/* * Copyright 2018 - 2021 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_clock.h" /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.clock" #endif /******************************************************************************* * Definitions ******************************************************************************/ /* To make full use of CM7 hardware FPU, use double instead of uint64_t in clock driver to achieve better performance, it is depend on the IDE Floating point settings, if double precision is selected in IDE, clock_64b_t will switch to double type automatically. only support IAR and MDK here */ #if __FPU_USED #if (defined(__ICCARM__)) #if (__ARMVFP__ >= __ARMFPV5__) && \ (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/ typedef double clock_64b_t; #else typedef uint64_t clock_64b_t; #endif #elif (defined(__GNUC__)) #if (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/ typedef double clock_64b_t; #else typedef uint64_t clock_64b_t; #endif #elif defined(__CC_ARM) || defined(__ARMCC_VERSION) #if defined __TARGET_FPU_FPV5_D16 typedef double clock_64b_t; #else typedef uint64_t clock_64b_t; #endif #else typedef uint64_t clock_64b_t; #endif #else typedef uint64_t clock_64b_t; #endif /******************************************************************************* * Variables ******************************************************************************/ /* External XTAL (OSC) clock frequency. */ volatile uint32_t g_xtalFreq; /* External RTC XTAL clock frequency. */ volatile uint32_t g_rtcXtalFreq; /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get the periph clock frequency. * * @return Periph clock frequency in Hz. */ static uint32_t CLOCK_GetPeriphClkFreq(void); /*! * @brief Get the frequency of PLL USB1 software clock. * * @return The frequency of PLL USB1 software clock. */ static uint32_t CLOCK_GetPllUsb1SWFreq(void); /******************************************************************************* * Code ******************************************************************************/ static uint32_t CLOCK_GetPeriphClkFreq(void) { uint32_t freq; /* Periph_clk2_clk ---> Periph_clk */ if ((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK) != 0U) { switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK) { /* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */ case CCM_CBCMR_PERIPH_CLK2_SEL(0U): freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1); break; /* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */ case CCM_CBCMR_PERIPH_CLK2_SEL(1U): freq = CLOCK_GetOscFreq(); break; case CCM_CBCMR_PERIPH_CLK2_SEL(2U): freq = CLOCK_GetPllFreq(kCLOCK_PllSys); break; case CCM_CBCMR_PERIPH_CLK2_SEL(3U): default: freq = 0U; break; } freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U); } /* Pre_Periph_clk ---> Periph_clk */ else { switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK) { /* PLL2 ---> Pre_Periph_clk ---> Periph_clk */ case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U): freq = CLOCK_GetPllFreq(kCLOCK_PllSys); break; /* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */ case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U): freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2); break; /* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */ case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U): freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0); break; /* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */ case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U): freq = CLOCK_GetPllFreq(kCLOCK_PllArm) / (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U); break; default: freq = 0U; break; } } return freq; } static uint32_t CLOCK_GetPllUsb1SWFreq(void) { uint32_t freq; switch ((CCM->CCSR & CCM_CCSR_PLL3_SW_CLK_SEL_MASK) >> CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT) { case 0: { freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1); break; } case 1: { freq = 24000000UL; break; } default: freq = 0UL; break; } return freq; } /*! * brief Initialize the external 24MHz clock. * * This function supports two modes: * 1. Use external crystal oscillator. * 2. Bypass the external crystal oscillator, using input source clock directly. * * After this function, please call ref CLOCK_SetXtal0Freq to inform clock driver * the external clock frequency. * * param bypassXtalOsc Pass in true to bypass the external crystal oscillator. * note This device does not support bypass external crystal oscillator, so * the input parameter should always be false. */ void CLOCK_InitExternalClk(bool bypassXtalOsc) { /* This device does not support bypass XTAL OSC. */ assert(!bypassXtalOsc); CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */ while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0U) { } CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */ while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0UL) { } CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; } /*! * brief Deinitialize the external 24MHz clock. * * This function disables the external 24MHz clock. * * After this function, please call ref CLOCK_SetXtal0Freq to set external clock * frequency to 0. */ void CLOCK_DeinitExternalClk(void) { CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */ } /*! * brief Switch the OSC. * * This function switches the OSC source for SoC. * * param osc OSC source to switch to. */ void CLOCK_SwitchOsc(clock_osc_t osc) { if (osc == kCLOCK_RcOsc) { XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK; } else { XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK; } } /*! * brief Initialize the RC oscillator 24MHz clock. */ void CLOCK_InitRcOsc24M(void) { XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK; } /*! * brief Power down the RCOSC 24M clock. */ void CLOCK_DeinitRcOsc24M(void) { XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK; } /*! * brief Gets the AHB clock frequency. * * return The AHB clock frequency value in hertz. */ uint32_t CLOCK_GetAhbFreq(void) { return CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U); } /*! * brief Gets the SEMC clock frequency. * * return The SEMC clock frequency value in hertz. */ uint32_t CLOCK_GetSemcFreq(void) { uint32_t freq; /* SEMC alternative clock ---> SEMC Clock */ if ((CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK) != 0U) { /* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */ if ((CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK) != 0U) { freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1); } /* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */ else { freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2); } } /* Periph_clk ---> SEMC Clock */ else { freq = CLOCK_GetPeriphClkFreq(); } freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U); return freq; } /*! * brief Gets the IPG clock frequency. * * return The IPG clock frequency value in hertz. */ uint32_t CLOCK_GetIpgFreq(void) { return CLOCK_GetAhbFreq() / (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U); } /*! * brief Gets the PER clock frequency. * * return The PER clock frequency value in hertz. */ uint32_t CLOCK_GetPerClkFreq(void) { uint32_t freq; /* Osc_clk ---> PER Clock*/ if ((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_CLK_SEL_MASK) != 0U) { freq = CLOCK_GetOscFreq(); } /* Periph_clk ---> AHB Clock ---> IPG Clock ---> PER Clock */ else { freq = CLOCK_GetIpgFreq(); } freq /= (((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_PODF_MASK) >> CCM_CSCMR1_PERCLK_PODF_SHIFT) + 1U); return freq; } /*! * brief Gets the clock frequency for a specific clock name. * * This function checks the current clock configurations and then calculates * the clock frequency for a specific clock name defined in clock_name_t. * * param clockName Clock names defined in clock_name_t * return Clock frequency value in hertz */ uint32_t CLOCK_GetFreq(clock_name_t name) { uint32_t freq; switch (name) { case kCLOCK_CpuClk: case kCLOCK_AhbClk: freq = CLOCK_GetAhbFreq(); break; case kCLOCK_SemcClk: freq = CLOCK_GetSemcFreq(); break; case kCLOCK_IpgClk: freq = CLOCK_GetIpgFreq(); break; case kCLOCK_PerClk: freq = CLOCK_GetPerClkFreq(); break; case kCLOCK_OscClk: freq = CLOCK_GetOscFreq(); break; case kCLOCK_RtcClk: freq = CLOCK_GetRtcFreq(); break; case kCLOCK_ArmPllClk: freq = CLOCK_GetPllFreq(kCLOCK_PllArm); break; case kCLOCK_Usb1PllClk: freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1); break; case kCLOCK_Usb1PllPfd0Clk: freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0); break; case kCLOCK_Usb1PllPfd1Clk: freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1); break; case kCLOCK_Usb1PllPfd2Clk: freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2); break; case kCLOCK_Usb1PllPfd3Clk: freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3); break; case kCLOCK_Usb1SwClk: freq = CLOCK_GetPllUsb1SWFreq(); break; case kCLOCK_Usb1Sw120MClk: freq = CLOCK_GetPllUsb1SWFreq() / 4UL; break; case kCLOCK_Usb1Sw60MClk: freq = CLOCK_GetPllUsb1SWFreq() / 8UL; break; case kCLOCK_Usb1Sw80MClk: freq = CLOCK_GetPllUsb1SWFreq() / 6UL; break; case kCLOCK_Usb2PllClk: freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2); break; case kCLOCK_SysPllClk: freq = CLOCK_GetPllFreq(kCLOCK_PllSys); break; case kCLOCK_SysPllPfd0Clk: freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0); break; case kCLOCK_SysPllPfd1Clk: freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1); break; case