/* * FreeRTOS+TCP V2.3.2 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * http://aws.amazon.com/freertos * http://www.FreeRTOS.org */ /** * @file FreeRTOS_DHCP.c * @brief Implements the Dynamic Host Configuration Protocol for the FreeRTOS+TCP network stack. */ /* Standard includes. */ #include /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "semphr.h" /* FreeRTOS+TCP includes. */ #include "FreeRTOS_IP.h" #include "FreeRTOS_Sockets.h" #include "FreeRTOS_IP_Private.h" #include "FreeRTOS_UDP_IP.h" #include "FreeRTOS_DHCP.h" #include "FreeRTOS_ARP.h" /* Exclude the entire file if DHCP is not enabled. */ #if ( ipconfigUSE_DHCP != 0 ) #include "NetworkInterface.h" #include "NetworkBufferManagement.h" #if ( ipconfigUSE_DHCP != 0 ) && ( ipconfigNETWORK_MTU < 586U ) /* DHCP must be able to receive an options field of 312 bytes, the fixed * part of the DHCP packet is 240 bytes, and the IP/UDP headers take 28 bytes. */ #error ipconfigNETWORK_MTU needs to be at least 586 to use DHCP #endif /* Parameter widths in the DHCP packet. */ #define dhcpCLIENT_HARDWARE_ADDRESS_LENGTH 16 /**< Client hardware address length.*/ #define dhcpSERVER_HOST_NAME_LENGTH 64 /**< Server host name length. */ #define dhcpBOOT_FILE_NAME_LENGTH 128 /**< Boot file name length. */ /* Timer parameters */ #ifndef dhcpINITIAL_TIMER_PERIOD /** @brief The interval at which the DHCP state handler is called. */ #define dhcpINITIAL_TIMER_PERIOD ( pdMS_TO_TICKS( 250U ) ) #endif #ifndef dhcpINITIAL_DHCP_TX_PERIOD /** @brief The initial amount of time to wait for a DHCP reply. When repeating an * unanswered request, this time-out shall be multiplied by 2. */ #define dhcpINITIAL_DHCP_TX_PERIOD ( pdMS_TO_TICKS( 5000U ) ) #endif /* Codes of interest found in the DHCP options field. */ #define dhcpIPv4_ZERO_PAD_OPTION_CODE ( 0U ) /**< Used to pad other options to make them aligned. See RFC 2132. */ #define dhcpIPv4_SUBNET_MASK_OPTION_CODE ( 1U ) /**< Subnet mask. See RFC 2132. */ #define dhcpIPv4_GATEWAY_OPTION_CODE ( 3U ) /**< Available routers. See RFC 2132. */ #define dhcpIPv4_DNS_SERVER_OPTIONS_CODE ( 6U ) /**< Domain name server. See RFC 2132. */ #define dhcpIPv4_DNS_HOSTNAME_OPTIONS_CODE ( 12U ) /**< Host name. See RFC 2132. */ #define dhcpIPv4_REQUEST_IP_ADDRESS_OPTION_CODE ( 50U ) /**< Requested IP-address. See RFC 2132. */ #define dhcpIPv4_LEASE_TIME_OPTION_CODE ( 51U ) /**< IP-address lease time. See RFC 2132. */ #define dhcpIPv4_MESSAGE_TYPE_OPTION_CODE ( 53U ) /**< DHCP message type. See RFC 2132. */ #define dhcpIPv4_SERVER_IP_ADDRESS_OPTION_CODE ( 54U ) /**< Server Identifier. See RFC 2132. */ #define dhcpIPv4_PARAMETER_REQUEST_OPTION_CODE ( 55U ) /**< Parameter Request list. See RFC 2132. */ #define dhcpIPv4_CLIENT_IDENTIFIER_OPTION_CODE ( 61U ) /**< Client Identifier. See RFC 2132. */ /* The four DHCP message types of interest. */ #define dhcpMESSAGE_TYPE_DISCOVER ( 1 ) /**< DHCP discover message. */ #define dhcpMESSAGE_TYPE_OFFER ( 2 ) /**< DHCP offer message. */ #define dhcpMESSAGE_TYPE_REQUEST ( 3 ) /**< DHCP request message. */ #define dhcpMESSAGE_TYPE_ACK ( 5 ) /**< DHCP acknowledgement. */ #define dhcpMESSAGE_TYPE_NACK ( 6 ) /**< DHCP NACK. (Negative acknowledgement) */ /* Offsets into the transmitted DHCP options fields at which various parameters * are located. */ #define dhcpCLIENT_IDENTIFIER_OFFSET ( 6U ) /**< Offset for the client ID option. */ #define dhcpREQUESTED_IP_ADDRESS_OFFSET ( 14U ) /**< Offset for the requested IP-address option. */ #define dhcpDHCP_SERVER_IP_ADDRESS_OFFSET ( 20U ) /**< Offset for the server IP-address option. */ /* Values used in the DHCP packets. */ #define dhcpREQUEST_OPCODE ( 1U ) /**< DHCP request opcode. */ #define dhcpREPLY_OPCODE ( 2U ) /**< DHCP reply opcode. */ #define dhcpADDRESS_TYPE_ETHERNET ( 1U ) /**< Address type: ethernet opcode. */ #define dhcpETHERNET_ADDRESS_LENGTH ( 6U ) /**< Ethernet address length opcode. */ /* The following define is temporary and serves to make the /single source * code more similar to the /multi version. */ #define EP_DHCPData xDHCPData /**< Temporary define to make /single source similar to /multi version. */ #define EP_IPv4_SETTINGS xNetworkAddressing /**< Temporary define to make /single source similar to /multi version. */ /** @brief If a lease time is not received, use the default of two days (48 hours in ticks). * Can not use pdMS_TO_TICKS() as integer overflow can occur. */ #define dhcpDEFAULT_LEASE_TIME ( ( 48UL * 60UL * 60UL ) * configTICK_RATE_HZ ) /** @brief Don't allow the lease time to be too short. */ #define dhcpMINIMUM_LEASE_TIME ( pdMS_TO_TICKS( 60000UL ) ) /* 60 seconds in ticks. */ /** @brief Marks the end of the variable length options field in the DHCP packet. */ #define dhcpOPTION_END_BYTE 0xffu /** @brief Offset into a DHCP message at which the first byte of the options is * located. */ #define dhcpFIRST_OPTION_BYTE_OFFSET ( 0xf0U ) /* Standard DHCP port numbers and magic cookie value. * DHCPv4 uses UDP port number 68 for clients and port number 67 for servers. */ #if ( ipconfigBYTE_ORDER == pdFREERTOS_LITTLE_ENDIAN ) #define dhcpCLIENT_PORT_IPv4 0x4400U /**< Little endian representation of port 68. */ #define dhcpSERVER_PORT_IPv4 0x4300U /**< Little endian representation of port 67. */ #define dhcpCOOKIE 0x63538263UL /**< Little endian representation of magic cookie. */ #define dhcpBROADCAST 0x0080U /**< Little endian representation of broadcast flag. */ #else #define dhcpCLIENT_PORT_IPv4 0x0044U /**< Big endian representation of port 68. */ #define dhcpSERVER_PORT_IPv4 0x0043U /**< Big endian representation of port 68. */ #define dhcpCOOKIE 0x63825363UL /**< Big endian representation of magic cookie. */ #define dhcpBROADCAST 0x8000U /**< Big endian representation of broadcast flag. */ #endif /* ( ipconfigBYTE_ORDER == pdFREERTOS_LITTLE_ENDIAN ) */ #include "pack_struct_start.h" struct xDHCPMessage_IPv4 { uint8_t ucOpcode; /**< Operation Code: Specifies the general type of message. */ uint8_t ucAddressType; /**< Hardware type used on the local network. */ uint8_t ucAddressLength; /**< Hardware Address Length: Specifies how long hardware * addresses are in this message. */ uint8_t ucHops; /**< Hops. */ uint32_t ulTransactionID; /**< A 32-bit identification field generated by the client, * to allow it to match up the request with replies received * from DHCP servers. */ uint16_t usElapsedTime; /**< Number of seconds elapsed since a client began an attempt to acquire or renew a lease. */ uint16_t usFlags; /**< Just one bit used to indicate broadcast. */ uint32_t ulClientIPAddress_ciaddr; /**< Client's IP address if it has one or 0 is put in this field. */ uint32_t ulYourIPAddress_yiaddr; /**< The IP address that the server is assigning to the client. */ uint32_t ulServerIPAddress_siaddr; /**< The DHCP server address that the client should use. */ uint32_t ulRelayAgentIPAddress_giaddr; /**< Gateway IP address in case the server client are on different subnets. */ uint8_t ucClientHardwareAddress[ dhcpCLIENT_HARDWARE_ADDRESS_LENGTH ]; /**< The client hardware address. */ uint8_t ucServerHostName[ dhcpSERVER_HOST_NAME_LENGTH ]; /**< Server's hostname. */ uint8_t ucBootFileName[ dhcpBOOT_FILE_NAME_LENGTH ]; /**< Boot file full directory path. */ uint32_t ulDHCPCookie; /**< Magic cookie option. */ /* Option bytes from here on. */ } #include "pack_struct_end.h" typedef struct xDHCPMessage_IPv4 DHCPMessage_IPv4_t; /** * @brief Function to cast pointers to DHCPMessage_IPv4_t. */ static portINLINE ipDECL_CAST_PTR_FUNC_FOR_TYPE( DHCPMessage_IPv4_t ) { return ( DHCPMessage_IPv4_t * ) pvArgument; } /** * @brief Function to cast const pointers to DHCPMessage_IPv4_t. */ static portINLINE ipDECL_CAST_CONST_PTR_FUNC_FOR_TYPE( DHCPMessage_IPv4_t ) { return ( const DHCPMessage_IPv4_t * ) pvArgument; } /** @brief The UDP socket used for all incoming and outgoing DHCP traffic. */ _static Socket_t xDHCPSocket; #if ( ipconfigDHCP_FALL_BACK_AUTO_IP != 0 ) /* Define the Link Layer IP address: 169.254.x.x */ #define LINK_LAYER_ADDRESS_0 169 #define LINK_LAYER_ADDRESS_1 254 /* Define the netmask used: 255.255.0.0 */ #define LINK_LAYER_NETMASK_0 255 #define LINK_LAYER_NETMASK_1 255 #define LINK_LAYER_NETMASK_2 0 #define LINK_LAYER_NETMASK_3 0 #endif /* * Generate a DHCP discover message and send it on the DHCP socket. */ static BaseType_t prvSendDHCPDiscover( void ); /* * Interpret message received on the DHCP socket. */ _static BaseType_t prvProcessDHCPReplies( BaseType_t xExpectedMessageType ); /* * Generate a DHCP request packet, and send it on the DHCP socket. */ static BaseType_t prvSendDHCPRequest( void ); /* * Prepare to start a DHCP transaction. This initialises some state variables * and creates the DHCP socket if necessary. */ static void prvInitialiseDHCP( void ); /* * Creates the part of outgoing DHCP messages that are common to all outgoing * DHCP messages. */ static uint8_t * prvCreatePartDHCPMessage( struct freertos_sockaddr * pxAddress, BaseType_t xOpcode, const uint8_t * const pucOptionsArray, size_t * pxOptionsArraySize ); /* * Create the DHCP socket, if it has not been created already. */ _static void prvCreateDHCPSocket( void ); /* * Close the DHCP socket. */ static void prvCloseDHCPSocket( void ); /* * After DHCP has failed to answer, prepare everything to start searching * for (trying-out) LinkLayer IP-addresses, using the random method: Send * a gratuitous ARP request and wait if another device responds to it. */ #if ( ipconfigDHCP_FALL_BACK_AUTO_IP != 0 ) static void prvPrepareLinkLayerIPLookUp( void ); #endif /*-----------------------------------------------------------*/ /** @brief Hold information in between steps in the DHCP state machine. */ _static DHCPData_t xDHCPData; /*-----------------------------------------------------------*/ /** * @brief Check whether a given socket is the DHCP socket or not. * * @param[in] xSocket: The socket to be checked. * * @return If the socket given as parameter is the DHCP socket - return * pdTRUE, else pdFALSE. */ BaseType_t xIsDHCPSocket( Socket_t xSocket ) { BaseType_t xReturn; if( xDHCPSocket == xSocket ) { xReturn = pdTRUE; } else { xReturn = pdFALSE; } return xReturn; } /*-----------------------------------------------------------*/ /** * @brief Returns the current state of a DHCP process. * * @return The current state ( eDHCPState_t ) of the DHCP process. */ eDHCPState_t eGetDHCPState( void ) { return EP_DHCPData.eDHCPState; } /** * @brief Process the DHCP state machine based on current state. * * @param[in] xReset: Is the DHCP state machine starting over? pdTRUE/pdFALSE. * @param[in] eExpectedState: The function will only run if the state is expected. */ void vDHCPProcess( BaseType_t xReset, eDHCPState_t eExpectedState ) { BaseType_t xGivingUp = pdFALSE; #if ( ipconfigUSE_DHCP_HOOK != 0 ) eDHCPCallbackAnswer_t eAnswer; #endif /* ipconfigUSE_DHCP_HOOK */ /* Is DHCP starting over? */ if( xReset != pdFALSE ) { EP_DHCPData.eDHCPState = eInitialWait; } if( ( EP_DHCPData.eDHCPState != eExpectedState ) && ( xReset == pdFALSE ) ) { /* When the DHCP event was generated, the DHCP client was * in a different state. Therefore, ignore this event. */ FreeRTOS_debug_printf( ( "DHCP wrong state: expect: %d got: %d : ignore\n", eExpectedState, EP_DHCPData.eDHCPState ) ); } else { switch( EP_DHCPData.eDHCPState ) { case eInitialWait: /* Initial state. Create the DHCP socket, timer, etc. if they * have not already been created. */ prvInitialiseDHCP(); EP_DHCPData.eDHCPState = eWaitingSendFirstDiscover; break; case eWaitingSendFirstDiscover: /* Ask the user if a DHCP discovery is required. */ #if ( ipconfigUSE_DHCP_HOOK != 0 ) eAnswer = xApplicationDHCPHook( eDHCPPhasePreDiscover, xNetworkAddressing.ulDefaultIPAddress ); if( eAnswer == eDHCPContinue ) #endif /* ipconfigUSE_DHCP_HOOK */ { /* See if prvInitialiseDHCP() has creates a socket. */ if( xDHCPSocket == NULL ) { xGivingUp = pdTRUE; } else { *ipLOCAL_IP_ADDRESS_POINTER = 0UL; /* Send the first discover request. */ EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); if( prvSendDHCPDiscover() == pdPASS ) { EP_DHCPData.eDHCPState = eWaitingOffer; } else { /* Either the creation of a message buffer failed, or sendto(). * Try again in the next cycle. */ FreeRTOS_debug_printf( ( "Send failed during eWaitingSendFirstDiscover\n" ) ); } } } #if ( ipconfigUSE_DHCP_HOOK != 0 ) else { if( eAnswer == eDHCPUseDefaults ) { ( void ) memcpy( &( xNetworkAddressing ), &( xDefaultAddressing ), sizeof( xNetworkAddressing ) ); } /* The user indicates that the DHCP process does not continue. */ xGivingUp = pdTRUE; } #endif /* ipconfigUSE_DHCP_HOOK */ break; case eSendDHCPRequest: if( prvSendDHCPRequest() == pdPASS ) { /* Send succeeded, go to state 'eWaitingAcknowledge'. */ EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); EP_DHCPData.xDHCPTxPeriod = dhcpINITIAL_DHCP_TX_PERIOD; EP_DHCPData.eDHCPState = eWaitingAcknowledge; } else { /* Either the creation of a message buffer failed, or sendto(). * Try again in the next cycle. */ FreeRTOS_debug_printf( ( "Send failed during eSendDHCPRequest.\n" ) ); } break; case eWaitingOffer: xGivingUp = pdFALSE; /* Look for offers coming in. */ if( prvProcessDHCPReplies( dhcpMESSAGE_TYPE_OFFER ) == pdPASS ) { #if ( ipconfigUSE_DHCP_HOOK != 0 ) /* Ask the user if a DHCP request is required. */ eAnswer = xApplicationDHCPHook( eDHCPPhasePreRequest, EP_DHCPData.ulOfferedIPAddress ); if( eAnswer == eDHCPContinue ) #endif /* ipconfigUSE_DHCP_HOOK */ { /* An offer has been made, the user wants to continue, * generate the request. */ if( prvSendDHCPRequest() == pdPASS ) { EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); EP_DHCPData.xDHCPTxPeriod = dhcpINITIAL_DHCP_TX_PERIOD; EP_DHCPData.eDHCPState = eWaitingAcknowledge; } else { /* Either the creation of a message buffer failed, or sendto(). * Try again in the next cycle. */ FreeRTOS_debug_printf( ( "Send failed during eWaitingOffer/1.\n" ) ); EP_DHCPData.eDHCPState = eSendDHCPRequest; } break; } #if ( ipconfigUSE_DHCP_HOOK != 0 ) if( eAnswer == eDHCPUseDefaults ) { ( void ) memcpy( &( xNetworkAddressing ), &( xDefaultAddressing ), sizeof( xNetworkAddressing ) ); } /* The user indicates that the DHCP process does not continue. */ xGivingUp = pdTRUE; #endif /* ipconfigUSE_DHCP_HOOK */ } /* Is it time to send another Discover? */ else if( ( xTaskGetTickCount() - EP_DHCPData.xDHCPTxTime ) > EP_DHCPData.xDHCPTxPeriod ) { /* It is time to send another Discover. Increase the time * period, and if it has not got to the point of giving up - send * another discovery. */ EP_DHCPData.xDHCPTxPeriod <<= 1; if( EP_DHCPData.xDHCPTxPeriod <= ( TickType_t ) ipconfigMAXIMUM_DISCOVER_TX_PERIOD ) { if( xApplicationGetRandomNumber( &( EP_DHCPData.ulTransactionId ) ) != pdFALSE ) { EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); if( EP_DHCPData.xUseBroadcast != pdFALSE ) { EP_DHCPData.xUseBroadcast = pdFALSE; } else { EP_DHCPData.xUseBroadcast = pdTRUE; } if( prvSendDHCPDiscover() == pdPASS ) { FreeRTOS_debug_printf( ( "vDHCPProcess: timeout %lu ticks\n", EP_DHCPData.xDHCPTxPeriod ) ); } else { /* Either the creation of a message buffer failed, or sendto(). * Try again in the next cycle. */ FreeRTOS_debug_printf( ( "Send failed during eWaitingOffer/2.