mongoose/examples/stm32/nucleo-f746zg-cube-freertos-lwip/LWIP/Target/ethernetif.c
2023-04-06 17:33:45 -03:00

905 lines
26 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* File Name : ethernetif.c
* Description : This file provides code for the configuration
* of the ethernetif.c MiddleWare.
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "lwip/opt.h"
#include "lwip/timeouts.h"
#include "netif/ethernet.h"
#include "netif/etharp.h"
#include "lwip/ethip6.h"
#include "ethernetif.h"
#include "lan8742.h"
#include <string.h>
#include "cmsis_os.h"
#include "lwip/tcpip.h"
/* Within 'USER CODE' section, code will be kept by default at each generation */
/* USER CODE BEGIN 0 */
#include "hal.h"
/* USER CODE END 0 */
/* Private define ------------------------------------------------------------*/
/* The time to block waiting for input. */
#define TIME_WAITING_FOR_INPUT ( portMAX_DELAY )
/* USER CODE BEGIN OS_THREAD_STACK_SIZE_WITH_RTOS */
/* Stack size of the interface thread */
#define INTERFACE_THREAD_STACK_SIZE ( 350 )
/* USER CODE END OS_THREAD_STACK_SIZE_WITH_RTOS */
/* Network interface name */
#define IFNAME0 's'
#define IFNAME1 't'
/* ETH Setting */
#define ETH_DMA_TRANSMIT_TIMEOUT ( 20U )
#define ETH_TX_BUFFER_MAX ((ETH_TX_DESC_CNT) * 2U)
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* Private variables ---------------------------------------------------------*/
/*
@Note: This interface is implemented to operate in zero-copy mode only:
- Rx buffers will be allocated from LwIP stack memory heap,
then passed to ETH HAL driver.
- Tx buffers will be allocated from LwIP stack memory heap,
then passed to ETH HAL driver.
@Notes:
1.a. ETH DMA Rx descriptors must be contiguous, the default count is 4,
to customize it please redefine ETH_RX_DESC_CNT in ETH GUI (Rx Descriptor Length)
so that updated value will be generated in stm32xxxx_hal_conf.h
1.b. ETH DMA Tx descriptors must be contiguous, the default count is 4,
to customize it please redefine ETH_TX_DESC_CNT in ETH GUI (Tx Descriptor Length)
so that updated value will be generated in stm32xxxx_hal_conf.h
2.a. Rx Buffers number must be between ETH_RX_DESC_CNT and 2*ETH_RX_DESC_CNT
2.b. Rx Buffers must have the same size: ETH_RX_BUF_SIZE, this value must
passed to ETH DMA in the init field (heth.Init.RxBuffLen)
2.c The RX Ruffers addresses and sizes must be properly defined to be aligned
to L1-CACHE line size (32 bytes).
*/
/* Data Type Definitions */
typedef enum
{
RX_ALLOC_OK = 0x00,
RX_ALLOC_ERROR = 0x01
} RxAllocStatusTypeDef;
typedef struct
{
struct pbuf_custom pbuf_custom;
uint8_t buff[(ETH_RX_BUF_SIZE + 31) & ~31] __ALIGNED(32);
} RxBuff_t;
/* Memory Pool Declaration */
#define ETH_RX_BUFFER_CNT 12U
LWIP_MEMPOOL_DECLARE(RX_POOL, ETH_RX_BUFFER_CNT, sizeof(RxBuff_t), "Zero-copy RX PBUF pool");
/* Variable Definitions */
static uint8_t RxAllocStatus;
#if defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma location=0x2004c000
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
#pragma location=0x2004c0a0
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#elif defined ( __CC_ARM ) /* MDK ARM Compiler */
__attribute__((at(0x2004c000))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
__attribute__((at(0x2004c0a0))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#elif defined ( __GNUC__ ) /* GNU Compiler */
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
#endif
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
osSemaphoreId RxPktSemaphore = NULL; /* Semaphore to signal incoming packets */