kCLOCK_SysPllPfd2Clk: freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2); break; case kCLOCK_SysPllPfd3Clk: freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3); break; case kCLOCK_EnetPll0Clk: freq = CLOCK_GetPllFreq(kCLOCK_PllEnet); break; case kCLOCK_EnetPll1Clk: freq = CLOCK_GetPllFreq(kCLOCK_PllEnet2); break; case kCLOCK_EnetPll2Clk: freq = CLOCK_GetPllFreq(kCLOCK_PllEnet25M); break; case kCLOCK_AudioPllClk: freq = CLOCK_GetPllFreq(kCLOCK_PllAudio); break; case kCLOCK_VideoPllClk: freq = CLOCK_GetPllFreq(kCLOCK_PllVideo); break; default: freq = 0U; break; } return freq; } /*! * brief Gets the frequency of selected clock root. * * param clockRoot The clock root used to get the frequency, please refer to @ref clock_root_t. * return The frequency of selected clock root. */ uint32_t CLOCK_GetClockRootFreq(clock_root_t clockRoot) { static const clock_name_t clockRootSourceArray[][6] = CLOCK_ROOT_SOUCE; static const clock_mux_t clockRootMuxTupleArray[] = CLOCK_ROOT_MUX_TUPLE; static const clock_div_t clockRootDivTupleArray[][2] = CLOCK_ROOT_DIV_TUPLE; uint32_t freq = 0UL; clock_mux_t clockRootMuxTuple = clockRootMuxTupleArray[(uint8_t)clockRoot]; clock_div_t clockRootPreDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][0]; clock_div_t clockRootPostDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][1]; uint32_t clockRootMuxValue = (CCM_TUPLE_REG(CCM, clockRootMuxTuple) & CCM_TUPLE_MASK(clockRootMuxTuple)) >> CCM_TUPLE_SHIFT(clockRootMuxTuple); clock_name_t clockSourceName; clockSourceName = clockRootSourceArray[(uint8_t)clockRoot][clockRootMuxValue]; assert(clockSourceName != kCLOCK_NoneName); freq = CLOCK_GetFreq(clockSourceName); if (clockRootPreDivTuple != kCLOCK_NonePreDiv) { freq /= ((CCM_TUPLE_REG(CCM, clockRootPreDivTuple) & CCM_TUPLE_MASK(clockRootPreDivTuple)) >> CCM_TUPLE_SHIFT(clockRootPreDivTuple)) + 1UL; } freq /= ((CCM_TUPLE_REG(CCM, clockRootPostDivTuple) & CCM_TUPLE_MASK(clockRootPostDivTuple)) >> CCM_TUPLE_SHIFT(clockRootPostDivTuple)) + 1UL; return freq; } /*! brief Enable USB HS clock. * * This function only enables the access to USB HS prepheral, upper layer * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY * clock to use USB HS. * * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused. * param freq USB HS does not care about the clock source, so this parameter is ignored. * retval true The clock is set successfully. * retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq) { uint32_t i; CCM->CCGR6 |= CCM_CCGR6_CG0_MASK; USB1->USBCMD |= USBHS_USBCMD_RST_MASK; /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/ for (i = 0; i < 400000U; i++) { __ASM("nop"); } PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK); return true; } /*! brief Enable USB HS clock. * * This function only enables the access to USB HS prepheral, upper layer * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY * clock to use USB HS. * * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused. * param freq USB HS does not care about the clock source, so this parameter is ignored. * retval true The clock is set successfully. * retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq) { uint32_t i = 0; CCM->CCGR6 |= CCM_CCGR6_CG0_MASK; USB2->USBCMD |= USBHS_USBCMD_RST_MASK; /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/ for (i = 0; i < 400000U; i++) { __ASM("nop"); } PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK); return true; } /*! brief Enable USB HS PHY PLL clock. * * This function enables the internal 480MHz USB PHY PLL clock. * * param src USB HS PHY PLL clock source. * param freq The frequency specified by src. * retval true The clock is set successfully. * retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq) { static const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U}; if ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_ENABLE_MASK) != 0U) { CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK; } else { CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll); } USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */ USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK; USBPHY1->PWD = 0; USBPHY1->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK | USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK; return true; } /*! brief Disable USB HS PHY PLL clock. * * This function disables USB HS PHY PLL clock. */ void CLOCK_DisableUsbhs0PhyPllClock(void) { CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK; USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */ } /*! * brief Initialize the ARM PLL. * * This function initialize the ARM PLL with specific settings * * param config configuration to set to PLL. */ void CLOCK_InitArmPll(const