CR = 0, W5500_S0 = 1, W5500_TX0 = 2, W5500_RX0 = 3 }; static void w5500_txn(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, bool wr, void *buf, size_t len) { uint8_t *p = (uint8_t *) buf; uint8_t cmd[] = {(uint8_t) (addr >> 8), (uint8_t) (addr & 255), (uint8_t) ((block << 3) | (wr ? 4 : 0))}; s->begin(s->spi); for (size_t i = 0; i < sizeof(cmd); i++) s->txn(s->spi, cmd[i]); for (size_t i = 0; i < len; i++) { uint8_t r = s->txn(s->spi, p[i]); if (!wr) p[i] = r; } s->end(s->spi); } // clang-format off static void w5500_wn(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, void *buf, size_t len) { w5500_txn(s, block, addr, true, buf, len); } static void w5500_w1(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, uint8_t val) { w5500_wn(s, block, addr, &val, 1); } static void w5500_w2(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, uint16_t val) { uint8_t buf[2] = {(uint8_t) (val >> 8), (uint8_t) (val & 255)}; w5500_wn(s, block, addr, buf, sizeof(buf)); } static void w5500_rn(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, void *buf, size_t len) { w5500_txn(s, block, addr, false, buf, len); } static uint8_t w5500_r1(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr) { uint8_t r = 0; w5500_rn(s, block, addr, &r, 1); return r; } static uint16_t w5500_r2(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr) { uint8_t buf[2] = {0, 0}; w5500_rn(s, block, addr, buf, sizeof(buf)); return (uint16_t) ((buf[0] << 8) | buf[1]); } // clang-format on static size_t w5500_rx(void *buf, size_t buflen, struct mg_tcpip_if *ifp) { struct mg_tcpip_spi *s = (struct mg_tcpip_spi *) ifp->driver_data; uint16_t r = 0, n = 0, len = (uint16_t) buflen, n2; // Read recv len while ((n2 = w5500_r2(s, W5500_S0, 0x26)) > n) n = n2; // Until it is stable // printf("RSR: %d\n", (int) n); if (n > 0) { uint16_t ptr = w5500_r2(s, W5500_S0, 0x28); // Get read pointer n = w5500_r2(s, W5500_RX0, ptr); // Read frame length if (n <= len + 2 && n > 1) { r = (uint16_t) (n - 2); w5500_rn(s, W5500_RX0, (uint16_t) (ptr + 2), buf, r); } w5500_w2(s, W5500_S0, 0x28, (uint16_t) (ptr + n)); // Advance read pointer w5500_w1(s, W5500_S0, 1, 0x40); // Sock0 CR -> RECV // printf(" RX_RD: tot=%u n=%u r=%u\n", n2, n, r); } return r; } static size_t w5500_tx(const void *buf, size_t buflen, struct mg_tcpip_if *ifp) { struct mg_tcpip_spi *s = (struct mg_tcpip_spi *) ifp->driver_data; uint16_t n = 0, len = (uint16_t) buflen; while (n < len) n = w5500_r2(s, W5500_S0, 0x20); // Wait for space uint16_t ptr = w5500_r2(s, W5500_S0, 0x24); // Get write pointer w5500_wn(s, W5500_TX0, ptr, (void *) buf, len); // Write data w5500_w2(s, W5500_S0, 0x24, (uint16_t) (ptr + len)); // Advance write pointer w5500_w1(s, W5500_S0, 1, 0x20); // Sock0 CR -> SEND for (int i = 0; i < 40; i++) { uint8_t ir = w5500_r1(s, W5500_S0, 2); // Read S0 IR if (ir == 0) continue; // printf("IR %d, len=%d, free=%d, ptr %d\n", ir, (int) len, (int) n, ptr); w5500_w1(s, W5500_S0, 2, ir); // Write S0 IR: clear it! if (ir & 8) len = 0; // Timeout. Report error if (ir & (16 | 8)) break; // Stop on SEND_OK or timeout } return len; } static bool w5500_init(struct mg_tcpip_if *ifp) { struct mg_tcpip_spi *s = (struct mg_tcpip_spi *) ifp->driver_data; s->end(s->spi); w5500_w1(s, W5500_CR, 0, 0x80); // Reset chip: CR -> 0x80 w5500_w1(s, W5500_CR, 0x2e, 0); // CR PHYCFGR -> reset w5500_w1(s, W5500_CR, 0x2e, 0xf8); // CR PHYCFGR -> set // w5500_wn(s, W5500_CR, 9, s->mac, 6); // Set source MAC w5500_w1(s, W5500_S0, 0x1e, 16); // Sock0 RX buf size w5500_w1(s, W5500_S0, 0x1f, 16); // Sock0 TX buf size w5500_w1(s, W5500_S0, 0, 4); // Sock0 MR -> MACRAW w5500_w1(s, W5500_S0, 1, 1); // Sock0 CR -> OPEN return w5500_r1(s, W5500_S0, 3) == 0x42; // Sock0 SR == MACRAW } static bool w5500_up(struct mg_tcpip_if *ifp) { struct mg_tcpip_spi *spi = (struct mg_tcpip_spi *) ifp->driver_data; uint8_t phycfgr = w5500_r1(spi, W5500_CR, 0x2e); return phycfgr & 1; // Bit 0 of PHYCFGR is LNK (0 - down, 1 - up) } struct mg_tcpip_driver mg_tcpip_driver_w5500 = {w5500_init, w5500_tx, w5500_rx, w5500_up}; #endif