osSemaphoreId TxPktSemaphore = NULL; /* Semaphore to signal transmit packet complete */
/* Global Ethernet handle */
ETH_HandleTypeDef heth;
ETH_TxPacketConfig TxConfig;
/* Private function prototypes -----------------------------------------------*/
static void ethernetif_input(void const * argument);
int32_t ETH_PHY_IO_Init(void);
int32_t ETH_PHY_IO_DeInit (void);
int32_t ETH_PHY_IO_ReadReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t *pRegVal);
int32_t ETH_PHY_IO_WriteReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t RegVal);
int32_t ETH_PHY_IO_GetTick(void);
lan8742_Object_t LAN8742;
lan8742_IOCtx_t LAN8742_IOCtx = {ETH_PHY_IO_Init,
ETH_PHY_IO_DeInit,
ETH_PHY_IO_WriteReg,
ETH_PHY_IO_ReadReg,
ETH_PHY_IO_GetTick};
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
/* Private functions ---------------------------------------------------------*/
void pbuf_free_custom(struct pbuf *p);
/**
* @brief Ethernet Rx Transfer completed callback
* @param handlerEth: ETH handler
* @retval None
*/
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *handlerEth)
{
osSemaphoreRelease(RxPktSemaphore);
}
/**
* @brief Ethernet Tx Transfer completed callback
* @param handlerEth: ETH handler
* @retval None
*/
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *handlerEth)
{
osSemaphoreRelease(TxPktSemaphore);
}
/**
* @brief Ethernet DMA transfer error callback
* @param handlerEth: ETH handler
* @retval None
*/
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *handlerEth)
{
if((HAL_ETH_GetDMAError(handlerEth) & ETH_DMASR_RBUS) == ETH_DMASR_RBUS)
{
osSemaphoreRelease(RxPktSemaphore);
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/*******************************************************************************
LL Driver Interface ( LwIP stack --> ETH)
*******************************************************************************/
/**
* @brief In this function, the hardware should be initialized.
* Called from ethernetif_init().
*
* @param netif the already initialized lwip network interface structure
* for this ethernetif
*/
static void low_level_init(struct netif *netif)
{
HAL_StatusTypeDef hal_eth_init_status = HAL_OK;
uint32_t duplex, speed = 0;
int32_t PHYLinkState = 0;
ETH_MACConfigTypeDef MACConf = {0};
/* Start ETH HAL Init */
uint8_t MACAddr[6] ;
heth.Instance = ETH;
MACAddr[0] = 0x00;
MACAddr[1] = 0x80;
MACAddr[2] = 0xE1;
MACAddr[3] = 0x00;
MACAddr[4] = 0x00;
MACAddr[5] = 0x00;
heth.Init.MACAddr = &MACAddr[0];
heth.Init.MediaInterface = HAL_ETH_RMII_MODE;
heth.Init.TxDesc = DMATxDscrTab;
heth.Init.RxDesc = DMARxDscrTab;
heth.Init.RxBuffLen = 1536;
/* USER CODE BEGIN MACADDRESS */
uint8_t macaddr[6] = GENERATE_LOCALLY_ADMINISTERED_MAC();
heth.Init.MACAddr = macaddr;
/* USER CODE END MACADDRESS */
hal_eth_init_status = HAL_ETH_Init(&heth);
memset(&TxConfig, 0 , sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
/* End ETH HAL Init */
/* Initialize the RX POOL */
LWIP_MEMPOOL_INIT(RX_POOL);
#if LWIP_ARP || LWIP_ETHERNET
/* set MAC hardware address length */
netif->hwaddr_len = ETH_HWADDR_LEN;
/* set MAC hardware address */
netif->hwaddr[0] = heth.Init.MACAddr[0];
netif->hwaddr[1] = heth.Init.MACAddr[1];
netif->hwaddr[2] = heth.Init.MACAddr[2];
netif->hwaddr[3] = heth.Init.MACAddr[3];
netif->hwaddr[4] = heth.Init.MACAddr[4];
netif->hwaddr[5] = heth.Init.MACAddr[5];
/* maximum transfer unit */
netif->mtu = ETH_MAX_PAYLOAD;
/* Accept broadcast address and ARP traffic */
/* don't set NETIF_FLAG_ETHARP if this device is not an ethernet one */
#if LWIP_ARP
