// Copyright (c) 2022 Cesanta Software Limited // All rights reserved // https://www.st.com/resource/en/reference_manual/dm00124865-stm32f75xxx-and-stm32f74xxx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf #pragma once #include #include #include #include #define BIT(x) (1UL << (x)) #define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK) #define PIN(bank, num) ((((bank) - 'A') << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) /* System clock 5.3.3: APB1 clock <= 54MHz; APB2 clock <= 108MHz 3.3.2, Table 5: configure flash latency (WS) in accordance to clock freq 38.4: The AHB clock frequency must be at least 25 MHz when the Ethernet controller is used */ enum { APB1_PRE = 5 /* AHB clock / 4 */, APB2_PRE = 4 /* AHB clock / 2 */ }; enum { PLL_HSI = 16, PLL_M = 8, PLL_N = 216, PLL_P = 2 }; // Run at 216 Mhz #define FLASH_LATENCY 7 #define SYS_FREQUENCY ((PLL_HSI * PLL_N / PLL_M / PLL_P) * 1000000) #define APB2_FREQUENCY (SYS_FREQUENCY / (BIT(APB2_PRE - 3))) #define APB1_FREQUENCY (SYS_FREQUENCY / (BIT(APB1_PRE - 3))) static inline void spin(volatile uint32_t count) { while (count--) asm("nop"); } struct rcc { volatile uint32_t CR, PLLCFGR, CFGR, CIR, AHB1RSTR, AHB2RSTR, AHB3RSTR, RESERVED0, APB1RSTR, APB2RSTR, RESERVED1[2], AHB1ENR, AHB2ENR, AHB3ENR, RESERVED2, APB1ENR, APB2ENR, RESERVED3[2], AHB1LPENR, AHB2LPENR, AHB3LPENR, RESERVED4, APB1LPENR, APB2LPENR, RESERVED5[2], BDCR, CSR, RESERVED6[2], SSCGR, PLLI2SCFGR, PLLSAICFGR, DCKCFGR1, DCKCFGR2; }; #define RCC ((struct rcc *) 0x40023800) struct pwr { volatile uint32_t CR1, CSR1, CR2, CSR2; }; #define PWR ((struct pwr *) 0x40007000) struct nvic { volatile uint32_t ISER[8], RESERVED0[24], ICER[8], RSERVED1[24], ISPR[8], RESERVED2[24], ICPR[8], RESERVED3[24], IABR[8], RESERVED4[56], IP[240], RESERVED5[644], STIR; }; #define NVIC ((struct nvic *) 0xe000e100) static inline void nvic_set_prio(int irq, uint32_t prio) { NVIC->IP[irq] = prio << 4; } static inline void nvic_enable_irq(int irq) { NVIC->ISER[irq >> 5] = (uint32_t) (1 << (irq & 31)); } struct systick { volatile uint32_t CTRL, LOAD, VAL, CALIB; }; #define SYSTICK ((struct systick *) 0xe000e010) // 2.2.2 static inline void systick_init(uint32_t ticks) { if ((ticks - 1) > 0xffffff) return; // Systick timer is 24 bit SYSTICK->LOAD = ticks - 1; SYSTICK->VAL = 0; SYSTICK->CTRL = BIT(0) | BIT(1) | BIT(2); // Enable systick } struct flash { volatile uint32_t ACR, KEYR, OPTKEYR, SR, CR, AR, RESERVED, OBR, WRPR; }; #define FLASH ((struct flash *) 0x40023c00) struct scb { volatile uint32_t CPUID, ICSR, VTOR, AIRCR, SCR, CCR, SHPR[3], SHCSR, CFSR, HFSR, DFSR, MMFAR, BFAR, AFSR, ID_PFR[2], ID_DFR, ID_AFR, ID_MFR[4], ID_ISAR[5], RESERVED0[1], CLIDR, CTR, CCSIDR, CSSELR, CPACR, RESERVED3[93], STIR, RESERVED4[15], MVFR0, MVFR1, MVFR2, RESERVED5[1], ICIALLU, RESERVED6[1], ICIMVAU, DCIMVAC, DCISW, DCCMVAU, DCCMVAC, DCCSW, DCCIMVAC, DCCISW, RESERVED7[6], ITCMCR, DTCMCR, AHBPCR, CACR, AHBSCR, RESERVED8[1], ABFSR; }; #define SCB ((struct scb *) 0xe000ed00) enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN }; enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE }; enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN }; struct gpio { volatile uint32_t MODER, OTYPER, OSPEEDR, PUPDR, IDR, ODR, BSRR, LCKR, AFR[2]; }; #define GPIO(N) ((struct gpio *) (0x40020000 + 0x400 * (N))) static struct gpio *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); } static inline void gpio_toggle(uint16_t pin) { struct gpio *gpio = gpio_bank(pin); uint32_t mask = BIT(PINNO(pin)); gpio->BSRR = mask << (gpio->ODR & mask ? 16 : 0); } static inline int gpio_read(uint16_t pin) { return gpio_bank(pin)->IDR & BIT(PINNO(pin)) ? 1 : 0; } static inline void gpio_write(uint16_t pin, bool val) { struct gpio *gpio = gpio_bank(pin); gpio->BSRR = BIT(PINNO(pin)) << (val ? 