\n" ) ); EP_DHCPData.eDHCPState = eInitialWait; } } else { FreeRTOS_debug_printf( ( "vDHCPProcess: failed to generate a random Transaction ID\n" ) ); } } else { FreeRTOS_debug_printf( ( "vDHCPProcess: giving up %lu > %lu ticks\n", EP_DHCPData.xDHCPTxPeriod, ipconfigMAXIMUM_DISCOVER_TX_PERIOD ) ); #if ( ipconfigDHCP_FALL_BACK_AUTO_IP != 0 ) { /* Only use a fake Ack if the default IP address == 0x00 * and the link local addressing is used. Start searching * a free LinkLayer IP-address. Next state will be * 'eGetLinkLayerAddress'. */ prvPrepareLinkLayerIPLookUp(); /* Setting an IP address manually so set to not using * leased address mode. */ EP_DHCPData.eDHCPState = eGetLinkLayerAddress; } #else { xGivingUp = pdTRUE; } #endif /* ipconfigDHCP_FALL_BACK_AUTO_IP */ } } else { /* There was no DHCP reply, there was no time-out, just keep on waiting. */ } break; case eWaitingAcknowledge: /* Look for acks coming in. */ if( prvProcessDHCPReplies( dhcpMESSAGE_TYPE_ACK ) == pdPASS ) { FreeRTOS_debug_printf( ( "vDHCPProcess: acked %lxip\n", FreeRTOS_ntohl( EP_DHCPData.ulOfferedIPAddress ) ) ); /* DHCP completed. The IP address can now be used, and the * timer set to the lease timeout time. */ *ipLOCAL_IP_ADDRESS_POINTER = EP_DHCPData.ulOfferedIPAddress; /* Setting the 'local' broadcast address, something like * '192.168.1.255'. */ EP_IPv4_SETTINGS.ulBroadcastAddress = ( EP_DHCPData.ulOfferedIPAddress & xNetworkAddressing.ulNetMask ) | ~xNetworkAddressing.ulNetMask; EP_DHCPData.eDHCPState = eLeasedAddress; iptraceDHCP_SUCCEDEED( EP_DHCPData.ulOfferedIPAddress ); /* DHCP failed, the default configured IP-address will be used * Now call vIPNetworkUpCalls() to send the network-up event and * start the ARP timer. */ vIPNetworkUpCalls(); /* Close socket to ensure packets don't queue on it. */ prvCloseDHCPSocket(); if( EP_DHCPData.ulLeaseTime == 0UL ) { EP_DHCPData.ulLeaseTime = ( uint32_t ) dhcpDEFAULT_LEASE_TIME; } else if( EP_DHCPData.ulLeaseTime < dhcpMINIMUM_LEASE_TIME ) { EP_DHCPData.ulLeaseTime = dhcpMINIMUM_LEASE_TIME; } else { /* The lease time is already valid. */ } /* Check for clashes. */ vARPSendGratuitous(); vIPReloadDHCPTimer( EP_DHCPData.ulLeaseTime ); } else { /* Is it time to send another Discover? */ if( ( xTaskGetTickCount() - EP_DHCPData.xDHCPTxTime ) > EP_DHCPData.xDHCPTxPeriod ) { /* Increase the time period, and if it has not got to the * point of giving up - send another request. */ EP_DHCPData.xDHCPTxPeriod <<= 1; if( EP_DHCPData.xDHCPTxPeriod <= ( TickType_t ) ipconfigMAXIMUM_DISCOVER_TX_PERIOD ) { EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); if( prvSendDHCPRequest() == pdPASS ) { /* The message is sent. Stay in state 'eWaitingAcknowledge'. */ } else { /* Either the creation of a message buffer failed, or sendto(). * Try again in the next cycle. */ FreeRTOS_debug_printf( ( "Send failed during eWaitingAcknowledge.\n" ) ); EP_DHCPData.eDHCPState = eSendDHCPRequest; } } else { /* Give up, start again. */ EP_DHCPData.eDHCPState = eInitialWait; } } } break; #if ( ipconfigDHCP_FALL_BACK_AUTO_IP != 0 ) case eGetLinkLayerAddress: if( ( xTaskGetTickCount() - EP_DHCPData.xDHCPTxTime ) > EP_DHCPData.xDHCPTxPeriod ) { if( xARPHadIPClash == pdFALSE ) { /* ARP OK. proceed. */ iptraceDHCP_SUCCEDEED( EP_DHCPData.ulOfferedIPAddress ); /* Auto-IP succeeded, the default configured IP-address will * be used. Now call vIPNetworkUpCalls() to send the * network-up event and start the ARP timer. */ vIPNetworkUpCalls(); EP_DHCPData.eDHCPState = eNotUsingLeasedAddress; } else { /* ARP clashed - try another IP address. */ prvPrepareLinkLayerIPLookUp(); /* Setting an IP address manually so set to not using leased * address mode. */ EP_DHCPData.eDHCPState = eGetLinkLayerAddress; } } break; #endif /* ipconfigDHCP_FALL_BACK_AUTO_IP */ case eLeasedAddress: if( FreeRTOS_IsNetworkUp() != 0 ) { /* Resend the request at the appropriate time to renew the lease. */ prvCreateDHCPSocket(); if( xDHCPSocket != NULL ) { uint32_t ulID; if( xApplicationGetRandomNumber( &( ulID ) ) != pdFALSE ) { EP_DHCPData.ulTransactionId = ulID; } EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); EP_DHCPData.xDHCPTxPeriod = dhcpINITIAL_DHCP_TX_PERIOD; if( prvSendDHCPRequest() == pdPASS ) { /* The packet was sent successfully, wait for an acknowledgement. */ EP_DHCPData.eDHCPState = eWaitingAcknowledge; } else { /* The packet was not sent, try sending it later. */ EP_DHCPData.eDHCPState = eSendDHCPRequest; FreeRTOS_debug_printf( ( "Send failed eLeasedAddress.