// Copyright (c) 2022-2023 Cesanta Software Limited // All rights reserved // // MCU manual: RM0444, board manual: UM2591 // https://www.st.com/resource/en/reference_manual/rm0444-stm32g0x1-advanced-armbased-32bit-mcus-stmicroelectronics.pdf // https://www.st.com/resource/en/user_manual/um2591-stm32g0-nucleo32-board-mb1455-stmicroelectronics.pdf // Alternate functions: https://www.st.com/resource/en/datasheet/stm32g031c6.pdf #pragma once // #define LED PIN('B', 3) #define LED PIN('C', 6) #ifndef UART_DEBUG #define UART_DEBUG USART2 #endif #include #include #include #include #include #include #define BIT(x) (1UL << (x)) #define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK) #define PIN(bank, num) ((((bank) - 'A') << 8) | (num)) #define PINNO(pin) (pin & 255) #define PINBANK(pin) (pin >> 8) #define CPU_FREQUENCY 16000000 #define AHB_FREQUENCY CPU_FREQUENCY #define APB_FREQUENCY CPU_FREQUENCY // #define APB1_FREQUENCY (AHB_FREQUENCY / (BIT(PPRE1 - 3))) static inline void spin(volatile uint32_t n) { while (n--) (void) 0; } enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG }; enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN }; enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_HIGH, GPIO_SPEED_INSANE }; enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN }; #define GPIO(N) ((GPIO_TypeDef *) ((GPIOA_BASE) + 0x400 * (N))) static GPIO_TypeDef *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); } static inline void gpio_toggle(uint16_t pin) { GPIO_TypeDef *gpio = gpio_bank(pin); uint32_t mask = BIT(PINNO(pin)); gpio->BSRR = mask << (gpio->ODR & mask ? 16 : 0); } static inline int gpio_read(uint16_t pin) { return gpio_bank(pin)->IDR & BIT(PINNO(pin)) ? 1 : 0; } static inline void gpio_write(uint16_t pin, bool val) { GPIO_TypeDef *gpio = gpio_bank(pin); gpio->BSRR = BIT(PINNO(pin)) << (val ? 0 : 16); } static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type, uint8_t speed, uint8_t pull, uint8_t af) { GPIO_TypeDef *gpio = gpio_bank(pin); uint8_t n = (uint8_t) (PINNO(pin)); RCC->IOPENR |= BIT(PINBANK(pin)); // Enable GPIO clock SETBITS(gpio->OTYPER, 1UL << n, ((uint32_t) type) << n); SETBITS(gpio->OSPEEDR, 3UL << (n * 2), ((uint32_t) speed) << (n * 2)); SETBITS(gpio->PUPDR, 3UL << (n * 2), ((uint32_t) pull) << (n * 2)); SETBITS(gpio->AFR[n >> 3], 15UL << ((n & 7) * 4), ((uint32_t) af) << ((n & 7) * 4)); SETBITS(gpio->MODER, 3UL << (n * 2), ((uint32_t) mode) << (n * 2)); } static inline void gpio_input(uint16_t pin) { gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } static inline void gpio_output(uint16_t pin) { gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, GPIO_PULL_NONE, 0); } static inline bool uart_init(USART_TypeDef *uart, unsigned long baud) { uint8_t af = 1; // Alternate function uint16_t rx = 0, tx = 0; // pins uint32_t freq = 0; // Bus frequency if (uart == USART1) { freq = CPU_FREQUENCY, RCC->APBENR2 |= RCC_APBENR2_USART1EN; tx = PIN('A', 9), rx = PIN('A', 10); } else if (uart == USART2) { freq = CPU_FREQUENCY, RCC->APBENR1 |= RCC_APBENR1_USART2EN; tx = PIN('A', 2), rx = PIN('A', 3); } else { return false; } gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af); uart->CR1 = 0; // Disable UART uart->BRR = freq / baud; // Set baud rate uart->CR1 = USART_CR1_RE | USART_CR1_TE; // Set mode to TX & RX uart->CR1 |= USART_CR1_UE; // Enable UART return true; } static inline void uart_write_byte(USART_TypeDef *uart, uint8_t byte) { uart->TDR = byte; while ((uart->ISR & BIT(7)) == 0) spin(1); } static inline void uart_write_buf(USART_TypeDef *uart, char *buf, size_t len) { while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++); } static inline int uart_read_ready(USART_TypeDef *uart) { return uart->ISR & BIT(5); // If RXNE bit is set, data is ready } static inline uint8_t uart_read_byte(USART_TypeDef *uart) { return (uint8_t) (uart->RDR & 255); } #ifndef RNG struct rng { volatile uint32_t CR, SR, DR; }; #define RNG ((struct rng *) 0x40025000) // RM0444 2.2.2 Table 6 #endif static inline void rng_init(void) { RCC->CCIPR |= 2U << 26U; // RNG clock source. Documented in 5.4.21 RCC->AHBENR |= BIT(18); // RM0444 5.4.25 Table 36 RNG->CR |= BIT(2); // 19.7.1 } static inline uint32_t rng_read(void) { while ((RNG->SR & BIT(0)) == 0) (void) 0; return RNG->DR; } // Bit-bang SPI implementation struct spi { uint16_t miso, mosi, clk, cs; // Pins int spin; // Number of NOP spins for bitbanging }; static inline void spi_begin(struct spi *spi) { gpio_write(spi->cs, 0); // printf("%s\n", __func__); } static inline void spi_end(struct spi *spi) { gpio_write(spi->cs, 1); // printf("%s\n", __func__); } static inline void spi_init(struct spi *spi) { gpio_input(spi->miso); gpio_output(spi->mosi); gpio_output(spi->clk); gpio_output(spi->cs); gpio_write(spi->cs, 1); // printf("%s\n", __func__); } // Send a byte, and return a received byte static inline uint8_t spi_txn(struct spi *spi, uint8_t write_byte) { unsigned count = spi->spin <= 0 ? 9 : (unsigned) spi->spin; uint8_t rx = 0, tx = write_byte; for (int i = 0; i < 8; i++) { gpio_write(spi->mosi, tx & 0x80U); // Set mosi gpio_write(spi->clk, 1); // Clock high spin(count); // Wait half cycle rx <<= 1U; // Shift alreay read bits if (gpio_read(spi->miso)) rx |= 1U; // Read next bit gpio_write(spi->clk, 0); // Clock low spin(count); // Wait half cycle tx <<= 1U; // Discard written bit } // printf("%s %02x %02x\n", __func__, (int) write_byte, (int) rx); return rx; // Return the received byte } #define UUID ((uint32_t *) UID_BASE) // Unique 96-bit chip ID. TRM 59.1 // Helper macro for MAC generation, byte reads not allowed #define GENERATE_LOCALLY_ADMINISTERED_MAC() \ { \ 2, UUID[0] & 255, (UUID[0] >> 10) & 255, (UUID[0] >> 19) & 255, \ UUID[1] & 255, UUID[2] & 255 \ }