netif->flags |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP;
#else
netif->flags |= NETIF_FLAG_BROADCAST;
#endif /* LWIP_ARP */
/* create a binary semaphore used for informing ethernetif of frame reception */
RxPktSemaphore = xSemaphoreCreateBinary();
/* create a binary semaphore used for informing ethernetif of frame transmission */
TxPktSemaphore = xSemaphoreCreateBinary();
/* create the task that handles the ETH_MAC */
/* USER CODE BEGIN OS_THREAD_DEF_CREATE_CMSIS_RTOS_V1 */
osThreadDef(EthIf, ethernetif_input, osPriorityRealtime, 0, INTERFACE_THREAD_STACK_SIZE);
osThreadCreate (osThread(EthIf), netif);
/* USER CODE END OS_THREAD_DEF_CREATE_CMSIS_RTOS_V1 */
/* USER CODE BEGIN PHY_PRE_CONFIG */
/* USER CODE END PHY_PRE_CONFIG */
/* Set PHY IO functions */
LAN8742_RegisterBusIO(&LAN8742, &LAN8742_IOCtx);
/* Initialize the LAN8742 ETH PHY */
LAN8742_Init(&LAN8742);
if (hal_eth_init_status == HAL_OK)
{
PHYLinkState = LAN8742_GetLinkState(&LAN8742);
/* Get link state */
if(PHYLinkState <= LAN8742_STATUS_LINK_DOWN)
{
netif_set_link_down(netif);
netif_set_down(netif);
}
else
{
switch (PHYLinkState)
{
case LAN8742_STATUS_100MBITS_FULLDUPLEX:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_100M;
break;
case LAN8742_STATUS_100MBITS_HALFDUPLEX:
duplex = ETH_HALFDUPLEX_MODE;
speed = ETH_SPEED_100M;
break;
case LAN8742_STATUS_10MBITS_FULLDUPLEX:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_10M;
break;
case LAN8742_STATUS_10MBITS_HALFDUPLEX:
duplex = ETH_HALFDUPLEX_MODE;
speed = ETH_SPEED_10M;
break;
default:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_100M;
break;
}
/* Get MAC Config MAC */
HAL_ETH_GetMACConfig(&heth, &MACConf);
MACConf.DuplexMode = duplex;
MACConf.Speed = speed;
HAL_ETH_SetMACConfig(&heth, &MACConf);
HAL_ETH_Start_IT(&heth);
netif_set_up(netif);
netif_set_link_up(netif);
/* USER CODE BEGIN PHY_POST_CONFIG */
/* USER CODE END PHY_POST_CONFIG */
}
}
else
{
Error_Handler();
}
#endif /* LWIP_ARP || LWIP_ETHERNET */
/* USER CODE BEGIN LOW_LEVEL_INIT */
/* USER CODE END LOW_LEVEL_INIT */
}
/**
* @brief This function should do the actual transmission of the packet. The packet is
* contained in the pbuf that is passed to the function. This pbuf
* might be chained.
*
* @param netif the lwip network interface structure for this ethernetif
* @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
* @return ERR_OK if the packet could be sent
* an err_t value if the packet couldn't be sent
*
* @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
* strange results. You might consider waiting for space in the DMA queue
* to become available since the stack doesn't retry to send a packet
* dropped because of memory failure (except for the TCP timers).
*/
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
uint32_t i = 0U;
struct pbuf *q = NULL;
err_t errval = ERR_OK;
ETH_BufferTypeDef Txbuffer[ETH_TX_DESC_CNT] = {0};
memset(Txbuffer, 0 , ETH_TX_DESC_CNT*sizeof(ETH_BufferTypeDef));
for(q = p; q != NULL; q = q->next)
{
if(i >= ETH_TX_DESC_CNT)
return ERR_IF;
Txbuffer[i].buffer = q->payload;
Txbuffer[i].len = q->len;
if(i>0)
{
Txbuffer[i-1].next = &Txbuffer[i];
}
if(q->next == NULL)
{
Txbuffer[i].next = NULL;
}
i++;
}
TxConfig.Length = p->tot_len;
TxConfig.TxBuffer = Txbuffer;
TxConfig.pData = p;
pbuf_ref(p);
HAL_ETH_Transmit_IT(&heth, &TxConfig);
while(osSemaphoreWait(TxPktSemaphore, TIME_WAITING_FOR_INPUT)!=osOK)
{
}
HAL_ETH_ReleaseTxPacket(&heth);
return errval;
}
/**
* @brief Should allocate a pbuf and transfer the bytes of the incoming
* packet from the interface into the pbuf.