\n" ) ); } /* From now on, we should be called more often */ vIPReloadDHCPTimer( dhcpINITIAL_TIMER_PERIOD ); } } else { /* See PR #53 on github/freertos/freertos */ FreeRTOS_printf( ( "DHCP: lease time finished but network is down\n" ) ); vIPReloadDHCPTimer( pdMS_TO_TICKS( 5000U ) ); } break; case eNotUsingLeasedAddress: vIPSetDHCPTimerEnableState( pdFALSE ); break; default: /* Lint: all options are included. */ break; } if( xGivingUp != pdFALSE ) { /* xGivingUp became true either because of a time-out, or because * xApplicationDHCPHook() returned another value than 'eDHCPContinue', * meaning that the conversion is cancelled from here. */ /* Revert to static IP address. */ taskENTER_CRITICAL(); { *ipLOCAL_IP_ADDRESS_POINTER = xNetworkAddressing.ulDefaultIPAddress; iptraceDHCP_REQUESTS_FAILED_USING_DEFAULT_IP_ADDRESS( xNetworkAddressing.ulDefaultIPAddress ); } taskEXIT_CRITICAL(); EP_DHCPData.eDHCPState = eNotUsingLeasedAddress; vIPSetDHCPTimerEnableState( pdFALSE ); /* DHCP failed, the default configured IP-address will be used. Now * call vIPNetworkUpCalls() to send the network-up event and start the ARP * timer. */ vIPNetworkUpCalls(); /* Close socket to ensure packets don't queue on it. */ prvCloseDHCPSocket(); } } } /*-----------------------------------------------------------*/ /** * @brief Close the DHCP socket. */ static void prvCloseDHCPSocket( void ) { if( xDHCPSocket != NULL ) { /* This modules runs from the IP-task. Use the internal * function 'vSocketClose()` to close the socket. */ ( void ) vSocketClose( xDHCPSocket ); xDHCPSocket = NULL; } } /*-----------------------------------------------------------*/ /** * @brief Create a DHCP socket with the defined timeouts. */ _static void prvCreateDHCPSocket( void ) { struct freertos_sockaddr xAddress; BaseType_t xReturn; TickType_t xTimeoutTime = ( TickType_t ) 0; /* Create the socket, if it has not already been created. */ if( xDHCPSocket == NULL ) { xDHCPSocket = FreeRTOS_socket( FREERTOS_AF_INET, FREERTOS_SOCK_DGRAM, FREERTOS_IPPROTO_UDP ); if( xDHCPSocket != FREERTOS_INVALID_SOCKET ) { /* Ensure the Rx and Tx timeouts are zero as the DHCP executes in the * context of the IP task. */ ( void ) FreeRTOS_setsockopt( xDHCPSocket, 0, FREERTOS_SO_RCVTIMEO, &( xTimeoutTime ), sizeof( TickType_t ) ); ( void ) FreeRTOS_setsockopt( xDHCPSocket, 0, FREERTOS_SO_SNDTIMEO, &( xTimeoutTime ), sizeof( TickType_t ) ); /* Bind to the standard DHCP client port. */ xAddress.sin_port = ( uint16_t ) dhcpCLIENT_PORT_IPv4; xReturn = vSocketBind( xDHCPSocket, &xAddress, sizeof( xAddress ), pdFALSE ); if( xReturn != 0 ) { /* Binding failed, close the socket again. */ prvCloseDHCPSocket(); } } else { /* Change to NULL for easier testing. */ xDHCPSocket = NULL; } } } /*-----------------------------------------------------------*/ /** * @brief Initialise the DHCP state machine by creating DHCP socket and * begin the transaction. */ static void prvInitialiseDHCP( void ) { /* Initialise the parameters that will be set by the DHCP process. Per * https://www.ietf.org/rfc/rfc2131.txt, Transaction ID should be a random * value chosen by the client. */ /* Check for random number generator API failure. */ if( xApplicationGetRandomNumber( &( EP_DHCPData.ulTransactionId ) ) != pdFALSE ) { EP_DHCPData.xUseBroadcast = 0; EP_DHCPData.ulOfferedIPAddress = 0UL; EP_DHCPData.ulDHCPServerAddress = 0UL; EP_DHCPData.xDHCPTxPeriod = dhcpINITIAL_DHCP_TX_PERIOD; /* Create the DHCP socket if it has not already been created. */ prvCreateDHCPSocket(); FreeRTOS_debug_printf( ( "prvInitialiseDHCP: start after %lu ticks\n", dhcpINITIAL_TIMER_PERIOD ) ); vIPReloadDHCPTimer( dhcpINITIAL_TIMER_PERIOD ); } else { /* There was a problem with the randomiser. */ } } /*-----------------------------------------------------------*/ /** * @brief Process the DHCP replies. * * @param[in] xExpectedMessageType: The type of the message the DHCP state machine is expecting. * Messages of different type will be dropped. * * @return pdPASS: if DHCP options are received correctly; pdFAIL: Otherwise. */ _static BaseType_t prvProcessDHCPReplies( BaseType_t xExpectedMessageType ) { uint8_t * pucUDPPayload; int32_t lBytes; const DHCPMessage_IPv4_t * pxDHCPMessage; const uint8_t * pucByte; uint8_t ucOptionCode; uint32_t ulProcessed, ulParameter; BaseType_t xReturn = pdFALSE; const uint32_t ulMandatoryOptions = 2UL; /* DHCP server address, and the correct DHCP message type must be present in the options. */ /* memcpy() helper variables for MISRA Rule 21.15 compliance*/ const void * pvCopySource; void * pvCopyDest; /* Passing the address of a pointer (pucUDPPayload) because FREERTOS_ZERO_COPY is used. */ lBytes = FreeRTOS_recvfrom( xDHCPSocket, &pucUDPPayload, 0UL, FREERTOS_ZERO_COPY, NULL, NULL ); if( lBytes > 0 ) { /* Map a DHCP structure onto the received data. */ pxDHCPMessage = ipCAST_CONST_PTR_TO_CONST_TYPE_PTR( DHCPMessage_IPv4_t, pucUDPPayload ); /* Sanity check. */ if( lBytes < ( int32_t ) sizeof( DHCPMessage_IPv4_t ) ) { /* Not enough bytes. */ } else if( ( pxDHCPMessage->ulDHCPCookie != ( uint32_t ) dhcpCOOKIE ) || ( pxDHCPMessage->ucOpcode != ( uint8_t ) dhcpREPLY_OPCODE ) ) { /* Invalid cookie or unexpected opcode. */ } else if( ( pxDHCPMessage->ulTransactionID != FreeRTOS_htonl( EP_DHCPData.ulTransactionId ) ) ) { /* Transaction ID does not match. */ } else /* Looks like a valid DHCP response, with the same transaction ID. */ { if( memcmp( pxDHCPMessage->ucClientHardwareAddress, ipLOCAL_MAC_ADDRESS, sizeof( MACAddress_t ) ) != 0 ) { /* Target MAC address doesn't match. */ } else { size_t uxIndex, uxPayloadDataLength, uxLength; /* None of the essential options have been processed yet. */ ulProcessed = 0UL; /* Walk through the options until the dhcpOPTION_END_BYTE byte * is found, taking care not to walk off the end of the options. */ pucByte = &( pucUDPPayload[ sizeof( DHCPMessage_IPv4_t ) ] ); uxIndex = 0; uxPayloadDataLength = ( ( size_t ) lBytes ) - sizeof( DHCPMessage_IPv4_t ); while( uxIndex < uxPayloadDataLength ) { ucOptionCode = pucByte[ uxIndex ]; if( ucOptionCode == ( uint8_t ) dhcpOPTION_END_BYTE ) { /* Ready, the last byte has been seen. */ /* coverity[break_stmt] : Break statement terminating the loop */ break; } if( ucOptionCode == ( uint8_t ) dhcpIPv4_ZERO_PAD_OPTION_CODE ) { /* The value zero is used as a pad byte, * it is not followed by a length byte. */ uxIndex = uxIndex + 1U; continue; } /* Stop if the response is malformed. */ if( ( uxIndex + 1U ) < uxPayloadDataLength ) { /* Fetch the length byte. */ uxLength = ( size_t ) pucByte[ uxIndex + 1U ]; uxIndex = uxIndex + 2U; if( !( ( ( uxIndex + uxLength ) - 1U ) < uxPayloadDataLength ) ) { /* There are not as many bytes left as there should be. */ break; } } else { /* The length byte is missing. */ break; } /* In most cases, a 4-byte network-endian parameter follows, * just get it once here and use later. */ if( uxLength >= sizeof( ulParameter ) ) { /* * Use helper variables for memcpy() to remain * compliant with MISRA Rule 21.15. These should be * optimized away. */ pvCopySource = &pucByte[ uxIndex ]; pvCopyDest = &ulParameter; ( void ) memcpy( pvCopyDest, pvCopySource, sizeof( ulParameter ) ); /* 'uxIndex' will be increased at the end of this loop. */ } else { ulParameter = 0; } /* Confirm uxIndex is still a valid index after adjustments to uxIndex above */ if( !( uxIndex < uxPayloadDataLength ) ) { break; } /* Option-specific handling. */ switch( ucOptionCode ) { case dhcpIPv4_MESSAGE_TYPE_OPTION_CODE: if( pucByte[ uxIndex ] == ( uint8_t ) xExpectedMessageType ) { /* The message type is the message type the * state machine is expecting. */ ulProcessed++; } else { if( pucByte[ uxIndex ] == ( uint8_t ) dhcpMESSAGE_TYPE_NACK ) { if( xExpectedMessageType == ( BaseType_t ) dhcpMESSAGE_TYPE_ACK ) { /* Start again. */ EP_DHCPData.eDHCPState = eInitialWait; } } /* Stop processing further options. */ uxLength = 0; } break; case dhcpIPv4_SUBNET_MASK_OPTION_CODE: if( uxLength == sizeof( uint32_t ) ) { EP_IPv4_SETTINGS.ulNetMask = ulParameter; } break; case dhcpIPv4_GATEWAY_OPTION_CODE: /* The DHCP server may send more than 1 gateway addresses. */ if( uxLength >= sizeof( uint32_t ) ) { /* ulProcessed is not incremented in this case * because the gateway is not essential. */ EP_IPv4_SETTINGS.ulGatewayAddress = ulParameter; } break; case dhcpIPv4_DNS_SERVER_OPTIONS_CODE: /* ulProcessed is not incremented in this case * because the DNS server is not essential. Only the * first DNS server address is taken. */ EP_IPv4_SETTINGS.ulDNSServerAddress = ulParameter; break; case dhcpIPv4_SERVER_IP_ADDRESS_OPTION_CODE: if( uxLength == sizeof( uint32_t ) ) { if( xExpectedMessageType == ( BaseType_t ) dhcpMESSAGE_TYPE_OFFER ) { /* Offers state the replying server. */ ulProcessed++; EP_DHCPData.ulDHCPServerAddress = ulParameter; } else { /* The ack must come from the expected server. */ if( EP_DHCPData.ulDHCPServerAddress == ulParameter ) { ulProcessed++; } } } break; case dhcpIPv4_LEASE_TIME_OPTION_CODE: if( uxLength == sizeof( EP_DHCPData.ulLeaseTime ) ) { /* ulProcessed is not incremented in this case * because the lease time is not essential. */ /* The DHCP parameter is in seconds, convert * to host-endian format. */ EP_DHCPData.ulLeaseTime = FreeRTOS_ntohl( ulParameter ); /* Divide the lease time by two to ensure a renew * request is sent before the lease actually expires. */ EP_DHCPData.ulLeaseTime >>= 1UL; /* Multiply with configTICK_RATE_HZ to get clock ticks. */ EP_DHCPData.ulLeaseTime = ( uint32_t ) configTICK_RATE_HZ * ( uint32_t ) EP_DHCPData.ulLeaseTime; } break; default: /* Not interested in this field. */ break; } /* Jump over the data to find the next option code. */ if( uxLength == 0U ) { break; } uxIndex = uxIndex + uxLength; } /* Were all the mandatory options received? */ if( ulProcessed >= ulMandatoryOptions ) { /* HT:endian: used to be network order */ EP_DHCPData.ulOfferedIPAddress = pxDHCPMessage->ulYourIPAddress_yiaddr; FreeRTOS_printf( ( "vDHCPProcess: offer %lxip\n", FreeRTOS_ntohl( EP_DHCPData.ulOfferedIPAddress ) ) ); xReturn = pdPASS; } } } FreeRTOS_ReleaseUDPPayloadBuffer( pucUDPPayload ); } /* if( lBytes > 0 ) */ return xReturn; } /*-----------------------------------------------------------*/ /** * @brief Create a partial DHCP message by filling in all the 'constant' fields. * * @param[out] pxAddress: Address to be filled in. * @param[out] xOpcode: Opcode to be filled in the packet. Will always be 'dhcpREQUEST_OPCODE'. * @param[in] pucOptionsArray: The options to be added to the packet. * @param[in,out] pxOptionsArraySize: Byte count of the options. Its value might change. * * @return Ethernet buffer of the partially created DHCP packet. */ static uint8_t * prvCreatePartDHCPMessage( struct freertos_sockaddr * pxAddress, BaseType_t xOpcode, const uint8_t * const pucOptionsArray, size_t * pxOptionsArraySize ) { DHCPMessage_IPv4_t * pxDHCPMessage; size_t uxRequiredBufferSize = sizeof( DHCPMessage_IPv4_t ) + *pxOptionsArraySize; const NetworkBufferDescriptor_t * pxNetworkBuffer; uint8_t * pucUDPPayloadBuffer = NULL; #if ( ipconfigDHCP_REGISTER_HOSTNAME == 1 ) const char * pucHostName = pcApplicationHostnameHook(); size_t uxNameLength = strlen( pucHostName ); uint8_t * pucPtr; /* memcpy() helper variables for MISRA Rule 21.15 compliance*/ const void * pvCopySource; void * pvCopyDest; /* Two extra bytes for option code and length. */ uxRequiredBufferSize += ( 2U + uxNameLength ); #endif /* if ( ipconfigDHCP_REGISTER_HOSTNAME == 1 ) */ /* Obtain a network buffer with the required amount of storage. It doesn't make much sense * to use a time-out here, because that would cause the IP-task to wait for itself. */ pxNetworkBuffer = pxGetNetworkBufferWithDescriptor( sizeof( UDPPacket_t ) + uxRequiredBufferSize, 0U ); if( pxNetworkBuffer != NULL ) { /* Leave space for the UDP header. */ pucUDPPayloadBuffer = &( pxNetworkBuffer->pucEthernetBuffer[ ipUDP_PAYLOAD_OFFSET_IPv4 ] ); pxDHCPMessage = ipCAST_PTR_TO_TYPE_PTR( DHCPMessage_IPv4_t, pucUDPPayloadBuffer ); /* Most fields need to be zero. */ ( void ) memset( pxDHCPMessage, 0x00, sizeof( DHCPMessage_IPv4_t ) ); /* Create the message. */ pxDHCPMessage->ucOpcode = ( uint8_t ) xOpcode; pxDHCPMessage->ucAddressType = ( uint8_t ) dhcpADDRESS_TYPE_ETHERNET; pxDHCPMessage->ucAddressLength = ( uint8_t ) dhcpETHERNET_ADDRESS_LENGTH; pxDHCPMessage->ulTransactionID = FreeRTOS_htonl( EP_DHCPData.ulTransactionId ); pxDHCPMessage->ulDHCPCookie = ( uint32_t ) dhcpCOOKIE; if( EP_DHCPData.xUseBroadcast != pdFALSE ) { pxDHCPMessage->usFlags = ( uint16_t ) dhcpBROADCAST; } else { pxDHCPMessage->usFlags = 0U; } ( void ) memcpy( &( pxDHCPMessage->ucClientHardwareAddress[ 0 ] ), ipLOCAL_MAC_ADDRESS, sizeof( MACAddress_t ) ); /* Copy in the const part of the options options. */ ( void ) memcpy( &( pucUDPPayloadBuffer[ dhcpFIRST_OPTION_BYTE_OFFSET ] ), pucOptionsArray, *pxOptionsArraySize ); #if ( ipconfigDHCP_REGISTER_HOSTNAME == 1 ) { /* With this option, the hostname can be registered as well which makes * it easier to lookup a device in a router's list of DHCP clients. */ /* Point to where the OPTION_END was stored to add data. */ pucPtr = &( pucUDPPayloadBuffer[ dhcpFIRST_OPTION_BYTE_OFFSET + ( *pxOptionsArraySize - 1U ) ] ); pucPtr[ 0U ] = dhcpIPv4_DNS_HOSTNAME_OPTIONS_CODE; pucPtr[ 1U ] = ( uint8_t ) uxNameLength; /* * Use helper variables for memcpy() to remain * compliant with MISRA Rule 21.15. These should be * optimized away. */ pvCopySource = pucHostName; pvCopyDest = &pucPtr[ 2U ]; ( void ) memcpy( pvCopyDest, pvCopySource, uxNameLength ); pucPtr[ 2U + uxNameLength ] = ( uint8_t ) dhcpOPTION_END_BYTE; *pxOptionsArraySize += ( size_t ) ( 2U + uxNameLength ); } #endif /* if ( ipconfigDHCP_REGISTER_HOSTNAME == 1 ) */ /* Map in the client identifier. */ ( void ) memcpy( &( pucUDPPayloadBuffer[ dhcpFIRST_OPTION_BYTE_OFFSET + dhcpCLIENT_IDENTIFIER_OFFSET ] ), ipLOCAL_MAC_ADDRESS, sizeof( MACAddress_t ) ); /* Set the addressing. */ pxAddress->sin_addr = ipBROADCAST_IP_ADDRESS; pxAddress->sin_port = ( uint16_t ) dhcpSERVER_PORT_IPv4; } return pucUDPPayloadBuffer; } /*-----------------------------------------------------------*/ /** * @brief Create and send a DHCP request message through the DHCP socket. * @return Returns pdPASS when the message is successfully created and sent. */ static BaseType_t prvSendDHCPRequest( void ) { BaseType_t xResult = pdFAIL; uint8_t * pucUDPPayloadBuffer; struct freertos_sockaddr xAddress; static const uint8_t ucDHCPRequestOptions[] = { /* Do not change the ordering without also changing * dhcpCLIENT_IDENTIFIER_OFFSET, dhcpREQUESTED_IP_ADDRESS_OFFSET and * dhcpDHCP_SERVER_IP_ADDRESS_OFFSET. */ dhcpIPv4_MESSAGE_TYPE_OPTION_CODE, 1, dhcpMESSAGE_TYPE_REQUEST, /* Message type option. */ dhcpIPv4_CLIENT_IDENTIFIER_OPTION_CODE, 7, 1, 0, 0, 0, 0, 0, 0, /* Client identifier. */ dhcpIPv4_REQUEST_IP_ADDRESS_OPTION_CODE, 4, 0, 0, 0, 0, /* The IP address being requested. */ dhcpIPv4_SERVER_IP_ADDRESS_OPTION_CODE, 4, 0, 0, 0, 0, /* The IP address of the DHCP server. */ dhcpOPTION_END_BYTE }; size_t uxOptionsLength = sizeof( ucDHCPRequestOptions ); /* memcpy() helper variables for MISRA Rule 21.15 compliance*/ const void * pvCopySource; void * pvCopyDest; pucUDPPayloadBuffer = prvCreatePartDHCPMessage( &xAddress, ( BaseType_t ) dhcpREQUEST_OPCODE, ucDHCPRequestOptions, &( uxOptionsLength ) ); if( pucUDPPayloadBuffer != NULL ) { /* Copy in the IP address being requested. */ /* * Use helper variables for memcpy() source & dest to remain * compliant