/* * Handling of Ethernet PHY's * PHY's communicate with an EMAC either through * a Media-Independent Interface (MII), or a Reduced Media-Independent Interface (RMII). * The EMAC can poll for PHY ports on 32 different addresses. Each of the PHY ports * shall be treated independently. * */ /* Standard includes. */ #include #include #include /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "queue.h" #include "semphr.h" /* FreeRTOS+TCP includes. */ #include "FreeRTOS_IP.h" #include "FreeRTOS_Sockets.h" #include "phyHandling.h" #define phyMIN_PHY_ADDRESS 0 #define phyMAX_PHY_ADDRESS 31 #if defined( PHY_LS_HIGH_CHECK_TIME_MS ) || defined( PHY_LS_LOW_CHECK_TIME_MS ) #warning please use the new defines with 'ipconfig' prefix #endif #ifndef ipconfigPHY_LS_HIGH_CHECK_TIME_MS /* Check if the LinkStatus in the PHY is still high after 15 seconds of not * receiving packets. */ #define ipconfigPHY_LS_HIGH_CHECK_TIME_MS 15000UL #endif #ifndef ipconfigPHY_LS_LOW_CHECK_TIME_MS /* Check if the LinkStatus in the PHY is still low every second. */ #define ipconfigPHY_LS_LOW_CHECK_TIME_MS 1000UL #endif /* As the following 3 macro's are OK in most situations, and so they're not * included in 'FreeRTOSIPConfigDefaults.h'. * Users can change their values in the project's 'FreeRTOSIPConfig.h'. */ #ifndef phyPHY_MAX_RESET_TIME_MS #define phyPHY_MAX_RESET_TIME_MS 1000UL #endif #ifndef phyPHY_MAX_NEGOTIATE_TIME_MS #define phyPHY_MAX_NEGOTIATE_TIME_MS 3000UL #endif #ifndef phySHORT_DELAY_MS #define phySHORT_DELAY_MS 50UL #endif /* Naming and numbering of basic PHY registers. */ #define phyREG_00_BMCR 0x00U /* Basic Mode Control Register. */ #define phyREG_01_BMSR 0x01U /* Basic Mode Status Register. */ #define phyREG_02_PHYSID1 0x02U /* PHYS ID 1 */ #define phyREG_03_PHYSID2 0x03U /* PHYS ID 2 */ #define phyREG_04_ADVERTISE 0x04U /* Advertisement control reg */ /* Naming and numbering of extended PHY registers. */ #define PHYREG_10_PHYSTS 0x10U /* 16 PHY status register Offset */ #define phyREG_19_PHYCR 0x19U /* 25 RW PHY Control Register */ #define phyREG_1F_PHYSPCS 0x1FU /* 31 RW PHY Special Control Status */ /* Bit fields for 'phyREG_00_BMCR', the 'Basic Mode Control Register'. */ #define phyBMCR_FULL_DUPLEX 0x0100U /* Full duplex. */ #define phyBMCR_AN_RESTART 0x0200U /* Auto negotiation restart. */ #define phyBMCR_ISOLATE 0x0400U /* 1 = Isolates 0 = Normal operation. */ #define phyBMCR_AN_ENABLE 0x1000U /* Enable auto negotiation. */ #define phyBMCR_SPEED_100 0x2000U /* Select 100Mbps. */ #define phyBMCR_RESET 0x8000U /* Reset the PHY. */ /* Bit fields for 'phyREG_19_PHYCR', the 'PHY Control Register'. */ #define PHYCR_MDIX_EN 0x8000U /* Enable Auto MDIX. */ #define PHYCR_MDIX_FORCE 0x4000U /* Force MDIX crossed. */ #define phyBMSR_AN_COMPLETE 0x0020U /* Auto-Negotiation process completed */ #define phyBMSR_LINK_STATUS 0x0004U #define phyPHYSTS_LINK_STATUS 0x0001U /* PHY Link mask */ #define phyPHYSTS_SPEED_STATUS 0x0002U /* PHY Speed mask */ #define phyPHYSTS_DUPLEX_STATUS 0x0004U /* PHY Duplex mask */ /* Bit fields for 'phyREG_1F_PHYSPCS * 001 = 10BASE-T half-duplex * 101 = 10BASE-T full-duplex * 010 = 100BASE-TX half-duplex * 110 = 100BASE-TX full-duplex */ #define phyPHYSPCS_SPEED_MASK 0x000CU #define phyPHYSPCS_SPEED_10 0x0004U #define