/* * Copyright 2021 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_common.h" #include "fsl_debug_console.h" #include "board.h" #if defined(SDK_I2C_BASED_COMPONENT_USED) && SDK_I2C_BASED_COMPONENT_USED #include "fsl_lpi2c.h" #endif /* SDK_I2C_BASED_COMPONENT_USED */ #include "fsl_iomuxc.h" /******************************************************************************* * Variables ******************************************************************************/ /******************************************************************************* * Code ******************************************************************************/ /* Get debug console frequency. */ uint32_t BOARD_DebugConsoleSrcFreq(void) { uint32_t freq; /* To make it simple, we assume default PLL and divider settings, and the only variable from application is use PLL3 source or OSC source */ if (CLOCK_GetMux(kCLOCK_UartMux) == 0) /* PLL3 div6 80M */ { freq = (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U); } else { freq = CLOCK_GetOscFreq() / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U); } return freq; } /* Initialize debug console. */ void BOARD_InitDebugConsole(void) { uint32_t uartClkSrcFreq = BOARD_DebugConsoleSrcFreq(); DbgConsole_Init(BOARD_DEBUG_UART_INSTANCE, BOARD_DEBUG_UART_BAUDRATE, BOARD_DEBUG_UART_TYPE, uartClkSrcFreq); } #if defined(SDK_I2C_BASED_COMPONENT_USED) && SDK_I2C_BASED_COMPONENT_USED void BOARD_LPI2C_Init(LPI2C_Type *base, uint32_t clkSrc_Hz) { lpi2c_master_config_t lpi2cConfig = {0}; /* * lpi2cConfig.debugEnable = false; * lpi2cConfig.ignoreAck = false; * lpi2cConfig.pinConfig = kLPI2C_2PinOpenDrain; * lpi2cConfig.baudRate_Hz = 100000U; * lpi2cConfig.busIdleTimeout_ns = 0; * lpi2cConfig.pinLowTimeout_ns = 0; * lpi2cConfig.sdaGlitchFilterWidth_ns = 0; * lpi2cConfig.sclGlitchFilterWidth_ns = 0; */ LPI2C_MasterGetDefaultConfig(&lpi2cConfig); LPI2C_MasterInit(base, &lpi2cConfig, clkSrc_Hz); } status_t BOARD_LPI2C_Send(LPI2C_Type *base, uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *txBuff, uint8_t txBuffSize) { lpi2c_master_transfer_t xfer; xfer.flags = kLPI2C_TransferDefaultFlag; xfer.slaveAddress = deviceAddress; xfer.direction = kLPI2C_Write; xfer.subaddress = subAddress; xfer.subaddressSize = subAddressSize; xfer.data = txBuff; xfer.dataSize = txBuffSize; return LPI2C_MasterTransferBlocking(base, &xfer); } status_t BOARD_LPI2C_Receive(LPI2C_Type *base, uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { lpi2c_master_transfer_t xfer; xfer.flags = kLPI2C_TransferDefaultFlag; xfer.slaveAddress = deviceAddress; xfer.direction = kLPI2C_Read; xfer.subaddress = subAddress; xfer.subaddressSize = subAddressSize; xfer.data = rxBuff; xfer.dataSize = rxBuffSize; return LPI2C_MasterTransferBlocking(base, &xfer); } status_t BOARD_LPI2C_SendSCCB(LPI2C_Type *base, uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *txBuff, uint8_t txBuffSize) { lpi2c_master_transfer_t xfer; xfer.flags = kLPI2C_TransferDefaultFlag; xfer.slaveAddress = deviceAddress; xfer.direction = kLPI2C_Write; xfer.subaddress = subAddress; xfer.subaddressSize = subAddressSize; xfer.data = txBuff; xfer.dataSize = txBuffSize; return LPI2C_MasterTransferBlocking(base, &xfer); } status_t BOARD_LPI2C_ReceiveSCCB(LPI2C_Type *base, uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { status_t status; lpi2c_master_transfer_t xfer; xfer.flags = kLPI2C_TransferDefaultFlag; xfer.slaveAddress = deviceAddress; xfer.direction = kLPI2C_Write; xfer.subaddress = subAddress; xfer.subaddressSize = subAddressSize; xfer.data = NULL; xfer.dataSize = 0; status = LPI2C_MasterTransferBlocking(base, &xfer); if (kStatus_Success == status) { xfer.subaddressSize = 0; xfer.direction = kLPI2C_Read; xfer.data = rxBuff; xfer.dataSize = rxBuffSize; status = LPI2C_MasterTransferBlocking(base, &xfer); } return status; } void BOARD_Accel_I2C_Init(void) { BOARD_LPI2C_Init(BOARD_ACCEL_I2C_BASEADDR, BOARD_ACCEL_I2C_CLOCK_FREQ); } status_t BOARD_Accel_I2C_Send(uint8_t deviceAddress, uint32_t subAddress, uint8_t subaddressSize, uint32_t txBuff) { uint8_t data = (uint8_t)txBuff; return BOARD_LPI2C_Send(BOARD_ACCEL_I2C_BASEADDR, deviceAddress, subAddress, subaddressSize, &data, 1); } status_t BOARD_Accel_I2C_Receive( uint8_t deviceAddress, uint32_t subAddress, uint8_t subaddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { return BOARD_LPI2C_Receive(BOARD_ACCEL_I2C_BASEADDR, deviceAddress, subAddress, subaddressSize, rxBuff, rxBuffSize); } void BOARD_Codec_I2C_Init(void) { BOARD_LPI2C_Init(BOARD_CODEC_I2C_BASEADDR, BOARD_CODEC_I2C_CLOCK_FREQ); } status_t BOARD_Codec_I2C_Send( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, const uint8_t *txBuff, uint8_t txBuffSize) { return BOARD_LPI2C_Send(BOARD_CODEC_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, (uint8_t *)txBuff, txBuffSize); } status_t BOARD_Codec_I2C_Receive( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { return BOARD_LPI2C_Receive(BOARD_CODEC_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, rxBuff, rxBuffSize); } void BOARD_Camera_I2C_Init(void) { CLOCK_SetMux(kCLOCK_Lpi2cMux, BOARD_CAMERA_I2C_CLOCK_SOURCE_SELECT); CLOCK_SetDiv(kCLOCK_Lpi2cDiv, BOARD_CAMERA_I2C_CLOCK_SOURCE_DIVIDER); BOARD_LPI2C_Init(BOARD_CAMERA_I2C_BASEADDR, BOARD_CAMERA_I2C_CLOCK_FREQ); } status_t BOARD_Camera_I2C_Send( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, const uint8_t *txBuff, uint8_t txBuffSize) { return BOARD_LPI2C_Send(BOARD_CAMERA_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, (uint8_t *)txBuff, txBuffSize); } status_t BOARD_Camera_I2C_Receive( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { return BOARD_LPI2C_Receive(BOARD_CAMERA_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, rxBuff, rxBuffSize); } status_t BOARD_Camera_I2C_SendSCCB( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, const uint8_t *txBuff, uint8_t txBuffSize) { return BOARD_LPI2C_SendSCCB(BOARD_CAMERA_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, (uint8_t *)txBuff, txBuffSize); } status_t BOARD_Camera_I2C_ReceiveSCCB( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { return BOARD_LPI2C_ReceiveSCCB(BOARD_CAMERA_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, rxBuff, rxBuffSize); } status_t BOARD_Touch_I2C_Send( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, const uint8_t *txBuff, uint8_t txBuffSize) { return BOARD_LPI2C_Send(BOARD_TOUCH_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, (uint8_t *)txBuff, txBuffSize); } status_t BOARD_Touch_I2C_Receive( uint8_t deviceAddress, uint32_t subAddress, uint8_t subAddressSize, uint8_t *rxBuff, uint8_t rxBuffSize) { return BOARD_LPI2C_Receive(BOARD_TOUCH_I2C_BASEADDR, deviceAddress, subAddress, subAddressSize, rxBuff, rxBuffSize); } #endif /* SDK_I2C_BASED_COMPONENT_USED */ /* MPU configuration. */ void BOARD_ConfigMPU(void) { #if defined(__CC_ARM) || defined(__ARMCC_VERSION) extern uint32_t Image$$RW_m_ncache$$Base[]; /* RW_m_ncache_unused is a auxiliary region which is used to get the whole size of noncache section */ extern uint32_t Image$$RW_m_ncache_unused$$Base[]; extern uint32_t Image$$RW_m_ncache_unused$$ZI$$Limit[]; uint32_t nonCacheStart = (uint32_t)Image$$RW_m_ncache$$Base; uint32_t size = ((uint32_t)Image$$RW_m_ncache_unused$$Base == nonCacheStart) ? 0 : ((uint32_t)Image$$RW_m_ncache_unused$$ZI$$Limit - nonCacheStart); #elif defined(__MCUXPRESSO) extern uint32_t __base_NCACHE_REGION; extern uint32_t __top_NCACHE_REGION; uint32_t nonCacheStart = (uint32_t)(&__base_NCACHE_REGION); uint32_t size = (uint32_t)(&__top_NCACHE_REGION) - nonCacheStart; #elif defined(__ICCARM__) || defined(__GNUC__) extern uint32_t __NCACHE_REGION_START[]; extern uint32_t __NCACHE_REGION_SIZE[]; uint32_t nonCacheStart = (uint32_t)__NCACHE_REGION_START; uint32_t size = (uint32_t)__NCACHE_REGION_SIZE; #endif volatile uint32_t i = 0; /* Disable I cache and D cache */ if (SCB_CCR_IC_Msk == (SCB_CCR_IC_Msk & SCB->CCR)) { SCB_DisableICache(); } if (SCB_CCR_DC_Msk == (SCB_CCR_DC_Msk & SCB->CCR)) { SCB_DisableDCache(); } /* Disable MPU */ ARM_MPU_Disable(); /* MPU configure: * Use ARM_MPU_RASR(DisableExec, AccessPermission, TypeExtField, IsShareable, IsCacheable, IsBufferable, * SubRegionDisable, Size) * API in mpu_armv7.h. * param DisableExec Instruction access (XN) disable bit,0=instruction fetches enabled, 1=instruction fetches * disabled. * param AccessPermission Data access permissions, allows you to configure read/write access for User and * Privileged mode. * Use MACROS defined in mpu_armv7.h: * ARM_MPU_AP_NONE/ARM_MPU_AP_PRIV/ARM_MPU_AP_URO/ARM_MPU_AP_FULL/ARM_MPU_AP_PRO/ARM_MPU_AP_RO * Combine TypeExtField/IsShareable/IsCacheable/IsBufferable to configure MPU