*
* @param netif the lwip network interface structure for this ethernetif
* @return a pbuf filled with the received packet (including MAC header)
* NULL on memory error
*/
static struct pbuf * low_level_input(struct netif *netif)
{
struct pbuf *p = NULL;
if(RxAllocStatus == RX_ALLOC_OK)
{
HAL_ETH_ReadData(&heth, (void **)&p);
}
return p;
}
/**
* @brief This function should be called when a packet is ready to be read
* from the interface. It uses the function low_level_input() that
* should handle the actual reception of bytes from the network
* interface. Then the type of the received packet is determined and
* the appropriate input function is called.
*
* @param netif the lwip network interface structure for this ethernetif
*/
static void ethernetif_input(void const * argument)
{
struct pbuf *p = NULL;
struct netif *netif = (struct netif *) argument;
for( ;; )
{
if (osSemaphoreWait(RxPktSemaphore, TIME_WAITING_FOR_INPUT) == osOK)
{
do
{
p = low_level_input( netif );
if (p != NULL)
{
if (netif->input( p, netif) != ERR_OK )
{
pbuf_free(p);
}
}
} while(p!=NULL);
}
}
}
#if !LWIP_ARP
/**
* This function has to be completed by user in case of ARP OFF.
*
* @param netif the lwip network interface structure for this ethernetif
* @return ERR_OK if ...
*/
static err_t low_level_output_arp_off(struct netif *netif, struct pbuf *q, const ip4_addr_t *ipaddr)
{
err_t errval;
errval = ERR_OK;
/* USER CODE BEGIN 5 */
/* USER CODE END 5 */
return errval;
}
#endif /* LWIP_ARP */
/**
* @brief Should be called at the beginning of the program to set up the
* network interface. It calls the function low_level_init() to do the
* actual setup of the hardware.
*
* This function should be passed as a parameter to netif_add().
*
* @param netif the lwip network interface structure for this ethernetif
* @return ERR_OK if the loopif is initialized
* ERR_MEM if private data couldn't be allocated
* any other err_t on error
*/
err_t ethernetif_init(struct netif *netif)
{
LWIP_ASSERT("netif != NULL", (netif != NULL));
#if LWIP_NETIF_HOSTNAME
/* Initialize interface hostname */
netif->hostname = "lwip";
#endif /* LWIP_NETIF_HOSTNAME */
/*
* Initialize the snmp variables and counters inside the struct netif.
* The last argument should be replaced with your link speed, in units
* of bits per second.
*/
// MIB2_INIT_NETIF(netif, snmp_ifType_ethernet_csmacd, LINK_SPEED_OF_YOUR_NETIF_IN_BPS);
netif->name[0] = IFNAME0;
netif->name[1] = IFNAME1;
/* We directly use etharp_output() here to save a function call.
* You can instead declare your own function an call etharp_output()
* from it if you have to do some checks before sending (e.g. if link
* is available...) */
#if LWIP_IPV4
#if LWIP_ARP || LWIP_ETHERNET
#if LWIP_ARP
netif->output = etharp_output;
#else
/* The user should write its own code in low_level_output_arp_off function */
netif->output = low_level_output_arp_off;
#endif /* LWIP_ARP */
#endif /* LWIP_ARP || LWIP_ETHERNET */
#endif /* LWIP_IPV4 */
#if LWIP_IPV6
netif->output_ip6 = ethip6_output;
#endif /* LWIP_IPV6 */
netif->linkoutput = low_level_output;
/* initialize the hardware */
low_level_init(netif);
return ERR_OK;
}
/**
* @brief Custom Rx pbuf free callback
* @param pbuf: pbuf to be freed
* @retval None
*/
void pbuf_free_custom(struct pbuf *p)
{
struct pbuf_custom* custom_pbuf = (struct pbuf_custom*)p;
LWIP_MEMPOOL_FREE(RX_POOL, custom_pbuf);
/* If the Rx Buffer Pool was exhausted, signal the ethernetif_input task to
* call HAL_ETH_GetRxDataBuffer to rebuild the Rx descriptors. */
if (RxAllocStatus == RX_ALLOC_ERROR)
{
RxAllocStatus = RX_ALLOC_OK;
osSemaphoreRelease(RxPktSemaphore);
}
}
/* USER CODE BEGIN 6 */
/**
* @brief Returns the current time in milliseconds
* when LWIP_TIMERS == 1 and NO_SYS == 1
* @param None
* @retval Current Time value
*/
u32_t sys_now(void)
{
return HAL_GetTick();
}
/* USER CODE END 6 */
/**
* @brief Initializes the ETH MSP.