with MISRA Rule 21.15. These should be * optimized away. */ pvCopySource = &EP_DHCPData.ulOfferedIPAddress; pvCopyDest = &pucUDPPayloadBuffer[ dhcpFIRST_OPTION_BYTE_OFFSET + dhcpREQUESTED_IP_ADDRESS_OFFSET ]; ( void ) memcpy( pvCopyDest, pvCopySource, sizeof( EP_DHCPData.ulOfferedIPAddress ) ); /* Copy in the address of the DHCP server being used. */ pvCopySource = &EP_DHCPData.ulDHCPServerAddress; pvCopyDest = &pucUDPPayloadBuffer[ dhcpFIRST_OPTION_BYTE_OFFSET + dhcpDHCP_SERVER_IP_ADDRESS_OFFSET ]; ( void ) memcpy( pvCopyDest, pvCopySource, sizeof( EP_DHCPData.ulDHCPServerAddress ) ); FreeRTOS_debug_printf( ( "vDHCPProcess: reply %lxip\n", FreeRTOS_ntohl( EP_DHCPData.ulOfferedIPAddress ) ) ); iptraceSENDING_DHCP_REQUEST(); if( FreeRTOS_sendto( xDHCPSocket, pucUDPPayloadBuffer, sizeof( DHCPMessage_IPv4_t ) + uxOptionsLength, FREERTOS_ZERO_COPY, &xAddress, sizeof( xAddress ) ) == 0 ) { /* The packet was not successfully queued for sending and must be * returned to the stack. */ FreeRTOS_ReleaseUDPPayloadBuffer( pucUDPPayloadBuffer ); } else { xResult = pdPASS; } } return xResult; } /*-----------------------------------------------------------*/ /** * @brief Create and send a DHCP discover packet through the DHCP socket. * @return Returns pdPASS when the message is successfully created and sent. */ static BaseType_t prvSendDHCPDiscover( void ) { BaseType_t xResult = pdFAIL; uint8_t const * pucUDPPayloadBuffer; struct freertos_sockaddr xAddress; static const uint8_t ucDHCPDiscoverOptions[] = { /* Do not change the ordering without also changing dhcpCLIENT_IDENTIFIER_OFFSET. */ dhcpIPv4_MESSAGE_TYPE_OPTION_CODE, 1, dhcpMESSAGE_TYPE_DISCOVER, /* Message type option. */ dhcpIPv4_CLIENT_IDENTIFIER_OPTION_CODE, 7, 1, 0, 0, 0, 0, 0, 0, /* Client identifier. */ dhcpIPv4_PARAMETER_REQUEST_OPTION_CODE, 3, dhcpIPv4_SUBNET_MASK_OPTION_CODE, dhcpIPv4_GATEWAY_OPTION_CODE, dhcpIPv4_DNS_SERVER_OPTIONS_CODE, /* Parameter request option. */ dhcpOPTION_END_BYTE }; size_t uxOptionsLength = sizeof( ucDHCPDiscoverOptions ); pucUDPPayloadBuffer = prvCreatePartDHCPMessage( &xAddress, ( BaseType_t ) dhcpREQUEST_OPCODE, ucDHCPDiscoverOptions, &( uxOptionsLength ) ); if( pucUDPPayloadBuffer != NULL ) { FreeRTOS_debug_printf( ( "vDHCPProcess: discover\n" ) ); iptraceSENDING_DHCP_DISCOVER(); if( FreeRTOS_sendto( xDHCPSocket, pucUDPPayloadBuffer, sizeof( DHCPMessage_IPv4_t ) + uxOptionsLength, FREERTOS_ZERO_COPY, &( xAddress ), sizeof( xAddress ) ) == 0 ) { /* The packet was not successfully queued for sending and must be * returned to the stack. */ FreeRTOS_ReleaseUDPPayloadBuffer( pucUDPPayloadBuffer ); } xResult = pdTRUE; } return xResult; } /*-----------------------------------------------------------*/ #if ( ipconfigDHCP_FALL_BACK_AUTO_IP != 0 ) /** * @brief When DHCP has failed, the code can assign a Link-Layer address, and check if * another device already uses the IP-address. */ static void prvPrepareLinkLayerIPLookUp( void ) { uint8_t ucLinkLayerIPAddress[ 2 ]; uint32_t ulNumbers[ 2 ]; /* After DHCP has failed to answer, prepare everything to start * trying-out LinkLayer IP-addresses, using the random method. */ EP_DHCPData.xDHCPTxTime = xTaskGetTickCount(); xApplicationGetRandomNumber( &( ulNumbers[ 0 ] ) ); xApplicationGetRandomNumber( &( ulNumbers[ 1 ] ) ); ucLinkLayerIPAddress[ 0 ] = ( uint8_t ) 1 + ( uint8_t ) ( ulNumbers[ 0 ] % 0xFDU ); /* get value 1..254 for IP-address 3rd byte of IP address to try. */ ucLinkLayerIPAddress[ 1 ] = ( uint8_t ) 1 + ( uint8_t ) ( ulNumbers[ 1 ] % 0xFDU ); /* get value 1..254 for IP-address 4th byte of IP address to try. */ EP_IPv4_SETTINGS.ulGatewayAddress = 0UL; /* prepare xDHCPData with data to test. */ EP_DHCPData.ulOfferedIPAddress = FreeRTOS_inet_addr_quick( LINK_LAYER_ADDRESS_0, LINK_LAYER_ADDRESS_1, ucLinkLayerIPAddress[ 0 ], ucLinkLayerIPAddress[ 1 ] ); EP_DHCPData.ulLeaseTime = dhcpDEFAULT_LEASE_TIME; /* don't care about lease time. just put anything. */ EP_IPv4_SETTINGS.ulNetMask = FreeRTOS_inet_addr_quick( LINK_LAYER_NETMASK_0, LINK_LAYER_NETMASK_1, LINK_LAYER_NETMASK_2, LINK_LAYER_NETMASK_3 ); /* DHCP completed. The IP address can now be used, and the * timer set to the lease timeout time. */ *( ipLOCAL_IP_ADDRESS_POINTER ) = EP_DHCPData.ulOfferedIPAddress; /* Setting the 'local' broadcast address, something like 192.168.1.255' */ EP_IPv4_SETTINGS.ulBroadcastAddress = ( EP_DHCPData.ulOfferedIPAddress & EP_IPv4_SETTINGS.ulNetMask ) | ~EP_IPv4_SETTINGS.ulNetMask; /* Close socket to ensure packets don't queue on it. not needed anymore as DHCP failed. but still need timer for ARP testing. */ prvCloseDHCPSocket(); xApplicationGetRandomNumber( &( ulNumbers[ 0 ] ) ); EP_DHCPData.xDHCPTxPeriod = pdMS_TO_TICKS( 3000UL + ( ulNumbers[ 0 ] & 0x3ffUL ) ); /* do ARP test every (3 + 0-1024mS) seconds. */ xARPHadIPClash = pdFALSE; /* reset flag that shows if have ARP clash. */ vARPSendGratuitous(); } #endif /* ipconfigDHCP_FALL_BACK_AUTO_IP */ /*-----------------------------------------------------------*/ #endif /* ipconfigUSE_DHCP != 0 */