// Copyright (c) 2022-2023 Cesanta Software Limited // All rights reserved // // Datasheet: RM0468, devboard manual: UM2407 // https://www.st.com/resource/en/reference_manual/rm0468-stm32h723733-stm32h725735-and-stm32h730-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf // https://www.st.com/resource/en/user_manual/um2407-stm32h7-nucleo144-boards-mb1364-stmicroelectronics.pdf // Alternate functions: https://www.st.com/resource/en/datasheet/stm32h723.pdf #pragma once #include #include #include #include #include #define BIT(x) (1UL << (x)) #define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK) #define PIN(bank, num) ((((bank) - 'A') << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) #define LED1 PIN('B', 0) // On-board LED pin (green) #define LED2 PIN('E', 1) // On-board LED pin (yellow) #define LED3 PIN('B', 14) // On-board LED pin (red) #define LED LED2 // Use yellow LED for blinking // System clock (2.1, Figure 1; 8.5, Figure 45; 8.5.5, Figure 47; 8.5.6, Figure // 49; 8.5.8 Table 56; datasheet) CPU_FREQUENCY <= 550 MHz; hclk = CPU_FREQUENCY // / HPRE ; hclk <= 275 MHz; APB clocks <= 137.5 MHz. D1 domain bus matrix (and // so flash) runs at hclk frequency. Configure flash latency (WS) in accordance // to hclk freq (4.3.8, Table 16) The Ethernet controller is in D2 domain and // runs at hclk frequency enum { D1CPRE = 1, // actual divisor value HPRE = 2, // actual divisor value D1PPRE = 4, // register values, divisor value = BIT(value - 3) = / 2 D2PPRE1 = 4, D2PPRE2 = 4, D3PPRE = 4 }; // PLL1_P: odd division factors are not allowed (8.7.12) (except for '1') enum { PLL1_HSI = 64, PLL1_M = 32, PLL1_N = 225, PLL1_P = 1 }; #define FLASH_LATENCY 0x33 // WRHIGHFREQ LATENCY #define CPU_FREQUENCY ((PLL1_HSI * PLL1_N / PLL1_M / PLL1_P / D1CPRE) * 1000000) #define AHB_FREQUENCY (CPU_FREQUENCY / HPRE) #define APB2_FREQUENCY (AHB_FREQUENCY / (BIT(D2PPRE2 - 3))) #define APB1_FREQUENCY (AHB_FREQUENCY / (BIT(D2PPRE1 - 3))) static inline void spin(volatile uint32_t n) { while (n--) (void) 0; } enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN }; enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE }; enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN }; #define GPIO(N) ((GPIO_TypeDef *) (0x40000000 + 0x18020000UL + 0x400 * (N))) static GPIO_TypeDef *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); } static inline void gpio_toggle(uint16_t pin) { GPIO_TypeDef *gpio = gpio_bank(pin); uint32_t mask = BIT(PINNO(pin)); gpio->BSRR = mask << (gpio->ODR & mask ? 16 : 0); } static inline int gpio_read(uint16_t pin) { return gpio_bank(pin)->IDR & BIT(PINNO(pin)) ? 1 : 0; } static inline void gpio_write(uint16_t pin, bool val) { GPIO_TypeDef *gpio = gpio_bank(pin); gpio->BSRR = BIT(PINNO(pin)) << (val ? 0 : 16); } static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type, uint8_t speed, uint8_t pull, uint8_t af) { GPIO_TypeDef *gpio = gpio_bank(pin); uint8_t n = (uint8_t) (PINNO(pin)); RCC->AHB4ENR |= BIT(PINBANK(pin)); // Enable GPIO clock SETBITS(gpio->OTYPER, 1UL << n, ((uint32_t) type) << n); SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2)); SETBITS(gpio->PUPDR, 3UL << (n * 2), ((uint32_t) pull) << (n * 2)); SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4), ((uint32_t) af) << ((n & 7) * 4)); SETBITS(gpio->MODER, 3UL << (n * 2), ((uint32_t) mode) << (n * 