0 : 16); } static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type, uint8_t speed, uint8_t pull, uint8_t af) { struct gpio *gpio = gpio_bank(pin); uint8_t n = (uint8_t) (PINNO(pin)); RCC->AHB1ENR |= BIT(PINBANK(pin)); // Enable GPIO clock SETBITS(gpio->OTYPER, 1UL << n, ((uint32_t) type) << n); SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2)); SETBITS(gpio->PUPDR, 3UL << (n * 2), ((uint32_t) pull) << (n * 2)); SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4), ((uint32_t) af) << ((n & 7) * 4)); SETBITS(gpio->MODER, 3UL << (n * 2), ((uint32_t) mode) << (n * 2)); } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } struct syscfg { volatile uint32_t MEMRMP, PMC, EXTICR[4], RESERVED[2], CMPCR; }; #define SYSCFG ((struct syscfg *) 0x40013800) struct exti { volatile uint32_t IMR, EMR, RTSR, FTSR, SWIER, PR; }; #define EXTI ((struct exti *) 0x40013c00) static inline void irq_exti_attach(uint16_t pin) { uint8_t bank = (uint8_t) (PINBANK(pin)), n = (uint8_t) (PINNO(pin)); RCC->APB2ENR |= BIT(14); // Enable SYSCFG SYSCFG->EXTICR[n / 4] &= ~(15UL << ((n % 4) * 4)); SYSCFG->EXTICR[n / 4] |= (uint32_t) (bank << ((n % 4) * 4)); EXTI->IMR |= BIT(n); EXTI->RTSR |= BIT(n); EXTI->FTSR |= BIT(n); int irqvec = n < 5 ? 6 + n : n < 10 ? 23 : 40; // IRQ vector index, 10.1.2 nvic_set_prio(irqvec, 3); nvic_enable_irq(irqvec); } struct uart { volatile uint32_t CR1, CR2, CR3, BRR, GTPR, RTOR, RQR, ISR, ICR, RDR, TDR; }; #define UART1 ((struct uart *) 0x40011000) #define UART2 ((struct uart *) 0x40004400) #define UART3 ((struct uart *) 0x40004800) static inline void uart_init(struct uart *uart, unsigned long baud) { // https://www.st.com/resource/en/datasheet/stm32f746zg.pdf uint8_t af = 7; // Alternate function uint16_t rx = 0, tx = 0; // pins uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1 if (uart == UART1) freq = APB2_FREQUENCY, RCC->APB2ENR |= BIT(4); if (uart == UART2) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(17); if (uart == UART3) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(18); if (uart == UART1) tx = PIN('A', 9), rx = PIN('A', 10); if (uart == UART2) tx = PIN('A', 2), rx = PIN('A', 3); if (uart == UART3) tx = PIN('D', 8), rx = PIN('D', 9); gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); uart->CR1 = 0; // Disable this UART uart->BRR = freq / baud; // Set baud rate uart->CR1 |= BIT(0) | BIT(2) | BIT(3); // Set UE, RE, TE } static inline void uart_write_byte(struct uart *uart, uint8_t byte) { uart->TDR = byte; while ((uart->ISR & BIT(7)) == 0) spin(1); } static inline void uart_write_buf(struct uart *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline int uart_read_ready(struct uart *uart) { return uart->ISR & BIT(5); // If RXNE bit is set, data is ready } static inline uint8_t uart_read_byte(struct uart *uart) { return (uint8_t) (uart->RDR & 255); } static inline void clock_init(void) { // Set clock frequency #if 0 RCC->APB1ENR |= BIT(28); // Power enable PWR->CR1 |= 3UL << 14; // Voltage regulator scale 3 PWR->CR1 |= BIT(16); // Enable overdrive while ((PWR->CSR1 & BIT(16)) == 0) spin(1); // Wait until done PWR->CR1 |= BIT(17); // Enable overdrive switching while ((PWR->CSR1 & BIT(17)) == 0) spin(1); // Wait until done #endif SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU asm ("DSB"); asm ("ISB"); FLASH->ACR |= FLASH_LATENCY | BIT(8) | BIT(9); // Flash latency, prefetch RCC->PLLCFGR &= ~((BIT(17) - 1)); // Clear PLL multipliers RCC->PLLCFGR |= (((PLL_P - 2) / 2) & 3) << 16; // Set PLL_P RCC->PLLCFGR |= PLL_M | (PLL_N << 6); // Set PLL_M and PLL_N RCC->CR |= BIT(24); // Enable PLL while ((RCC->CR & BIT(25)) == 0) spin(1); // Wait until done RCC->CFGR = (APB1_PRE << 10) | (APB2_PRE << 13); // Set prescalers RCC->CFGR |= 2; // Set clock source to PLL while ((RCC->CFGR & 12) == 0) spin(1); // Wait until done }