phyPHYSPCS_FULL_DUPLEX 0x0010U /* * Description of all capabilities that can be advertised to * the peer (usually a switch or router). */ #define phyADVERTISE_CSMA 0x0001U /* Supports IEEE 802.3u: Fast Ethernet at 100 Mbit/s */ #define phyADVERTISE_10HALF 0x0020U /* Try for 10mbps half-duplex. */ #define phyADVERTISE_10FULL 0x0040U /* Try for 10mbps full-duplex. */ #define phyADVERTISE_100HALF 0x0080U /* Try for 100mbps half-duplex. */ #define phyADVERTISE_100FULL 0x0100U /* Try for 100mbps full-duplex. */ #define phyADVERTISE_ALL \ ( phyADVERTISE_10HALF | phyADVERTISE_10FULL | \ phyADVERTISE_100HALF | phyADVERTISE_100FULL | \ phyADVERTISE_CSMA ) /* Send a reset command to a set of PHY-ports. */ static uint32_t xPhyReset( EthernetPhy_t * pxPhyObject, uint32_t ulPhyMask ); static BaseType_t xHas_1F_PHYSPCS( uint32_t ulPhyID ) { BaseType_t xResult; switch( ulPhyID ) { case PHY_ID_LAN8720: case PHY_ID_LAN8742A: case PHY_ID_KSZ8041: /* * case PHY_ID_KSZ8051: // same ID as 8041 * case PHY_ID_KSZ8081: // same ID as 8041 */ case PHY_ID_KSZ8081MNXIA: case PHY_ID_KSZ8863: default: /* Most PHY's have a 1F_PHYSPCS */ xResult = pdTRUE; break; case PHY_ID_DP83848I: xResult = pdFALSE; break; } return xResult; } /*-----------------------------------------------------------*/ static BaseType_t xHas_19_PHYCR( uint32_t ulPhyID ) { BaseType_t xResult; switch( ulPhyID ) { case PHY_ID_LAN8742A: case PHY_ID_DP83848I: xResult = pdTRUE; break; default: /* Most PHY's do not have a 19_PHYCR */ xResult = pdFALSE; break; } return xResult; } /*-----------------------------------------------------------*/ /* Initialise the struct and assign a PHY-read and -write function. */ void vPhyInitialise( EthernetPhy_t * pxPhyObject, xApplicationPhyReadHook_t fnPhyRead, xApplicationPhyWriteHook_t fnPhyWrite ) { memset( ( void * ) pxPhyObject, 0, sizeof( *pxPhyObject ) ); pxPhyObject->fnPhyRead = fnPhyRead; pxPhyObject->fnPhyWrite = fnPhyWrite; } /*-----------------------------------------------------------*/ /* Discover all PHY's connected by polling 32 indexes ( zero-based ) */ BaseType_t xPhyDiscover( EthernetPhy_t * pxPhyObject ) { BaseType_t xPhyAddress; pxPhyObject->xPortCount = 0; for( xPhyAddress = phyMIN_PHY_ADDRESS; xPhyAddress <= phyMAX_PHY_ADDRESS; xPhyAddress++ ) { uint32_t ulLowerID; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_03_PHYSID2, &ulLowerID ); /* A valid PHY id can not be all zeros or all ones. */ if( ( ulLowerID != ( uint16_t ) ~0U ) && ( ulLowerID != ( uint16_t ) 0U ) ) { uint32_t ulUpperID; uint32_t ulPhyID; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_02_PHYSID1, &ulUpperID ); ulPhyID = ( ( ( uint32_t ) ulUpperID ) << 16 ) | ( ulLowerID & 0xFFF0 ); pxPhyObject->ucPhyIndexes[ pxPhyObject->xPortCount ] = xPhyAddress; pxPhyObject->ulPhyIDs[ pxPhyObject->xPortCount ] = ulPhyID; pxPhyObject->xPortCount++; /* See if there is more storage space. */ if( pxPhyObject->xPortCount == ipconfigPHY_MAX_PORTS ) { break; } } } if( pxPhyObject->xPortCount > 0 ) { FreeRTOS_printf( ( "PHY ID %lX\n", pxPhyObject->ulPhyIDs[ 0 ] ) ); } return pxPhyObject->xPortCount; } /*-----------------------------------------------------------*/ /* Send a reset command to a set of PHY-ports. */ static uint32_t xPhyReset( EthernetPhy_t * pxPhyObject, uint32_t ulPhyMask ) { uint32_t ulDoneMask, ulConfig; TickType_t xRemainingTime; TimeOut_t xTimer; BaseType_t xPhyIndex; /* A bit-mask of PHY ports that are ready. */ ulDoneMask = 0UL; /* Set the RESET bits high. */ for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* Read Control register. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulConfig | phyBMCR_RESET ); } xRemainingTime = ( TickType_t ) pdMS_TO_TICKS( phyPHY_MAX_RESET_TIME_MS ); vTaskSetTimeOutState( &xTimer ); /* The reset should last less than a second. */ for( ; ; ) { for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); if( ( ulConfig & phyBMCR_RESET ) == 0 ) { FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET %d ready\n", ( int ) xPhyIndex ) ); ulDoneMask |= ( 1UL << xPhyIndex ); } } if( ulDoneMask == ulPhyMask ) { break; } if( xTaskCheckForTimeOut( &xTimer, &xRemainingTime ) != pdFALSE ) { FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET timed out ( done 0x%02lX )\n", ulDoneMask ) ); break; } /* Block for a while */ vTaskDelay( pdMS_TO_TICKS( phySHORT_DELAY_MS ) ); } /* Clear the reset bits. */ for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { if( ( ulDoneMask & ( 1UL << xPhyIndex ) ) == 0UL ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* The reset operation timed out, clear the bit manually. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulConfig & ~phyBMCR_RESET ); } } vTaskDelay( pdMS_TO_TICKS( phySHORT_DELAY_MS ) ); return ulDoneMask; } /*-----------------------------------------------------------*/ BaseType_t xPhyConfigure( EthernetPhy_t * pxPhyObject, const PhyProperties_t * pxPhyProperties ) { uint32_t ulConfig, ulAdvertise; BaseType_t xPhyIndex; if( pxPhyObject->xPortCount < 1 ) { FreeRTOS_printf( ( "xPhyConfigure: No PHY's detected.\n" ) ); return -1; } /* The expected ID for the 'LAN8742A' is 0x0007c130. */ /* The expected ID for the 'LAN8720' is 0x0007c0f0. */ /* The expected ID for the 'DP83848I' is 0x20005C90. */ /* Set advertise register. */ if( ( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_AUTO ) && ( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_AUTO ) ) { ulAdvertise = phyADVERTISE_ALL; /* Reset auto-negotiation capability. */ } else { /* Always select protocol 802.3u. */ ulAdvertise = phyADVERTISE_CSMA; if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_AUTO ) { if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL ) { ulAdvertise |= phyADVERTISE_10FULL | phyADVERTISE_100FULL; } else { ulAdvertise |= phyADVERTISE_10HALF | phyADVERTISE_100HALF; } } else if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_AUTO ) { if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_10 ) { ulAdvertise |= phyADVERTISE_10FULL | phyADVERTISE_10HALF; } else { ulAdvertise |= phyADVERTISE_100FULL | phyADVERTISE_100HALF; } } else if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_100 ) { if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL ) { ulAdvertise |= phyADVERTISE_100FULL; } else { ulAdvertise |= phyADVERTISE_100HALF; } } else { if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL ) { ulAdvertise |= phyADVERTISE_10FULL; } else { ulAdvertise |= phyADVERTISE_10HALF; } } } /* Send a reset command to a set of PHY-ports. */ xPhyReset( pxPhyObject, xPhyGetMask( pxPhyObject ) ); for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; uint32_t ulPhyID = pxPhyObject->ulPhyIDs[ xPhyIndex ]; /* Write advertise register. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_04_ADVERTISE, ulAdvertise ); /* * AN_EN AN1 AN0 Forced Mode * 0 0 0 10BASE-T, Half-Duplex * 0 0 1 10BASE-T, Full-Duplex * 0 1 0 100BASE-TX, Half-Duplex * 0 1 1 100BASE-TX, Full-Duplex * AN_EN AN1 AN0 Advertised Mode * 1 0 0 10BASE-T, Half/Full-Duplex * 1 0 1 100BASE-TX, Half/Full-Duplex * 1 1 0 10BASE-T Half-Duplex * 100BASE-TX, Half-Duplex * 1 1 1 10BASE-T, Half/Full-Duplex * 100BASE-TX, Half/Full-Duplex */ /* Read Control register. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); ulConfig &= ~( phyBMCR_SPEED_100 | phyBMCR_FULL_DUPLEX ); ulConfig |= phyBMCR_AN_ENABLE; if( ( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_100 ) || ( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_AUTO ) ) { ulConfig |= phyBMCR_SPEED_100; } else if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_10 ) { ulConfig &= ~phyBMCR_SPEED_100; } if( ( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL ) || ( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_AUTO ) ) { ulConfig |= phyBMCR_FULL_DUPLEX; } else if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_HALF ) { ulConfig &= ~phyBMCR_FULL_DUPLEX; } if( xHas_19_PHYCR( ulPhyID ) ) { uint32_t ulPhyControl; /* Read PHY Control register. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_19_PHYCR, &ulPhyControl ); /* Clear bits which might get set: */ ulPhyControl &= ~( PHYCR_MDIX_EN | PHYCR_MDIX_FORCE ); if( pxPhyProperties->ucMDI_X == PHY_MDIX_AUTO ) { ulPhyControl |= PHYCR_MDIX_EN; } else if( pxPhyProperties->ucMDI_X == PHY_MDIX_CROSSED ) { /* Force direct link = Use crossed RJ45 cable. */ ulPhyControl &= ~PHYCR_MDIX_FORCE; } else { /* Force crossed link = Use direct RJ45 cable. */ ulPhyControl |= PHYCR_MDIX_FORCE; } /* update PHY Control Register. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_19_PHYCR, ulPhyControl ); } FreeRTOS_printf( ( "+TCP: advertise: %04lX config %04lX\n", ulAdvertise, ulConfig ) ); } /* Keep these values for later use. */ pxPhyObject->ulBCRValue = ulConfig & ~phyBMCR_ISOLATE; pxPhyObject->ulACRValue = ulAdvertise; return 0; } /*-----------------------------------------------------------*/ /* xPhyFixedValue(): this function is called in case auto-negotiation is disabled. * The caller has set the values in 'xPhyPreferences' (ucDuplex and ucSpeed). * The PHY register phyREG_00_BMCR will be set for every connected PHY that matches * with ulPhyMask. */ BaseType_t xPhyFixedValue( EthernetPhy_t * pxPhyObject, uint32_t ulPhyMask ) { BaseType_t xPhyIndex; uint32_t ulValue, ulBitMask = ( uint32_t ) 1U; ulValue = ( uint32_t ) 0U; if( pxPhyObject->xPhyPreferences.ucDuplex == PHY_DUPLEX_FULL ) { ulValue |= phyBMCR_FULL_DUPLEX; } if( pxPhyObject->xPhyPreferences.ucSpeed == PHY_SPEED_100 ) { ulValue |= phyBMCR_SPEED_100; } for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { if( ( ulPhyMask & ulBitMask ) != 0lu ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* Enable Auto-Negotiation. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulValue ); } } return 0; } /*-----------------------------------------------------------*/ /* xPhyStartAutoNegotiation() is the alternative xPhyFixedValue(): * It sets the BMCR_AN_RESTART bit and waits for the auto-negotiation completion * ( phyBMSR_AN_COMPLETE ). */ BaseType_t xPhyStartAutoNegotiation( EthernetPhy_t * pxPhyObject, uint32_t ulPhyMask ) { uint32_t xPhyIndex, ulDoneMask, ulBitMask; uint32_t ulPHYLinkStatus, ulRegValue; TickType_t xRemainingTime; TimeOut_t xTimer; if( ulPhyMask == ( uint32_t ) 0U ) { return 0; } for( xPhyIndex = 0; xPhyIndex < ( uint32_t ) pxPhyObject->xPortCount; xPhyIndex++ ) { if( ( ulPhyMask & ( 1lu << xPhyIndex ) ) != 0lu ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* Enable Auto-Negotiation. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_04_ADVERTISE, pxPhyObject->ulACRValue ); pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, pxPhyObject->ulBCRValue | phyBMCR_AN_RESTART ); } } xRemainingTime = ( TickType_t ) pdMS_TO_TICKS( phyPHY_MAX_NEGOTIATE_TIME_MS ); vTaskSetTimeOutState( &xTimer ); ulDoneMask = 0; /* Wait until the auto-negotiation will be completed */ for( ; ; ) { ulBitMask = ( uint32_t ) 1U; for( xPhyIndex = 0; xPhyIndex < ( uint32_t ) pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { if( ( ulPhyMask & ulBitMask ) != 0lu ) { if( ( ulDoneMask & ulBitMask ) == 0lu ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulRegValue ); if( ( ulRegValue & phyBMSR_AN_COMPLETE ) != 0 ) { ulDoneMask |= ulBitMask; } } } } if( ulPhyMask == ulDoneMask ) { break; } if( xTaskCheckForTimeOut( &xTimer, &xRemainingTime ) != pdFALSE ) { FreeRTOS_printf( ( "xPhyStartAutoNegotiation: phyBMCR_RESET timed out ( done 0x%02lX )\n", ulDoneMask ) ); break; } vTaskDelay( pdMS_TO_TICKS( phySHORT_DELAY_MS ) ); } if( ulDoneMask != ( uint32_t ) 0U ) { ulBitMask = ( uint32_t ) 1U; pxPhyObject->ulLinkStatusMask &= ~( ulDoneMask ); for( xPhyIndex = 0; xPhyIndex < ( uint32_t ) pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; uint32_t ulPhyID = pxPhyObject->ulPhyIDs[ xPhyIndex ]; if( ( ulDoneMask & ulBitMask ) == ( uint32_t ) 0U ) { continue; } /* Clear the 'phyBMCR_AN_RESTART' bit. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, pxPhyObject->ulBCRValue ); pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulRegValue ); if( ( ulRegValue & phyBMSR_LINK_STATUS ) != 0 ) { ulPHYLinkStatus |= phyBMSR_LINK_STATUS; pxPhyObject->ulLinkStatusMask |= ulBitMask; } else { ulPHYLinkStatus &= ~( phyBMSR_LINK_STATUS ); } if( ulPhyID == PHY_ID_KSZ8081MNXIA ) { uint32_t ulControlStatus; pxPhyObject->fnPhyRead( xPhyAddress, 0x1E, &ulControlStatus ); switch( ulControlStatus & 0x07 ) { case 0x01: case 0x05: /* [001] = 10BASE-T half-duplex */ /* [101] = 10BASE-T full-duplex */ /* 10 Mbps. */ ulRegValue |= phyPHYSTS_SPEED_STATUS; break; case 0x02: case 0x06: /* [010] = 100BASE-TX half-duplex */ /* [110] = 100BASE-TX full-duplex */ break; } switch( ulControlStatus & 0x07 ) { case 0x05: case 0x06: /* [101] = 10BASE-T full-duplex */ /* [110] = 100BASE-TX full-duplex */ /* Full duplex. */ ulRegValue |= phyPHYSTS_DUPLEX_STATUS; break; case 0x01: case 0x02: /* [001] = 10BASE-T half-duplex */ /* [010] = 100BASE-TX half-duplex */ break; } } else if( xHas_1F_PHYSPCS( ulPhyID ) ) { /* 31 RW PHY Special Control Status */ uint32_t ulControlStatus; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_1F_PHYSPCS, &ulControlStatus ); ulRegValue = 0; if( ( ulControlStatus & phyPHYSPCS_FULL_DUPLEX ) != 0 ) { ulRegValue |= phyPHYSTS_DUPLEX_STATUS; } if( ( ulControlStatus & phyPHYSPCS_SPEED_MASK ) == phyPHYSPCS_SPEED_10 ) { ulRegValue |= phyPHYSTS_SPEED_STATUS; } } else { /* Read the result of the auto-negotiation. */ pxPhyObject->fnPhyRead( xPhyAddress, PHYREG_10_PHYSTS, &ulRegValue ); } FreeRTOS_printf( ( "Autonego ready: %08lx: %s duplex %u mbit %s status\n", ulRegValue, ( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) ? "full" : "half", ( ulRegValue & phyPHYSTS_SPEED_STATUS ) ? 10 : 100, ( ( ulPHYLinkStatus |= phyBMSR_LINK_STATUS ) != 0 ) ? "high" : "low" ) ); if( ( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) != ( uint32_t ) 0U ) { pxPhyObject->xPhyProperties.ucDuplex = PHY_DUPLEX_FULL; } else { pxPhyObject->xPhyProperties.ucDuplex = PHY_DUPLEX_HALF; } if( ( ulRegValue & phyPHYSTS_SPEED_STATUS ) != 0 ) { pxPhyObject->xPhyProperties.ucSpeed = PHY_SPEED_10; } else { pxPhyObject->xPhyProperties.ucSpeed = PHY_SPEED_100; } } } /* if( ulDoneMask != ( uint32_t) 0U ) */ return 0; } /*-----------------------------------------------------------*/ BaseType_t xPhyCheckLinkStatus( EthernetPhy_t * pxPhyObject, BaseType_t xHadReception ) { uint32_t ulStatus, ulBitMask = 1U; BaseType_t xPhyIndex; BaseType_t xNeedCheck = pdFALSE; if( xHadReception > 0 ) { /* A packet was received. No need to check for the PHY status now, * but set a timer to check it later on. */ vTaskSetTimeOutState( &( pxPhyObject->xLinkStatusTimer ) ); pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_HIGH_CHECK_TIME_MS ); for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { if( ( pxPhyObject->ulLinkStatusMask & ulBitMask ) == 0UL ) { pxPhyObject->ulLinkStatusMask |= ulBitMask; FreeRTOS_printf( ( "xPhyCheckLinkStatus: PHY LS now %02lX\n", pxPhyObject->ulLinkStatusMask ) ); xNeedCheck = pdTRUE; } } } else if( xTaskCheckForTimeOut( &( pxPhyObject->xLinkStatusTimer ), &( pxPhyObject->xLinkStatusRemaining ) ) != pdFALSE ) { /* Frequent checking the PHY Link Status can affect for the performance of Ethernet controller. * As long as packets are received, no polling is needed. * Otherwise, polling will be done when the 'xLinkStatusTimer' expires. */ for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; if( pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulStatus ) == 0 ) { if( !!( pxPhyObject->ulLinkStatusMask & ulBitMask ) != !!( ulStatus & phyBMSR_LINK_STATUS ) ) { if( ( ulStatus & phyBMSR_LINK_STATUS ) != 0 ) { pxPhyObject->ulLinkStatusMask |= ulBitMask; } else { pxPhyObject->ulLinkStatusMask &= ~( ulBitMask ); } FreeRTOS_printf( ( "xPhyCheckLinkStatus: PHY LS now %02lX\n", pxPhyObject->ulLinkStatusMask ) ); xNeedCheck = pdTRUE; } } } vTaskSetTimeOutState( &( pxPhyObject->xLinkStatusTimer ) ); if( ( pxPhyObject->ulLinkStatusMask & ( ulBitMask >> 1 ) ) != 0 ) { /* The link status is high, so don't poll the PHY too often. */ pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_HIGH_CHECK_TIME_MS ); } else { /* The link status is low, polling may be done more frequently. */ pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_LOW_CHECK_TIME_MS ); } } return xNeedCheck; } /*-----------------------------------------------------------*/