#include "mip.h" #if MG_ENABLE_MIP && defined(__arm__) // define to your own clock if using external clocking #if !defined(MG_STM32_CLK_HSE) #define MG_STM32_CLK_HSE 8000000UL #endif // define to your chip internal clock if different #if !defined(MG_STM32_CLK_HSI) #define MG_STM32_CLK_HSI 16000000UL #endif struct stm32_eth { volatile uint32_t MACCR, MACFFR, MACHTHR, MACHTLR, MACMIIAR, MACMIIDR, MACFCR, MACVLANTR, RESERVED0[2], MACRWUFFR, MACPMTCSR, RESERVED1, MACDBGR, MACSR, MACIMR, MACA0HR, MACA0LR, MACA1HR, MACA1LR, MACA2HR, MACA2LR, MACA3HR, MACA3LR, RESERVED2[40], MMCCR, MMCRIR, MMCTIR, MMCRIMR, MMCTIMR, RESERVED3[14], MMCTGFSCCR, MMCTGFMSCCR, RESERVED4[5], MMCTGFCR, RESERVED5[10], MMCRFCECR, MMCRFAECR, RESERVED6[10], MMCRGUFCR, RESERVED7[334], PTPTSCR, PTPSSIR, PTPTSHR, PTPTSLR, PTPTSHUR, PTPTSLUR, PTPTSAR, PTPTTHR, PTPTTLR, RESERVED8, PTPTSSR, PTPPPSCR, RESERVED9[564], DMABMR, DMATPDR, DMARPDR, DMARDLAR, DMATDLAR, DMASR, DMAOMR, DMAIER, DMAMFBOCR, DMARSWTR, RESERVED10[8], DMACHTDR, DMACHRDR, DMACHTBAR, DMACHRBAR; }; #define ETH ((struct stm32_eth *) (uintptr_t) 0x40028000) #define BIT(x) ((uint32_t) 1 << (x)) #define ETH_PKT_SIZE 1540 // Max frame size #define ETH_DESC_CNT 4 // Descriptors count #define ETH_DS 4 // Descriptor size (words) static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers static void (*s_rx)(void *, size_t, void *); // Recv callback static void *s_rxdata; // Recv callback data enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1 }; // PHY constants static inline void spin(volatile uint32_t count) { while (count--) asm("nop"); } static uint32_t hclk_get(void); static uint8_t cr_guess(uint32_t hclk); static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) { ETH->MACMIIAR &= (7 << 2); ETH->MACMIIAR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6); ETH->MACMIIAR |= BIT(0); while (ETH->MACMIIAR & BIT(0)) spin(1); return ETH->MACMIIDR; } static void eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) { ETH->MACMIIDR = val; ETH->MACMIIAR &= (7 << 2); ETH->MACMIIAR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | BIT(1); ETH->MACMIIAR |= BIT(0); while (ETH->MACMIIAR & BIT(0)) spin(1); } static bool mip_driver_stm32_init(uint8_t *mac, void *userdata) { // Init RX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_rxdesc[i][0] = BIT(31); // Own s_rxdesc[i][1] = sizeof(s_rxbuf[i]) | BIT(14); // 2nd address chained s_rxdesc[i][2] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer s_rxdesc[i][3] = (uint32_t) (uintptr_t) s_rxdesc[(i + 1) % ETH_DESC_CNT]; // Chain } // Init TX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_txdesc[i][2] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer s_txdesc[i][3] = (uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain } ETH->DMABMR |= BIT(0); // Software reset while ((ETH->DMABMR & BIT(0)) != 0) spin(1); // Wait until done // NOTE(cpq): we do not use extended descriptor bit 7, and do not use // hardware checksum. Therefore, descriptor size is 4, not 8 // ETH->DMABMR = BIT(13) | BIT(16) | BIT(22) | BIT(23) | BIT(25); ETH->MACIMR = BIT(3) | BIT(9); // Mask timestamp & PMT IT ETH->MACMIIAR = cr_guess(hclk_get()) << 2; // MDC clock ETH->MACFCR = BIT(7); // Disable zero quarta pause ETH->MACFFR = BIT(31); // Receive all eth_write_phy(PHY_ADDR, PHY_BCR, BIT(15)); // Reset PHY eth_write_phy(PHY_ADDR, PHY_BCR, BIT(12)); // Set autonegotiation ETH->DMARDLAR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors ETH->DMATDLAR = (uint32_t) (uintptr_t) s_txdesc; // RX descriptors ETH->DMAIER = BIT(6) | BIT(16); // RIE, NISE ETH->MACCR = BIT(2) | BIT(3) | BIT(11) | BIT(14); // RE, TE, Duplex, Fast ETH->DMAOMR = BIT(1) | BIT(13) | BIT(21) | BIT(25); // SR, ST, TSF, RSF // TODO(cpq): setup MAC filtering (void) userdata, (void) mac; return true; } static void mip_driver_stm32_setrx(void (*rx)(void *, size_t, void *), void *rxdata) { s_rx = rx; s_rxdata = rxdata; } static uint32_t s_txno; static size_t mip_driver_stm32_tx(const void *buf, size_t len, void *userdata) { if (len > sizeof(s_txbuf[s_txno])) { printf("%s: frame too big, %ld\n", __func__, (long) len); len = 0; // Frame is too big } else if ((s_txdesc[s_txno][0] & BIT(31))) { printf("%s: no free descr\n", __func__); len = 0; // All descriptors are busy, fail } else { memcpy(s_txbuf[s_txno], buf, len); // Copy data s_txdesc[s_txno][1] = (uint32_t) len; // Set data len s_txdesc[s_txno][0] = BIT(20) | BIT(28) | BIT(29) | BIT(30); // Chain,FS,LS s_txdesc[s_txno][0] |= BIT(31); // Set OWN bit - let DMA take over if (++s_txno >= ETH_DESC_CNT) s_txno = 0; } uint32_t sr = ETH->DMASR; if (sr & BIT(2)) ETH->DMASR = BIT(2), ETH->DMATPDR = 0; // Resume if (sr & BIT(5)) ETH->DMASR = BIT(5), ETH->DMATPDR = 0; // if busy if (len == 0) printf("E: D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) sr); return len; (void) userdata; } static bool mip_driver_stm32_up(void *userdata) { uint32_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR); (void) userdata; return bsr & BIT(2) ? 1 : 0; } void ETH_IRQHandler(void); void ETH_IRQHandler(void) { #ifdef MIP_QPROFILE qp_mark(QP_IRQTRIGGERED, 0); #endif volatile uint32_t sr = ETH->DMASR; if (sr & BIT(6)) { // Frame received, loop for (uint32_t i = 0; i < ETH_DESC_CNT; i++) { if (s_rxdesc[i][0] & BIT(31)) continue; uint32_t len = ((s_rxdesc[i][0] >> 16) & (BIT(14) - 1)); // printf("%lx %lu %lx %lx\n", i, len, s_rxdesc[i][0], sr); if (s_rx != NULL) s_rx(s_rxbuf[i], len > 4 ? len - 4 : len, s_rxdata); s_rxdesc[i][0] = BIT(31); } } if (sr & BIT(7)) ETH->DMARPDR = 0; // Resume RX ETH->DMASR = sr & ~(BIT(2) | BIT(7)); // Clear status } struct mip_driver mip_driver_stm32 = {.init = mip_driver_stm32_init, .tx = mip_driver_stm32_tx, .setrx = mip_driver_stm32_setrx, .up = mip_driver_stm32_up}; // Calculate HCLK from clock settings, // valid for STM32F74xxx/75xxx (5.3) and STM32F42xxx/43xxx (6.3) static const uint8_t ahbptab[8] = {1, 2, 3, 4, 6, 7, 8, 9}; // log2(div) struct rcc { volatile uint32_t CR, PLLCFGR, CFGR; }; #define RCC ((struct rcc *) 0x40023800) static uint32_t hclk_get(void) { uint32_t clk = 0; if (RCC->CFGR & (1 << 2)) { clk = MG_STM32_CLK_HSE; } else if (RCC->CFGR & (1 << 3)) { uint32_t vco, m, n, p; m = (RCC->PLLCFGR & (0x3FUL << 0)) >> 0; n = (RCC->PLLCFGR & (0x1FFUL << 6)) >> 6; p = (((RCC->PLLCFGR & (0x03UL << 16)) >> 16) + 1) * 2; if (RCC->PLLCFGR & (1UL << 22)) clk = MG_STM32_CLK_HSE; else clk = MG_STM32_CLK_HSI; vco = (uint32_t) ((uint64_t) (((uint32_t) clk * (uint32_t) n)) / ((uint32_t) m)); clk = vco / p; } else { clk = MG_STM32_CLK_HSI; } int hpre = (RCC->CFGR & (0x0F << 4)) >> 4; if (hpre < 8) return clk; return ((uint32_t) clk) >> ahbptab[hpre - 8]; } // Guess CR from HCLK. MDC clock is generated from HCLK (AHB); as per 802.3, // it must not exceed 2.5MHz As the AHB clock can be (and usually is) derived // from the HSI (internal RC), and it can go above specs, the datasheets // specify a range of frequencies and activate one of a series of dividers to // keep the MDC clock safely below 2.5MHz. We guess a divider setting based on // HCLK with a +5% drift. If the user uses a different clock from our // defaults, needs to set the macros on top Valid for STM32F74xxx/75xxx // (38.8.1) and STM32F42xxx/43xxx (33.8.1) (both 4.5% worst case drift) #define CRDTAB_LEN 6 static const uint8_t crdtab[CRDTAB_LEN][2] = { // [{setting, div ratio},...] {2, 16}, {3, 26}, {0, 42}, {1, 62}, {4, 102}, {5, 124}, }; static uint8_t cr_guess(uint32_t hclk) { MG_DEBUG(("HCLK: %u", hclk)); if (hclk < 25000000) { MG_ERROR(("HCLK too low")); return CRDTAB_LEN; } for (int i = 0; i < CRDTAB_LEN; i++) if (hclk / crdtab[i][1] <= 2375000UL) return crdtab[i][0]; // 2.5MHz - 5% MG_ERROR(("HCLK too high")); return CRDTAB_LEN; } #endif // MG_ENABLE_MIP