* @param ethHandle: ETH handle
* @retval None
*/
void HAL_ETH_MspInit(ETH_HandleTypeDef* ethHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(ethHandle->Instance==ETH)
{
/* USER CODE BEGIN ETH_MspInit 0 */
/* USER CODE END ETH_MspInit 0 */
/* Enable Peripheral clock */
__HAL_RCC_ETH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/**ETH GPIO Configuration
PC1 ------> ETH_MDC
PA1 ------> ETH_REF_CLK
PA2 ------> ETH_MDIO
PA7 ------> ETH_CRS_DV
PC4 ------> ETH_RXD0
PC5 ------> ETH_RXD1
PB13 ------> ETH_TXD1
PG11 ------> ETH_TX_EN
PG13 ------> ETH_TXD0
*/
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/* Peripheral interrupt init */
HAL_NVIC_SetPriority(ETH_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
/* USER CODE BEGIN ETH_MspInit 1 */
/* USER CODE END ETH_MspInit 1 */
}
}
void HAL_ETH_MspDeInit(ETH_HandleTypeDef* ethHandle)
{
if(ethHandle->Instance==ETH)
{
/* USER CODE BEGIN ETH_MspDeInit 0 */
/* USER CODE END ETH_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ETH_CLK_DISABLE();
/**ETH GPIO Configuration
PC1 ------> ETH_MDC
PA1 ------> ETH_REF_CLK
PA2 ------> ETH_MDIO
PA7 ------> ETH_CRS_DV
PC4 ------> ETH_RXD0
PC5 ------> ETH_RXD1
PB13 ------> ETH_TXD1
PG11 ------> ETH_TX_EN
PG13 ------> ETH_TXD0
*/
HAL_GPIO_DeInit(GPIOC, GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5);
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_13);
HAL_GPIO_DeInit(GPIOG, GPIO_PIN_11|GPIO_PIN_13);
/* Peripheral interrupt Deinit*/
HAL_NVIC_DisableIRQ(ETH_IRQn);
/* USER CODE BEGIN ETH_MspDeInit 1 */
/* USER CODE END ETH_MspDeInit 1 */
}
}
/*******************************************************************************
PHI IO Functions
*******************************************************************************/
/**
* @brief Initializes the MDIO interface GPIO and clocks.
* @param None
* @retval 0 if OK, -1 if ERROR
*/
int32_t ETH_PHY_IO_Init(void)
{
/* We assume that MDIO GPIO configuration is already done
in the ETH_MspInit() else it should be done here
*/
/* Configure the MDIO Clock */
HAL_ETH_SetMDIOClockRange(&heth);
return 0;
}
/**
* @brief De-Initializes the MDIO interface .
* @param None
* @retval 0 if OK, -1 if ERROR
*/
int32_t ETH_PHY_IO_DeInit (void)
{
return 0;
}
/**
* @brief Read a PHY register through the MDIO interface.
* @param DevAddr: PHY port address
* @param RegAddr: PHY register address
* @param pRegVal: pointer to hold the register value
* @retval 0 if OK -1 if Error
*/
int32_t ETH_PHY_IO_ReadReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t *pRegVal)
{
if(HAL_ETH_ReadPHYRegister(&heth, DevAddr, RegAddr, pRegVal) != HAL_OK)
{
return -1;
}
return 0;
}
/**
* @brief Write a value to a PHY register through the MDIO interface.
* @param DevAddr: PHY port address
* @param RegAddr: PHY register address
* @param RegVal: Value to be written
* @retval 0 if OK -1 if Error
*/
int32_t ETH_PHY_IO_WriteReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t RegVal)
{
if(HAL_ETH_WritePHYRegister(&heth, DevAddr, RegAddr, RegVal) != HAL_OK)
{
return -1;
}
return 0;
}
/**
* @brief Get the time in millisecons used for internal PHY driver process.
