// Copyright (c) 2022 Cesanta Software Limited // SPDX-License-Identifier: MIT // // https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D5x-E5x-Family-Data-Sheet-DS60001507.pdf // https://ww1.microchip.com/downloads/en/DeviceDoc/70005321A.pdf #ifndef LED_PIN #define LED_PIN PIN('C', 18) #endif #ifndef BUTTON_PIN #define BUTTON_PIN PIN('B', 31) #endif #ifndef UART_DEBUG #define UART_DEBUG USART1 #endif #pragma once #include #include #include #include #include #define BIT(x) (1UL << (x)) #define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK) #define PIN(bank, num) ((((bank) - 'A') << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) static inline void spin(volatile uint32_t count) { while (count--) (void) 0; } static inline uint32_t clock_sys_freq(void) { return 48000000U; } enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN }; enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE }; enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN }; #define GPIO(N) ((port_group_registers_t *) (PORT_BASE_ADDRESS + 0x80 * (N))) typedef port_group_registers_t GPIO_TypeDef; static inline GPIO_TypeDef *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); } static inline void gpio_toggle(uint16_t pin) { gpio_bank(pin)->PORT_OUTTGL = BIT(PINNO(pin)); } static inline bool gpio_read(uint16_t pin) { return gpio_bank(pin)->PORT_IN & BIT(PINNO(pin)); } static inline void gpio_write(uint16_t pin, bool val) { GPIO_TypeDef *gpio = gpio_bank(pin); if (val) { gpio->PORT_OUTSET = BIT(PINNO(pin)); } else { gpio->PORT_OUTCLR = BIT(PINNO(pin)); } } static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type, uint8_t speed, uint8_t pull, uint8_t af) { (void) type, (void) speed, (void) pull, (void) af; GPIO_TypeDef *gpio = gpio_bank(pin); uint32_t mask = BIT(PINNO(pin)); MCLK_REGS->MCLK_APBBMASK |= MCLK_APBBMASK_PORT_Msk; if (mode == GPIO_MODE_INPUT) { gpio->PORT_DIRCLR = mask; } else { gpio->PORT_DIRSET = mask; } } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } typedef sercom_usart_int_registers_t USART_TypeDef; #define USART1 ((USART_TypeDef *) SERCOM0_BASE_ADDRESS) #define USART2 ((USART_TypeDef *) SERCOM1_BASE_ADDRESS) #define USART3 ((USART_TypeDef *) SERCOM2_BASE_ADDRESS) static inline bool uart_init(USART_TypeDef *uart, unsigned long baud) { uint16_t rx = 0, tx = 0; // Pins uint8_t rx_mux = 0, tx_mux = 0; if (uart == USART1) { MCLK_REGS->MCLK_APBAMASK |= MCLK_APBAMASK_SERCOM0_Msk; GCLK_REGS->GCLK_PCHCTRL[SERCOM0_GCLK_ID_CORE] = GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN_Msk; GCLK_REGS->GCLK_PCHCTRL[SERCOM0_GCLK_ID_SLOW] = GCLK_PCHCTRL_GEN_GCLK3 | GCLK_PCHCTRL_CHEN_Msk; tx = PIN('A', 4), rx = PIN('A', 5); rx_mux = MUX_PA05D_SERCOM0_PAD1, tx_mux = MUX_PA04D_SERCOM0_PAD0; } else if (uart == USART2) { MCLK_REGS->MCLK_APBAMASK |= MCLK_APBAMASK_SERCOM1_Msk; tx = PIN('C', 27), rx = PIN('C', 28); } else if (uart == USART3) { MCLK_REGS->MCLK_APBBMASK |= MCLK_APBBMASK_SERCOM2_Msk; tx = PIN('A', 9), rx = PIN('A', 8); } else { return false; } gpio_bank(rx)->PORT_WRCONFIG = PORT_WRCONFIG_PMUX(rx_mux) | PORT_WRCONFIG_WRPMUX(1) | PORT_WRCONFIG_PMUXEN(1) | PORT_WRCONFIG_WRPINCFG(1) | BIT(PINNO(rx)); gpio_bank(tx)->PORT_WRCONFIG = PORT_WRCONFIG_PMUX(tx_mux) | PORT_WRCONFIG_WRPMUX(1) | PORT_WRCONFIG_PMUXEN(1) | PORT_WRCONFIG_WRPINCFG(1) | BIT(PINNO(tx)); uart->SERCOM_CTRLA = SERCOM_USART_INT_CTRLA_DORD(1) | SERCOM_USART_INT_CTRLA_MODE(1 /* INT_CLK */) | SERCOM_USART_INT_CTRLA_RXPO(1 /* PAD1 */) | SERCOM_USART_INT_CTRLA_TXPO(0 /* PAD0 */) | SERCOM_USART_INT_CTRLA_SAMPR(1); uart->SERCOM_BAUD = (uint16_t) (clock_sys_freq() / (16 * baud)); uart->SERCOM_CTRLB = SERCOM_USART_INT_CTRLB_RXEN(1) | SERCOM_USART_INT_CTRLB_TXEN(1) | SERCOM_USART_INT_CTRLB_CHSIZE(0); while (uart->SERCOM_SYNCBUSY & SERCOM_USART_INT_SYNCBUSY_CTRLB_Msk) spin(1); uart->SERCOM_CTRLA |= SERCOM_USART_INT_CTRLA_ENABLE(1); while (uart->SERCOM_SYNCBUSY & SERCOM_USART_INT_SYNCBUSY_ENABLE_Msk) spin(1); return true; } static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) { while (!