clock_arm_pll_config_t *config) { /* Bypass PLL first */ CCM_ANALOG->PLL_ARM = (CCM_ANALOG->PLL_ARM & (~CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_ARM_BYPASS_MASK | CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC(config->src); CCM_ANALOG->PLL_ARM = (CCM_ANALOG->PLL_ARM & (~(CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK | CCM_ANALOG_PLL_ARM_POWERDOWN_MASK))) | CCM_ANALOG_PLL_ARM_ENABLE_MASK | CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider); while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_ARM &= ~CCM_ANALOG_PLL_ARM_BYPASS_MASK; } /*! * brief De-initialize the ARM PLL. */ void CLOCK_DeinitArmPll(void) { CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK; } /*! * brief Initialize the System PLL. * * This function initializes the System PLL with specific settings * * param config Configuration to set to PLL. */ void CLOCK_InitSysPll(const clock_sys_pll_config_t *config) { /* Bypass PLL first */ CCM_ANALOG->PLL_SYS = (CCM_ANALOG->PLL_SYS & (~CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_SYS_BYPASS_MASK | CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC(config->src); CCM_ANALOG->PLL_SYS = (CCM_ANALOG->PLL_SYS & (~(CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK | CCM_ANALOG_PLL_SYS_POWERDOWN_MASK))) | CCM_ANALOG_PLL_SYS_ENABLE_MASK | CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider); /* Initialize the fractional mode */ CCM_ANALOG->PLL_SYS_NUM = CCM_ANALOG_PLL_SYS_NUM_A(config->numerator); CCM_ANALOG->PLL_SYS_DENOM = CCM_ANALOG_PLL_SYS_DENOM_B(config->denominator); /* Initialize the spread spectrum mode */ CCM_ANALOG->PLL_SYS_SS = CCM_ANALOG_PLL_SYS_SS_STEP(config->ss_step) | CCM_ANALOG_PLL_SYS_SS_ENABLE(config->ss_enable) | CCM_ANALOG_PLL_SYS_SS_STOP(config->ss_stop); while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_SYS &= ~CCM_ANALOG_PLL_SYS_BYPASS_MASK; } /*! * brief De-initialize the System PLL. */ void CLOCK_DeinitSysPll(void) { CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK; } /*! * brief Initialize the USB1 PLL. * * This function initializes the USB1 PLL with specific settings * * param config Configuration to set to PLL. */ void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config) { /* Bypass PLL first */ CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_USB1_BYPASS_MASK | CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC(config->src); CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK)) | CCM_ANALOG_PLL_USB1_ENABLE_MASK | CCM_ANALOG_PLL_USB1_POWER_MASK | CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider); while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK; } /*! * brief Deinitialize the USB1 PLL. */ void CLOCK_DeinitUsb1Pll(void) { CCM_ANALOG->PLL_USB1 = 0U; } /*! * brief Initialize the USB2 PLL. * * This function initializes the USB2 PLL with specific settings * * param config Configuration to set to PLL. */ void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config) { /* Bypass PLL first */ CCM_ANALOG->PLL_USB2 = (CCM_ANALOG->PLL_USB2 & (~CCM_ANALOG_PLL_USB2_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_USB2_BYPASS_MASK | CCM_ANALOG_PLL_USB2_BYPASS_CLK_SRC(config->src); CCM_ANALOG->PLL_USB2 = (CCM_ANALOG->PLL_USB2 & (~CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK)) | CCM_ANALOG_PLL_USB2_ENABLE_MASK | CCM_ANALOG_PLL_USB2_POWER_MASK | CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider); while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_BYPASS_MASK; } /*! * brief Deinitialize the USB2 PLL. */ void CLOCK_DeinitUsb2Pll(void) { CCM_ANALOG->PLL_USB2 = 0U; } /*! * brief Initializes the Audio PLL. * * This function initializes the Audio PLL with specific settings * * param config Configuration to set to PLL. */ void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config) { uint32_t pllAudio; uint32_t misc2 = 0; /* Bypass PLL first */ CCM_ANALOG->PLL_AUDIO = (CCM_ANALOG->PLL_AUDIO & (~CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_AUDIO_BYPASS_MASK | CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC(config->src); CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator); CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator); /* * Set post divider: * * ------------------------------------------------------------------------ * | config->postDivider | PLL_AUDIO[POST_DIV_SELECT] | MISC2[AUDIO_DIV] | * ------------------------------------------------------------------------ * | 1 | 2 | 0 | * ------------------------------------------------------------------------ * | 2 | 1 | 0 | * ------------------------------------------------------------------------ * | 4 | 2 | 3 | * ------------------------------------------------------------------------ * | 8 | 1 | 3 | * ------------------------------------------------------------------------ * | 16 | 0 | 3 | * ------------------------------------------------------------------------ */ pllAudio = (CCM_ANALOG->PLL_AUDIO & (~(CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK | CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK))) | CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider); switch (config->postDivider) { case 16: pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0); misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK; break; case 8: pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1); misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK; break; case 4: pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2); misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK; break; case 2: pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1); break; default: pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2); break; } CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK)) | misc2; CCM_ANALOG->PLL_AUDIO = pllAudio; while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS_MASK; } /*! * brief De-initialize the Audio PLL. */ void CLOCK_DeinitAudioPll(void) { CCM_ANALOG->PLL_AUDIO = (uint32_t)CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK; } /*! * brief Initialize the video PLL. * * This function configures the Video PLL with specific settings * * param config configuration to set to PLL. */ void CLOCK_InitVideoPll(const clock_video_pll_config_t *config) { uint32_t pllVideo; uint32_t misc2 = 0; /* Bypass PLL first */ CCM_ANALOG->PLL_VIDEO = (CCM_ANALOG->PLL_VIDEO & (~CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_VIDEO_BYPASS_MASK | CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC(config->src); CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator); CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator); /* * Set post divider: * * ------------------------------------------------------------------------ * | config->postDivider | PLL_VIDEO[POST_DIV_SELECT] | MISC2[VIDEO_DIV] | * ------------------------------------------------------------------------ * | 1 | 2 | 0 | * ------------------------------------------------------------------------ * | 2 | 1 | 0 | * ------------------------------------------------------------------------ * | 4 | 2 | 3 | * ------------------------------------------------------------------------ * | 8 | 1 | 3 | * ------------------------------------------------------------------------ * | 16 | 0 | 3 | * ------------------------------------------------------------------------ */ pllVideo = (CCM_ANALOG->PLL_VIDEO & (~(CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK | CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK))) | CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider); switch (config->postDivider) { case 16: pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0); misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3); break; case 8: pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1); misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3); break; case 4: pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2); misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3); break; case 2: pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1); break; default: pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2); break; } CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2; CCM_ANALOG->PLL_VIDEO = pllVideo; while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_VIDEO &= ~CCM_ANALOG_PLL_VIDEO_BYPASS_MASK; } /*! * brief De-initialize the Video PLL. */ void CLOCK_DeinitVideoPll(void) { CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK; } /*! * brief Initialize the ENET PLL. * * This function initializes the ENET PLL with specific settings. * * param config Configuration to set to PLL. */ void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config) { uint32_t enet_pll = CCM_ANALOG_PLL_ENET_DIV_SELECT(config->loopDivider) | CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT(config->loopDivider1); CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK)) | CCM_ANALOG_PLL_ENET_BYPASS_MASK | CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(config->src); if (config->enableClkOutput) { enet_pll |= CCM_ANALOG_PLL_ENET_ENABLE_MASK; } if (config->enableClkOutput1) { enet_pll |= CCM_ANALOG_PLL_ENET_ENET2_REF_EN_MASK; } if (config->enableClkOutput25M) { enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK; } CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~(CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK))) | enet_pll; /* Wait for stable */ while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0UL) { } /* Disable Bypass */ CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK; } /*! * brief Deinitialize the ENET PLL. * * This function disables the ENET PLL. */ void CLOCK_DeinitEnetPll(void) { CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK; } /*! * brief Get current PLL output frequency. * * This function get current output frequency of specific PLL * * param pll pll name to get frequency. * return The PLL output frequency in hertz. */ uint32_t CLOCK_GetPllFreq(clock_pll_t pll) { uint32_t freq; uint32_t divSelect; clock_64b_t freqTmp; static const uint32_t enetRefClkFreq[] = { 25000000U, /* 25M */ 50000000U, /* 50M */ 100000000U, /* 100M */ 125000000U /* 125M */ }; /* check if PLL is enabled */ if (!CLOCK_IsPllEnabled(CCM_ANALOG, pll)) { return 0U; } /* get pll reference clock */ freq = CLOCK_GetPllBypassRefClk(CCM_ANALOG, pll); /* check if pll is bypassed */ if (CLOCK_IsPllBypassed(CCM_ANALOG, pll)) { return freq; } switch (pll) { case kCLOCK_PllArm: freq = ((freq * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >> 1U); break; case kCLOCK_PllSys: /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */ freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_SYS_NUM))); freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_SYS_DENOM)); if ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) != 0U) { freq *= 22U; } else { freq *= 20U; } freq += (uint32_t)freqTmp; break; case kCLOCK_PllUsb1: freq = (freq * (((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) != 0UL) ? 22U : 20U)); break; case kCLOCK_PllAudio: /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */ divSelect = (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT; freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_NUM))); freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_DENOM)); freq = freq * divSelect + (uint32_t)freqTmp; /* AUDIO PLL output = PLL output frequency / POSTDIV. */ /* * Post divider: * * PLL_AUDIO[POST_DIV_SELECT]: * 0x00: 4 * 0x01: 2 * 0x02: 1 * * MISC2[AUDO_DIV]: * 0x00: 1 * 0x01: 2 * 0x02: 1 * 0x03: 4 */ switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK) { case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U): freq = freq >> 2U; break; case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U): freq = freq >> 1U; break; case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2U): freq = freq >> 0U; break; default: assert(false); break; } switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK)) { case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1): freq >>= 2U; break; case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1): freq >>= 1U; break; case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0): case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0): freq >>= 0U; break; default: assert(false); break; } break; case kCLOCK_PllVideo: /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */ divSelect = (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT; freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_NUM))); freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_DENOM)); freq = freq * divSelect + (uint32_t)freqTmp; /* VIDEO PLL output = PLL output frequency / POSTDIV. */ /* * Post divider: * * PLL_VIDEO[POST_DIV_SELECT]: * 0x00: 4 * 0x01: 2 * 0x02: 1 * * MISC2[VIDEO_DIV]: * 0x00: 1 * 0x01: 2 * 0x02: 1 * 0x03: 4 */ switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK) { case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U): freq = freq >> 2U; break; case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U): freq = freq >> 1U; break; case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2U): freq = freq >> 0U; break; default: assert(false); break; } switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK) { case CCM_ANALOG_MISC2_VIDEO_DIV(3U): freq >>= 2U; break; case CCM_ANALOG_MISC2_VIDEO_DIV(1U): freq >>= 1U; break; case CCM_ANALOG_MISC2_VIDEO_DIV(0U): case CCM_ANALOG_MISC2_VIDEO_DIV(2U): freq >>= 0U; break; default: assert(false); break; } break; case kCLOCK_PllEnet: divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ENET_DIV_SELECT_SHIFT; freq = enetRefClkFreq[divSelect]; break; case kCLOCK_PllEnet2: divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ENET_ENET2_DIV_SELECT_SHIFT; freq = enetRefClkFreq[divSelect]; break; case kCLOCK_PllEnet25M: /* ref_enetpll1 if fixed at 25MHz. */ freq = 25000000UL; break; case kCLOCK_PllUsb2: freq = (freq * (((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) != 0U) ? 