2)); } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } #ifndef UART_DEBUG #define UART_DEBUG USART3 #endif // D2 Kernel clock (8.7.21) USART1 defaults to pclk2 (APB2), while USART2,3 // default to pclk1 (APB1). Even if using other kernel clocks, the APBx clocks // must be enabled for CPU access, as the kernel clock drives the BRR, not the // APB bus interface static inline void uart_init(USART_TypeDef *uart, unsigned long baud) { uint8_t af = 7; // Alternate function uint16_t rx = 0, tx = 0; // pins uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1 if (uart == USART1) freq = APB2_FREQUENCY, RCC->APB2ENR |= BIT(4); if (uart == USART2) freq = APB1_FREQUENCY, RCC->APB1LENR |= BIT(17); if (uart == USART3) freq = APB1_FREQUENCY, RCC->APB1LENR |= BIT(18); if (uart == USART1) tx = PIN('A', 9), rx = PIN('A', 10); if (uart == USART2) tx = PIN('A', 2), rx = PIN('A', 3); if (uart == USART3) tx = PIN('D', 8), rx = PIN('D', 9); #if 0 // CONSTANT BAUD RATE FOR REMOTE DEBUGGING WHILE SETTING THE PLL SETBITS(RCC->D2CCIP2R, 7 << 3, 3 << 3); // use HSI for UART1 freq = 64000000; #endif gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); uart->CR1 = 0; // Disable this UART uart->BRR = freq / baud; // Set baud rate uart->CR1 = BIT(0) | BIT(2) | BIT(3); // Set UE, RE, TE } static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) { uart->TDR = byte; while ((uart->ISR & BIT(7)) == 0) spin(1); } static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline int uart_read_ready(USART_TypeDef *uart) { return uart->ISR & BIT(5); // If RXNE bit is set, data is ready } static inline uint8_t uart_read_byte(USART_TypeDef *uart) { return (uint8_t) (uart->RDR & 255); } // RNG clock (rng_clk) defaults to HSI48 and is characterized at this frequency. // Enable at SystemInit. (STM32CubeMX) It won't work with a 275MHz (AHB) static inline void rng_init(void) { RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN; // Enable RNG AHB clock (rng_hclk) // 39.6.2 Table 320 init RNG->CR = RNG_CR_CONDRST | (0x0F << RNG_CR_RNG_CONFIG1_Pos) | (0 << RNG_CR_RNG_CONFIG2_Pos) | (0xD << RNG_CR_RNG_CONFIG3_Pos); RNG->HTCR = 0x17590abc; RNG->HTCR = 0xaa74; RNG->CR &= ~RNG_CR_CONDRST ; while(RNG->CR & RNG_CR_CONDRST) spin(1); // 39.7.1 RNG->CR |= RNG_CR_RNGEN; // Enable RNG } static inline uint32_t rng_read(void) { while ((RNG->SR & RNG_SR_DRDY) == 0) (void) 0; return RNG->DR; } static inline void ethernet_init(void) { // Initialise Ethernet. Enable MAC GPIO pins, see // https://www.st.com/resource/en/user_manual/um2407-stm32h7-nucleo144-boards-mb1364-stmicroelectronics.pdf uint16_t pins[] = {PIN('A', 1), PIN('A', 2), PIN('A', 7), PIN('B', 13), PIN('C', 1), PIN('C', 4), PIN('C', 5), PIN('G', 11), PIN('G', 13)}; for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) { gpio_init(pins[i], GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_INSANE, GPIO_PULL_NONE, 11); // 11 is the Ethernet function } NVIC_EnableIRQ(ETH_IRQn); // Setup Ethernet IRQ handler SETBITS(SYSCFG->PMCR, 7 << 21, 4 << 21); // Use RMII (12.3.1) RCC->AHB1ENR |= BIT(15) | BIT(16) | BIT(17); // Enable Ethernet clocks } #define UUID ((uint8_t *) UID_BASE) // Unique 96-bit chip ID. TRM 61.1 // Helper macro for MAC generation #define GENERATE_LOCALLY_ADMINISTERED_MAC() \ { \ 2, UUID[0] ^ UUID[1], UUID[2] ^ UUID[3], UUID[4] ^ UUID[5], \ UUID[6] ^ UUID[7] ^ UUID[8], UUID[9] ^ UUID[10] ^ UUID[11] \ }