memory access attributes. * TypeExtField IsShareable IsCacheable IsBufferable Memory Attribute Shareability Cache * 0 x 0 0 Strongly Ordered shareable * 0 x 0 1 Device shareable * 0 0 1 0 Normal not shareable Outer and inner write * through no write allocate * 0 0 1 1 Normal not shareable Outer and inner write * back no write allocate * 0 1 1 0 Normal shareable Outer and inner write * through no write allocate * 0 1 1 1 Normal shareable Outer and inner write * back no write allocate * 1 0 0 0 Normal not shareable outer and inner * noncache * 1 1 0 0 Normal shareable outer and inner * noncache * 1 0 1 1 Normal not shareable outer and inner write * back write/read acllocate * 1 1 1 1 Normal shareable outer and inner write * back write/read acllocate * 2 x 0 0 Device not shareable * Above are normal use settings, if your want to see more details or want to config different inner/outter cache * policy. * please refer to Table 4-55 /4-56 in arm cortex-M7 generic user guide * param SubRegionDisable Sub-region disable field. 0=sub-region is enabled, 1=sub-region is disabled. * param Size Region size of the region to be configured. use ARM_MPU_REGION_SIZE_xxx MACRO in * mpu_armv7.h. */ /* * Add default region to deny access to whole address space to workaround speculative prefetch. * Refer to Arm errata 1013783-B for more details. * */ /* Region 0 setting: Instruction access disabled, No data access permission. */ MPU->RBAR = ARM_MPU_RBAR(0, 0x00000000U); MPU->RASR = ARM_MPU_RASR(1, ARM_MPU_AP_NONE, 0, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_4GB); /* Region 1 setting: Memory with Device type, not shareable, non-cacheable. */ MPU->RBAR = ARM_MPU_RBAR(1, 0x80000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 2, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_512MB); /* Region 2 setting: Memory with Device type, not shareable, non-cacheable. */ MPU->RBAR = ARM_MPU_RBAR(2, 0x60000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 2, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_512MB); #if defined(XIP_EXTERNAL_FLASH) && (XIP_EXTERNAL_FLASH == 1) /* Region 3 setting: Memory with Normal type, not shareable, outer/inner write back. */ MPU->RBAR = ARM_MPU_RBAR(3, 0x60000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_RO, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_8MB); #endif /* Region 4 setting: Memory with Device type, not shareable, non-cacheable. */ MPU->RBAR = ARM_MPU_RBAR(4, 0x00000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 2, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_1GB); /* Region 5 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(5, 0x00000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_128KB); /* Region 6 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(6, 0x20000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_128KB); /* Region 7 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(7, 0x20200000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_512KB); /* Region 8 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(8, 0x20280000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_256KB); /* Region 9 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(9, 0x80000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_32MB); while ((size >> i) > 0x1U) { i++; } if (i != 0) { /* The MPU region size should be 2^N, 5<=N<=32, region base should be multiples of size. */ assert(!(nonCacheStart % size)); assert(size == (uint32_t)(1 << i)); assert(i >= 5); /* Region 10 setting: Memory with Normal type, not shareable, non-cacheable */ MPU->RBAR = ARM_MPU_RBAR(10, nonCacheStart); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 1, 0, 0, 0, 0, i - 1); } /* Region 10 setting: Memory with Device type, not shareable, non-cacheable */ MPU->RBAR = ARM_MPU_RBAR(11, 0x40000000); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 2, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_4MB); /* Region 12 setting: Memory with Device type, not shareable, non-cacheable */ MPU->RBAR = ARM_MPU_RBAR(12, 0x42000000); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 2, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_1MB); /* Enable MPU */ ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk | MPU_CTRL_HFNMIENA_Msk); /* Enable I cache and D cache */ SCB_EnableDCache(); SCB_EnableICache(); }