// Copyright (c) 2022 Cesanta Software Limited // All rights reserved #include "mcu.h" #include "mongoose.h" #define LED1 PIN('B', 0) // On-board LED pin (green) #define LED2 PIN('B', 7) // On-board LED pin (blue) #define LED3 PIN('B', 14) // On-board LED pin (red) #define BTN1 PIN('C', 13) // On-board user button static uint64_t s_ticks, s_exti; // Counters, increased by IRQ handlers static time_t s_boot_timestamp = 0; // Updated by SNTP static struct mg_connection *s_sntp_conn = NULL; // SNTP connection // We have no valid system time(), and we need it for TLS. Implement it time_t time(time_t *tp) { time_t t = s_boot_timestamp + (time_t) (mg_millis() / 1000); if (tp != NULL) *tp = t; return t; } // SNTP connection event handler. When we get a response from an SNTP server, // adjust s_boot_timestamp. We'll get a valid time from that point on static void sfn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) { if (ev == MG_EV_SNTP_TIME) { uint64_t t = *(uint64_t *) ev_data; MG_INFO(("%lu SNTP: %lld ms from epoch", c->id, t)); s_boot_timestamp = (time_t) ((t - mg_millis()) / 1000); c->is_closing = 1; } else if (ev == MG_EV_CLOSE) { s_sntp_conn = NULL; } (void) fn_data; } static void sntp_cb(void *param) { // SNTP timer function. Sync up time struct mg_mgr *mgr = (struct mg_mgr *) param; return; // TODO(cpq): re-enable! if (s_sntp_conn == NULL && s_boot_timestamp == 0) { s_sntp_conn = mg_sntp_connect(mgr, NULL, sfn, NULL); } } static void blink_cb(void *arg) { // Blink periodically MG_INFO(("ticks: %u", (unsigned) s_ticks)); gpio_toggle(LED2); (void) arg; } // Server event handler static void fn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) { if (ev == MG_EV_POLL) return; // MG_DEBUG(("%lu %p %d %p %p", c->id, c, ev, ev_data, fn_data)); if (ev == MG_EV_HTTP_MSG) { struct mg_http_message *hm = (struct mg_http_message *) ev_data; if (mg_http_match_uri(hm, "/api/stats")) { // Print some statistics about currently established connections mg_printf(c, "HTTP/1.1 200 OK\r\nTransfer-Encoding: chunked\r\n\r\n"); mg_http_printf_chunk(c, "ID PROTO TYPE LOCAL REMOTE\n"); for (struct mg_connection *t = c->mgr->conns; t != NULL; t = t->next) { char loc[40], rem[40]; mg_http_printf_chunk(c, "%-3lu %4s %s %-15s %s\n", t->id, t->is_udp ? "UDP" : "TCP", t->is_listening ? "LISTENING" : t->is_accepted ? "ACCEPTED " : "CONNECTED", mg_straddr(&t->loc, loc, sizeof(loc)), mg_straddr(&t->rem, rem, sizeof(rem))); } mg_http_printf_chunk(c, ""); // Don't forget the last empty chunk } else { mg_http_reply(c, 200, "", "hi\n"); #if 0 struct mg_http_serve_opts opts = {0}; opts.root_dir = "/web_root"; opts.fs = &mg_fs_packed; mg_http_serve_dir(c, hm, &opts); #endif } } (void) fn_data; } uint64_t mg_millis(void) { // Declare our own uptime function return s_ticks; // Return number of milliseconds since boot } void DefaultIRQHandler(void) { // Catch-all fault handler gpio_output(LED3); // Setup red LED for (;;) spin(2999999), gpio_toggle(LED3); // Blink LED infinitely } void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms s_ticks++; } void EXTI_IRQHandler(void) { s_exti++; if (EXTI->PR & BIT(PINNO(BTN1))) EXTI->PR = BIT(PINNO(BTN1)); gpio_write(LED1, gpio_read(BTN1)); // No debounce. Turn LED if button pressed } int main(void) { static struct uart *uart = UART3; // Use UART3 - its attached to debug clock_init(); // Set clock to 216MHz systick_init(FREQ / 1000); // Increment s_ticks every ms gpio_output(LED1); // Setup green LED gpio_output(LED2); // Setup blue LED gpio_input(BTN1); // Set button to input irq_exti_attach(BTN1); // Attach BTN1 to exti uart_init(uart, 115200); // It is wired to the debug port // Initialise Ethernet. Enable MAC GPIO pins, see // https://www.farnell.com/datasheets/2014265.pdf section 6.10 uint16_t pins[] = {PIN('A', 1), PIN('A', 2), PIN('A', 7), PIN('B', 13), PIN('C', 1), PIN('C', 4), PIN('C', 5), PIN('G', 11), PIN('G', 13)}; for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) { gpio_init(pins[i], GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_INSANE, GPIO_PULL_NONE, 11); } nvic_enable_irq(61); // Setup Ethernet IRQ handler RCC->APB2ENR |= BIT(14); // Enable SYSCFG SYSCFG->PMC |= BIT(23); // Use RMII. Goes first! RCC->AHB1ENR |= BIT(25) | BIT(26) | BIT(27); // Enable Ethernet clocks RCC->AHB1RSTR |= BIT(25); // ETHMAC force reset RCC->AHB1RSTR &= ~BIT(25); // ETHMAC release reset struct mg_mgr mgr; // Initialise Mongoose event manager mg_mgr_init(&mgr); // and attach it to the MIP interface mg_log_set(MG_LL_DEBUG); // Set log level mg_timer_add(&mgr, 1000, MG_TIMER_REPEAT, blink_cb, &mgr); mg_timer_add(&mgr, 5000, MG_TIMER_REPEAT, sntp_cb, &mgr); mg_http_listen(&mgr, "http://0.0.0.0:80", fn, NULL); // Initialise Mongoose network stack // Specify MAC address, and use 0 for IP, mask, GW - i.e. use DHCP // For static configuration, specify IP/mask/GW in network byte order struct mip_ipcfg ipcfg = { .mac = {0xaa, 0xbb, 0xcc, 1, 2, 3}, .ip = 0, .mask = 0, .gw = 0}; mip_init(&mgr, &ipcfg, &mip_driver_stm32); MG_INFO(("Init done, starting main loop")); #if defined(DASH) extern void device_dashboard_fn(struct mg_connection *, int, void *, void *); mg_http_listen(&mgr, "http://0.0.0.0:8000", device_dashboard_fn, &mgr); #endif for (;;) mg_mgr_poll(&mgr, 0); // Infinite event loop return 0; }