// Copyright (c) 2024 Cesanta Software Limited // All rights reserved #include #include #include // For _fstat() #include "hal.h" uint32_t SystemCoreClock = SYS_FREQUENCY; static volatile uint64_t s_ticks; // Milliseconds since boot extern void _estack(void); // Defined in link.ld void Reset_Handler(void); void SysTick_Handler(void); // 16 ARM and 200 peripheral handlers __attribute__((section(".vectors"))) void (*const tab[16 + 10])(void) = { _estack, Reset_Handler, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, SysTick_Handler}; void Reset_Handler(void) { extern long _sbss[], _ebss[], _sdata[], _edata[], _sidata[]; extern int main(void); SCB->VTOR = (uint32_t) tab; for (long *dst = _sbss; dst < _ebss; dst++) *dst = 0; for (long *dst = _sdata, *src = _sidata; dst < _edata;) *dst++ = *src++; SystemInit(); main(); while (1) (void) 0; } void SystemInit(void) { // Called automatically by startup code clock_init(); // Set system clock to SYS_FREQUENCY rng_init(); // Initialise random number generator SysTick_Config(SystemCoreClock / 1000); // Sys tick every 1ms } void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms s_ticks++; } void mg_random(void *buf, size_t len) { // Use on-board RNG for (size_t n = 0; n < len; n += sizeof(uint32_t)) { uint32_t r = rng_read(); memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r)); } } uint64_t mg_millis(void) { // Let Mongoose use our uptime function return s_ticks; // Return number of milliseconds since boot } void hal_init(void) { uart_init(UART_DEBUG, 115200); // Initialise UART gpio_output(LED1); // Initialise LED gpio_output(LED2); // Initialise LED gpio_output(LED3); // Initialise LED ethernet_init(); // Initialise Ethernet pins } // Newlib syscalls. Implemented are: _sbrk() for malloc, and _write() int _fstat(int fd, struct stat *st) { (void) fd, (void) st; return -1; } extern unsigned char _end[]; // End of data section, start of heap. See link.ld static unsigned char *s_current_heap_end = _end; size_t hal_ram_used(void) { return (size_t) (s_current_heap_end - _end); } size_t hal_ram_free(void) { unsigned char endofstack; return (size_t) (&endofstack - s_current_heap_end); } void *_sbrk(int incr) { unsigned char *prev_heap; unsigned char *heap_end = (unsigned char *) ((size_t) &heap_end - 256); prev_heap = s_current_heap_end; // Check how much space we got from the heap end to the stack end if (s_current_heap_end + incr > heap_end) return (void *) -1; s_current_heap_end += incr; return prev_heap; } int _open(const char *path) { (void) path; return -1; } int _close(int fd) { (void) fd; return -1; } int _isatty(int fd) { (void) fd; return 1; } int _lseek(int fd, int ptr, int dir) { (void) fd, (void) ptr, (void) dir; return 0; } void _exit(int status) { (void) status; for (;;) asm volatile("BKPT #0"); } void _kill(int pid, int sig) { (void) pid, (void) sig; } int _getpid(void) { return -1; } int _write(int fd, char *ptr, int len) { (void) fd, (void) ptr, (void) len; if (fd == 1) uart_write_buf(UART_DEBUG, ptr, (size_t) len); return -1; } int _read(int fd, char *ptr, int len) { (void) fd, (void) ptr, (void) len; return -1; } int _link(const char *a, const char *b) { (void) a, (void) b; return -1; } int _unlink(const char *a) { (void) a; return -1; } int _stat(const char *path, struct stat *st) { (void) path, (void) st; return -1; } int mkdir(const char *path, mode_t mode) { (void) path, (void) mode; return -1; } void _init(void) { }