mongoose/examples/stm32/nucleo-f746zg-baremetal/main.c
2022-05-26 13:53:36 +01:00

156 lines
6.3 KiB
C

// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
#include "mcu.h"
#include "drivers/mip_driver_stm32.h"
#include "mongoose.h"
#define LED1 PIN('B', 0) // On-board LED pin (green)
#define LED2 PIN('B', 7) // On-board LED pin (blue)
#define LED3 PIN('B', 14) // On-board LED pin (red)
#define BTN1 PIN('C', 13) // On-board user button
static uint64_t s_ticks, s_exti; // Counters, increased by IRQ handlers
static time_t s_boot_timestamp = 0; // Updated by SNTP
static struct mg_connection *s_sntp_conn = NULL; // SNTP connection
// We have no valid system time(), and we need it for TLS. Implement it
time_t time(time_t *tp) {
time_t t = s_boot_timestamp + (time_t) (mg_millis() / 1000);
if (tp != NULL) *tp = t;
return t;
}
// SNTP connection event handler. When we get a response from an SNTP server,
// adjust s_boot_timestamp. We'll get a valid time from that point on
static void sfn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
if (ev == MG_EV_SNTP_TIME) {
uint64_t t = *(uint64_t *) ev_data;
MG_INFO(("%lu SNTP: %lld ms from epoch", c->id, t));
s_boot_timestamp = (time_t) ((t - mg_millis()) / 1000);
} else if (ev == MG_EV_CLOSE) {
s_sntp_conn = NULL;
}
(void) fn_data;
}
static void sntp_cb(void *param) { // SNTP timer function. Sync up time
struct mg_mgr *mgr = (struct mg_mgr *) param;
if (s_sntp_conn == NULL) s_sntp_conn = mg_sntp_connect(mgr, NULL, sfn, NULL);
if (s_boot_timestamp < 9999) mg_sntp_request(s_sntp_conn);
}
static void blink_cb(void *arg) { // Blink periodically
// MG_INFO(("ticks: %u", (unsigned) s_ticks));
gpio_toggle(LED2);
(void) arg;
}
// Server event handler
static void fn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
if (ev == MG_EV_POLL) return;
// MG_DEBUG(("%lu %p %d %p %p", c->id, c, ev, ev_data, fn_data));
if (ev == MG_EV_HTTP_MSG) {
struct mg_http_message *hm = (struct mg_http_message *) ev_data;
if (mg_http_match_uri(hm, "/api/stats")) {
// Print some statistics about currently established connections
mg_printf(c, "HTTP/1.1 200 OK\r\nTransfer-Encoding: chunked\r\n\r\n");
mg_http_printf_chunk(c, "ID PROTO TYPE LOCAL REMOTE\n");
for (struct mg_connection *t = c->mgr->conns; t != NULL; t = t->next) {
char loc[40], rem[40];
mg_http_printf_chunk(c, "%-3lu %4s %s %-15s %s\n", t->id,
t->is_udp ? "UDP" : "TCP",
t->is_listening ? "LISTENING"
: t->is_accepted ? "ACCEPTED "
: "CONNECTED",
mg_straddr(&t->loc, loc, sizeof(loc)),
mg_straddr(&t->rem, rem, sizeof(rem)));
}
mg_http_printf_chunk(c, ""); // Don't forget the last empty chunk
} else {
mg_http_reply(c, 200, "", "hi\n");
#if 0
struct mg_http_serve_opts opts = {0};
opts.root_dir = "/web_root";
opts.fs = &mg_fs_packed;
mg_http_serve_dir(c, hm, &opts);
#endif
}
}
(void) fn_data;
}
uint64_t mg_millis(void) { // Declare our own uptime function
return s_ticks; // Return number of milliseconds since boot
}
void DefaultIRQHandler(void) { // Catch-all fault handler
gpio_output(LED3); // Setup red LED
for (;;) spin(2999999), gpio_toggle(LED3); // Blink LED infinitely
}
void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms
s_ticks++;
}
void EXTI_IRQHandler(void) {
s_exti++;
if (EXTI->PR & BIT(PINNO(BTN1))) EXTI->PR = BIT(PINNO(BTN1));
gpio_write(LED1, gpio_read(BTN1)); // No debounce. Turn LED if button pressed
}
int main(void) {
static struct uart *uart = UART3; // Use UART3 - its attached to debug
clock_init(); // Set clock to 216MHz
systick_init(FREQ / 1000); // Increment s_ticks every ms
gpio_output(LED1); // Setup green LED
gpio_output(LED2); // Setup blue LED
gpio_input(BTN1); // Set button to input
irq_exti_attach(BTN1); // Attach BTN1 to exti
uart_init(uart, 115200); // It is wired to the debug port
// Initialise Ethernet. Enable MAC GPIO pins, see
// https://www.farnell.com/datasheets/2014265.pdf section 6.10
uint16_t pins[] = {PIN('A', 1), PIN('A', 2), PIN('A', 7),
PIN('B', 13), PIN('C', 1), PIN('C', 4),
PIN('C', 5), PIN('G', 11), PIN('G', 13)};
for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) {
gpio_init(pins[i], GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_INSANE,
GPIO_PULL_NONE, 11);
}
nvic_enable_irq(61); // Setup Ethernet IRQ handler
RCC->APB2ENR |= BIT(14); // Enable SYSCFG
SYSCFG->PMC |= BIT(23); // Use RMII. Goes first!
RCC->AHB1ENR |= BIT(25) | BIT(26) | BIT(27); // Enable Ethernet clocks
RCC->AHB1RSTR |= BIT(25); // ETHMAC force reset
RCC->AHB1RSTR &= ~BIT(25); // ETHMAC release reset
struct mg_mgr mgr; // Initialise Mongoose event manager
mg_mgr_init(&mgr); // and attach it to the MIP interface
mg_log_set("2");
mg_timer_add(&mgr, 1000, MG_TIMER_REPEAT, blink_cb, &mgr);
mg_timer_add(&mgr, 5000, MG_TIMER_REPEAT, sntp_cb, &mgr);
mg_http_listen(&mgr, "http://0.0.0.0:80", fn, NULL);
// Initialise Mongoose network stack
// Specify MAC address, and use 0 for IP, mask, GW - i.e. use DHCP
// For static configuration, specify IP/mask/GW in network byte order
struct mip_ipcfg ipcfg = {
.mac = {0xaa, 0xbb, 0xcc, 1, 2, 3}, .ip = 0, .mask = 0, .gw = 0};
struct mip_driver stm32_driver = {.init = mip_driver_stm32_init,
.tx = mip_driver_stm32_tx,
.rxcb = mip_driver_stm32_setrx,
.status = mip_driver_stm32_status};
mip_init(&mgr, &ipcfg, &stm32_driver);
MG_INFO(("Init done, starting main loop"));
#if defined(DASH)
extern void device_dashboard_fn(struct mg_connection *, int, void *, void *);
mg_http_listen(&mgr, "http://0.0.0.0:8000", device_dashboard_fn, &mgr);
#endif
for (;;) mg_mgr_poll(&mgr, 0); // Infinite event loop
return 0;
}