22U : 20U)); break; default: freq = 0U; break; } return freq; } /*! * brief Initialize the System PLL PFD. * * This function initializes the System PLL PFD. During new value setting, * the clock output is disabled to prevent glitch. * * param pfd Which PFD clock to enable. * param pfdFrac The PFD FRAC value. * note It is recommended that PFD settings are kept between 12-35. */ void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac) { uint32_t pfdIndex = (uint32_t)pfd; uint32_t pfd528; pfd528 = CCM_ANALOG->PFD_528 & ~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) << (8UL * pfdIndex))); /* Disable the clock output first. */ CCM_ANALOG->PFD_528 = pfd528 | ((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * pfdIndex)); /* Set the new value and enable output. */ CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex)); } /*! * brief De-initialize the System PLL PFD. * * This function disables the System PLL PFD. * * param pfd Which PFD clock to disable. */ void CLOCK_DeinitSysPfd(clock_pfd_t pfd) { CCM_ANALOG->PFD_528 |= (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8U * (uint8_t)pfd); } /*! * brief Check if Sys PFD is enabled * * param pfd PFD control name * return PFD bypass status. * - true: power on. * - false: power off. */ bool CLOCK_IsSysPfdEnabled(clock_pfd_t pfd) { return ((CCM_ANALOG->PFD_528 & (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd)) == 0U); } /*! * brief Initialize the USB1 PLL PFD. * * This function initializes the USB1 PLL PFD. During new value setting, * the clock output is disabled to prevent glitch. * * param pfd Which PFD clock to enable. * param pfdFrac The PFD FRAC value. * note It is recommended that PFD settings are kept between 12-35. */ void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac) { uint32_t pfdIndex = (uint32_t)pfd; uint32_t pfd480; pfd480 = CCM_ANALOG->PFD_480 & ~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) << (8UL * pfdIndex))); /* Disable the clock output first. */ CCM_ANALOG->PFD_480 = pfd480 | ((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * pfdIndex)); /* Set the new value and enable output. */ CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex)); } /*! * brief De-initialize the USB1 PLL PFD. * * This function disables the USB1 PLL PFD. * * param pfd Which PFD clock to disable. */ void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd) { CCM_ANALOG->PFD_480 |= (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd); } /*! * brief Check if Usb1 PFD is enabled * * param pfd PFD control name. * return PFD bypass status. * - true: power on. * - false: power off. */ bool CLOCK_IsUsb1PfdEnabled(clock_pfd_t pfd) { return ((CCM_ANALOG->PFD_480 & (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd)) == 0U); } /*! * brief Get current System PLL PFD output frequency. * * This function get current output frequency of specific System PLL PFD * * param pfd pfd name to get frequency. * return The PFD output frequency in hertz. */ uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd) { uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys); switch (pfd) { case kCLOCK_Pfd0: freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT); break; case kCLOCK_Pfd1: freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT); break; case kCLOCK_Pfd2: freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT); break; case kCLOCK_Pfd3: freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT); break; default: freq = 0U; break; } freq *= 18U; return freq; } /*! * brief Get current USB1 PLL PFD output frequency. * * This function get current output frequency of specific USB1 PLL PFD * * param pfd pfd name to get frequency. * return The PFD output frequency in hertz. */ uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd) { uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1); switch (pfd) { case kCLOCK_Pfd0: freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT); break; case kCLOCK_Pfd1: freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT); break; case kCLOCK_Pfd2: freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT); break; case kCLOCK_Pfd3: freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT); break; default: freq = 0U; break; } freq *= 18U; return freq; } /*! brief Enable USB HS PHY PLL clock. * * This function enables the internal 480MHz USB PHY PLL clock. * * param src USB HS PHY PLL clock source. * param freq The frequency specified by src. * retval true The clock is set successfully. * retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq) { static const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U}; CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll); USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */ USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK; USBPHY2->PWD = 0; USBPHY2->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK | USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK; return true; } /*! brief Disable USB HS PHY PLL clock. * * This function disables USB HS PHY PLL clock. */ void CLOCK_DisableUsbhs1PhyPllClock(void) { CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK; USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */ } /*! * brief Set the clock source and the divider of the clock output1. * * param selection The clock source to be output, please refer to clock_output1_selection_t. * param divider The divider of the output clock signal, please refer to clock_output_divider_t. */ void CLOCK_SetClockOutput1(clock_output1_selection_t selection, clock_output_divider_t divider) { uint32_t tmp32; tmp32 = CCM->CCOSR; if (selection == kCLOCK_DisableClockOutput1) { tmp32 &= ~CCM_CCOSR_CLKO1_EN_MASK; } else { tmp32 |= CCM_CCOSR_CLKO1_EN_MASK; tmp32 &= ~(CCM_CCOSR_CLKO1_SEL_MASK | CCM_CCOSR_CLKO1_DIV_MASK); tmp32 |= CCM_CCOSR_CLKO1_SEL(selection) | CCM_CCOSR_CLKO1_DIV(divider); } CCM->CCOSR = tmp32; } /*! * brief Set the clock source and the divider of the clock output2. * * param selection The clock source to be output, please refer to clock_output2_selection_t. * param divider The divider of the output clock signal, please refer to clock_output_divider_t. */ void CLOCK_SetClockOutput2(clock_output2_selection_t selection, clock_output_divider_t divider) { uint32_t tmp32; tmp32 = CCM->CCOSR; if (selection == kCLOCK_DisableClockOutput2) { tmp32 &= CCM_CCOSR_CLKO2_EN_MASK; } else { tmp32 |= CCM_CCOSR_CLKO2_EN_MASK; tmp32 &= ~(CCM_CCOSR_CLKO2_SEL_MASK | CCM_CCOSR_CLKO2_DIV_MASK); tmp32 |= CCM_CCOSR_CLKO2_SEL(selection) | CCM_CCOSR_CLKO2_DIV(divider); } CCM->CCOSR = tmp32; } /*! * brief Get the frequency of clock output1 clock signal. * * return The frequency of clock output1 clock signal. */ uint32_t CLOCK_GetClockOutCLKO1Freq(void) { uint32_t freq = 0U; uint32_t tmp32; tmp32 = CCM->CCOSR; if ((tmp32 & CCM_CCOSR_CLKO1_EN_MASK) != 0UL) { switch ((tmp32 & CCM_CCOSR_CLKO1_SEL_MASK) >> CCM_CCOSR_CLKO1_SEL_SHIFT) { case (uint32_t)kCLOCK_OutputPllUsb1: freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 2U; break; case (uint32_t)kCLOCK_OutputPllSys: freq = CLOCK_GetPllFreq(kCLOCK_PllSys) / 2U; break; case (uint32_t)kCLOCK_OutputPllVideo: freq = CLOCK_GetPllFreq(kCLOCK_PllVideo) / 2U; break; case (uint32_t)kCLOCK_OutputSemcClk: freq = CLOCK_GetSemcFreq(); break; case (uint32_t)kCLOCK_OutputLcdifPixClk: freq = CLOCK_GetClockRootFreq(kCLOCK_LcdifClkRoot); break; case (uint32_t)kCLOCK_OutputAhbClk: freq = CLOCK_GetAhbFreq(); break; case (uint32_t)kCLOCK_OutputIpgClk: freq = CLOCK_GetIpgFreq(); break; case (uint32_t)kCLOCK_OutputPerClk: freq = CLOCK_GetPerClkFreq(); break; case (uint32_t)kCLOCK_OutputCkilSyncClk: freq = CLOCK_GetRtcFreq(); break; case (uint32_t)kCLOCK_OutputPll4MainClk: freq = CLOCK_GetPllFreq(kCLOCK_PllAudio); break; default: /* This branch should never be hit. */ break; } freq /= (((tmp32 & CCM_CCOSR_CLKO1_DIV_MASK) >> CCM_CCOSR_CLKO1_DIV_SHIFT) + 1U); } else { freq = 0UL; } return freq; } /*! * brief Get the frequency of clock output2 clock signal. * * return The frequency of clock output2 clock signal. */ uint32_t CLOCK_GetClockOutClkO2Freq(void) { uint32_t freq = 0U; uint32_t tmp32; tmp32 = CCM->CCOSR; if ((tmp32 & CCM_CCOSR_CLKO2_EN_MASK) != 0UL) { switch ((tmp32 & CCM_CCOSR_CLKO2_SEL_MASK) >> CCM_CCOSR_CLKO2_SEL_SHIFT) { case (uint32_t)kCLOCK_OutputUsdhc1Clk: freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc1ClkRoot); break; case (uint32_t)kCLOCK_OutputLpi2cClk: freq = CLOCK_GetClockRootFreq(kCLOCK_Lpi2cClkRoot); break; case (uint32_t)kCLOCK_OutputCsiClk: freq = CLOCK_GetClockRootFreq(kCLOCK_CsiClkRoot); break; case (uint32_t)kCLOCK_OutputOscClk: freq = CLOCK_GetOscFreq(); break; case (uint32_t)kCLOCK_OutputUsdhc2Clk: freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc2ClkRoot); break; case (uint32_t)kCLOCK_OutputSai1Clk: freq = CLOCK_GetClockRootFreq(kCLOCK_Sai1ClkRoot); break; case (uint32_t)kCLOCK_OutputSai2Clk: freq = CLOCK_GetClockRootFreq(kCLOCK_Sai2ClkRoot); break; case (uint32_t)kCLOCK_OutputSai3Clk: freq = CLOCK_GetClockRootFreq(kCLOCK_Sai3ClkRoot); break; case (uint32_t)kCLOCK_OutputCanClk: freq = CLOCK_GetClockRootFreq(kCLOCK_CanClkRoot); break; case (uint32_t)kCLOCK_OutputFlexspiClk: freq = CLOCK_GetClockRootFreq(kCLOCK_FlexspiClkRoot); break; case (uint32_t)kCLOCK_OutputUartClk: freq = CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot); break; case (uint32_t)kCLOCK_OutputSpdif0Clk: freq = CLOCK_GetClockRootFreq(kCLOCK_SpdifClkRoot); break; default: /* This branch should never be hit. */ break; } freq /= (((tmp32 & CCM_CCOSR_CLKO2_DIV_MASK) >> CCM_CCOSR_CLKO2_DIV_SHIFT) + 1U); } else { freq = 0UL; } return freq; }