// Copyright (c) 2023 Cesanta Software Limited // All rights reserved // https://www.nxp.com/webapp/Download?colCode=IMXRT1020RM // https://cache.nxp.com/secured/assets/documents/en/user-guide/MIMXRT1020EVKHUG.pdf #pragma once #include "MIMXRT1021.h" // #include "drivers/fsl_clock.h" #include #include #include #include #define BIT(x) (1UL << (x)) #define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK) #define PIN(bank, num) ((((bank) - 'A') << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) #define LED PIN('A', 6) // Use LED for blinking, GPIO_AD_B0_06. RM tbl 9-1 #ifndef UART_DEBUG #define UART_DEBUG LPUART1 #endif #define SYS_FREQUENCY 16000000 static inline void spin(volatile uint32_t count) { while (count--) (void) 0; } static inline GPIO_Type *gpio_bank(uint16_t pin) { switch (PINBANK(pin)) { case 1: return (GPIO_Type *) GPIO1_BASE; case 2: return (GPIO_Type *) GPIO2_BASE; case 3: return (GPIO_Type *) GPIO3_BASE; case 5: return (GPIO_Type *) GPIO5_BASE; default: return NULL; } } enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; // enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN }; // enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN }; #if 0 static inline void CLOCK_ControlGate(clock_ip_name_t name, clock_gate_value_t value) { uint32_t index = ((uint32_t) name) >> 8U; uint32_t shift = ((uint32_t) name) & 0x1FU; volatile uint32_t *reg; assert(index <= 6UL); reg = (volatile uint32_t *) ((uint32_t) ((volatile uint32_t *) &CCM->CCGR0) + sizeof(volatile uint32_t *) * index); SDK_ATOMIC_LOCAL_CLEAR_AND_SET(reg, (3UL << shift), (((uint32_t) value) << shift)); } static inline void CLOCK_EnableClock(clock_ip_name_t name) { CLOCK_ControlGate(name, kCLOCK_ClockNeededRunWait); } #endif enum { CLOCK_OFF = 0U, CLOCK_ON_RUN = 1U, CLOCK_ON_RUN_WAIT = 3U }; static inline void clock_periph(uint32_t index, uint32_t shift, uint32_t val) { volatile uint32_t *r = &CCM->CCGR0; SETBITS(r[index], 3UL << shift, val << shift); } static inline void gpio_init(uint16_t pin, uint8_t mode) { GPIO_Type *gpio = gpio_bank(pin); uint32_t mask = (uint32_t) BIT(PINNO(pin)); // Enable clock switch (PINBANK(pin)) { case 1: clock_periph(1, CCM_CCGR1_CG13_SHIFT, CLOCK_ON_RUN_WAIT); break; case 2: clock_periph(0, CCM_CCGR0_CG15_SHIFT, CLOCK_ON_RUN_WAIT); break; case 3: clock_periph(2, CCM_CCGR2_CG13_SHIFT, CLOCK_ON_RUN_WAIT); break; case 5: clock_periph(1, CCM_CCGR1_CG15_SHIFT, CLOCK_ON_RUN_WAIT); break; default: break; } gpio->IMR &= ~mask; if (mode == GPIO_MODE_INPUT) { gpio->GDIR &= ~mask; } else { gpio->GDIR |= mask; } } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT); } static inline bool gpio_read(uint16_t pin) { GPIO_Type *gpio = gpio_bank(pin); uint32_t mask = (uint32_t) BIT(PINNO(pin)); return gpio->DR & mask; } static inline void gpio_write(uint16_t pin, bool value) { GPIO_Type *gpio = gpio_bank(pin); uint32_t mask = (uint32_t) BIT(PINNO(pin)); if (value) { gpio->DR |= mask; } else { gpio->DR &= ~mask; } } static inline void gpio_toggle(uint16_t pin) { gpio_write(pin, !gpio_read(pin)); } static inline void uart_init(LPUART_Type *uart, unsigned long baud) { (void) uart, (void) baud; } #if 0 static inline void uart_init(LPUART_Type *uart, unsigned long baud) { uint8_t af = 7; // Alternate function uint16_t rx = 0, tx = 0; // pins uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1 if (uart == USART1) freq = APB2_FREQUENCY, RCC->APB2ENR |= BIT(4); if (uart == USART2) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(17); if (uart == USART3) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(18); if (uart == USART1) tx = PIN('A', 9), rx = PIN('A', 10); if (uart == USART2) tx = PIN('A', 2), rx = PIN('A', 3); if (uart == USART3) tx = PIN('D', 8), rx = PIN('D', 9); gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); uart->CR1 = 0; // Disable this UART uart->BRR = freq / baud; // Set baud rate uart->CR1 |= BIT(0) | BIT(2) | BIT(3); // Set UE, RE, TE } #endif static inline void uart_write_byte(LPUART_Type *uart, uint8_t byte) { // uart->TDR = byte; // while ((uart->ISR & BIT(7)) == 0) spin(1); (void) uart, (void) byte; } static inline void uart_write_buf(LPUART_Type *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline int uart_read_ready(LPUART_Type *uart) { (void) uart; // return uart->ISR & BIT(5); // If RXNE bit is set, data is ready return 0; } static inline uint8_t uart_read_byte(LPUART_Type *uart) { (void) uart; // return (uint8_t) (uart->RDR & 255); return 0; } static inline void rng_init(void) { } static inline uint32_t rng_read(void) { return 42; } static inline void ethernet_init(void) { }