(uart->SERCOM_INTFLAG & SERCOM_USART_INT_INTFLAG_DRE_Msk)) spin(1); uart->SERCOM_DATA = byte; } static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline bool uart_read_ready(USART_TypeDef *uart) { return (uart->SERCOM_INTFLAG & SERCOM_USART_EXT_INTFLAG_RXC_Msk); } static inline uint8_t uart_read_byte(USART_TypeDef *uart) { return (uint8_t) (uart->SERCOM_DATA & 255U); } static inline void rng_init(void) { MCLK_REGS->MCLK_APBCMASK |= MCLK_APBCMASK_TRNG_Msk; TRNG_REGS->TRNG_CTRLA = TRNG_CTRLA_ENABLE_Msk; } static inline uint32_t rng_read(void) { while ((TRNG_REGS->TRNG_INTFLAG & TRNG_INTFLAG_DATARDY_Msk) == 0) spin(1); return TRNG_REGS->TRNG_DATA; } #define UID_BASE_W0 0x008061FC // Word 0 location of the 128-bit chip ID #define UID_BASE_W1_3 0x00806010 // Words 1-3 location of the 128-bit chip ID #define UUID(n) ((n >= 0 && n <= 3) ? \ (((uint8_t *) UID_BASE_W0)[n]) : \ (((uint8_t *) UID_BASE_W1_3)[n - 4])) #define GENERATE_LOCALLY_ADMINISTERED_MAC() \ { \ 2, UUID(0) ^ UUID(1) ^ UUID(2), UUID(3) ^ UUID(4) ^ UUID(5), \ UUID(6) ^ UUID(7) ^ UUID(8), UUID(9) ^ UUID(10) ^ UUID(11), \ UUID(12) ^ UUID(13) ^ UUID(14) ^ UUID(15) \ } static inline bool timer_expired(volatile uint64_t *t, uint64_t prd, uint64_t now) { if (now + prd < *t) *t = 0; // Time wrapped? Reset timer if (*t == 0) *t = now + prd; // Firt poll? Set expiration if (*t > now) return false; // Not expired yet, return *t = (now - *t) > prd ? now + prd : *t + prd; // Next expiration time return true; // Expired, return true } static inline void clock_init(void) { SCB->CPACR |= (15U << 20); // Enable FPU SysTick_Config(clock_sys_freq() / 1000); // Sys tick every 1ms } static inline void gpio_set_irq_handler(uint16_t pin, void (*fn)(void *), void *arg) { (void) pin, (void) fn, (void) arg; } static inline void ethernet_init(void) { uint16_t pins[] = {PIN('A', 12), PIN('A', 13), PIN('A', 14), PIN('A', 15), PIN('A', 17), PIN('A', 18), PIN('A', 19), PIN('C', 11), PIN('C', 12), PIN('C', 20)}; uint32_t af[] = {MUX_PA12L_GMAC_GRX1, MUX_PA13L_GMAC_GRX0, MUX_PA14L_GMAC_GTXCK, MUX_PA15L_GMAC_GRXER, MUX_PA17L_GMAC_GTXEN, MUX_PA18L_GMAC_GTX0, MUX_PA19L_GMAC_GTX1, MUX_PC11L_GMAC_GMDC, MUX_PC12L_GMAC_GMDIO, MUX_PC20L_GMAC_GRXDV}; MCLK_REGS->MCLK_APBBMASK |= MCLK_APBBMASK_PORT_Msk; for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) { int bank = PINBANK(pins[i]), no = PINNO(pins[i]); PORT_REGS->GROUP[bank].PORT_PINCFG[no] |= PORT_PINCFG_PMUXEN_Msk; volatile uint8_t *m = &PORT_REGS->GROUP[bank].PORT_PMUX[no / 2], v = m[0]; if (no & 1) { m[0] = (uint8_t) ((v & ~0xf0) | PORT_PMUX_PMUXO(af[i])); } else { m[0] = (uint8_t) ((v & ~0x0f) | PORT_PMUX_PMUXE(af[i])); } } PORT_REGS->GROUP[0].PORT_PINCFG[17] |= PORT_PINCFG_DRVSTR_Msk; PORT_REGS->GROUP[0].PORT_PINCFG[18] |= PORT_PINCFG_DRVSTR_Msk; PORT_REGS->GROUP[0].PORT_PINCFG[19] |= PORT_PINCFG_DRVSTR_Msk; // Reset PHY uint16_t phy_pin = PIN('C', 21); gpio_output(phy_pin); gpio_write(phy_pin, false); spin(999); gpio_write(phy_pin, true); spin(999); }