* @retval Time value
*/
int32_t ETH_PHY_IO_GetTick(void)
{
return HAL_GetTick();
}
/**
* @brief Check the ETH link state then update ETH driver and netif link accordingly.
* @retval None
*/
void ethernet_link_thread(void const * argument)
{
ETH_MACConfigTypeDef MACConf = {0};
int32_t PHYLinkState = 0;
uint32_t linkchanged = 0U, speed = 0U, duplex = 0U;
struct netif *netif = (struct netif *) argument;
/* USER CODE BEGIN ETH link init */
/* USER CODE END ETH link init */
for(;;)
{
PHYLinkState = LAN8742_GetLinkState(&LAN8742);
if(netif_is_link_up(netif) && (PHYLinkState <= LAN8742_STATUS_LINK_DOWN))
{
HAL_ETH_Stop_IT(&heth);
netif_set_down(netif);
netif_set_link_down(netif);
}
else if(!netif_is_link_up(netif) && (PHYLinkState > LAN8742_STATUS_LINK_DOWN))
{
switch (PHYLinkState)
{
case LAN8742_STATUS_100MBITS_FULLDUPLEX:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_100M;
linkchanged = 1;
break;
case LAN8742_STATUS_100MBITS_HALFDUPLEX:
duplex = ETH_HALFDUPLEX_MODE;
speed = ETH_SPEED_100M;
linkchanged = 1;
break;
case LAN8742_STATUS_10MBITS_FULLDUPLEX:
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_10M;
linkchanged = 1;
break;
case LAN8742_STATUS_10MBITS_HALFDUPLEX:
duplex = ETH_HALFDUPLEX_MODE;
speed = ETH_SPEED_10M;
linkchanged = 1;
break;
default:
break;
}
if(linkchanged)
{
/* Get MAC Config MAC */
HAL_ETH_GetMACConfig(&heth, &MACConf);
MACConf.DuplexMode = duplex;
MACConf.Speed = speed;
HAL_ETH_SetMACConfig(&heth, &MACConf);
HAL_ETH_Start_IT(&heth);
netif_set_up(netif);
netif_set_link_up(netif);
}
}
/* USER CODE BEGIN ETH link Thread core code for User BSP */
/* USER CODE END ETH link Thread core code for User BSP */
osDelay(100);
}
}
void HAL_ETH_RxAllocateCallback(uint8_t **buff)
{
/* USER CODE BEGIN HAL ETH RxAllocateCallback */
struct pbuf_custom *p = LWIP_MEMPOOL_ALLOC(RX_POOL);
if (p)
{
/* Get the buff from the struct pbuf address. */
*buff = (uint8_t *)p + offsetof(RxBuff_t, buff);
p->custom_free_function = pbuf_free_custom;
/* Initialize the struct pbuf.
* This must be performed whenever a buffer's allocated because it may be
* changed by lwIP or the app, e.g., pbuf_free decrements ref. */
pbuf_alloced_custom(PBUF_RAW, 0, PBUF_REF, p, *buff, ETH_RX_BUF_SIZE);
}
else
{
RxAllocStatus = RX_ALLOC_ERROR;
*buff = NULL;
}
/* USER CODE END HAL ETH RxAllocateCallback */
}
void HAL_ETH_RxLinkCallback(void **pStart, void **pEnd, uint8_t *buff, uint16_t Length)
{
/* USER CODE BEGIN HAL ETH RxLinkCallback */
struct pbuf **ppStart = (struct pbuf **)pStart;
struct pbuf **ppEnd = (struct pbuf **)pEnd;
struct pbuf *p = NULL;
/* Get the struct pbuf from the buff address. */
p = (struct pbuf *)(buff - offsetof(RxBuff_t, buff));
p->next = NULL;
p->tot_len = 0;
p->len = Length;
/* Chain the buffer. */
if (!*ppStart)
{
/* The first buffer of the packet. */
*ppStart = p;
}
else
{
/* Chain the buffer to the end of the packet. */
(*ppEnd)->next = p;
}
*ppEnd = p;
/* Update the total length of all the buffers of the chain. Each pbuf in the chain should have its tot_len
* set to its own length, plus the length of all the following pbufs in the chain. */
for (p = *ppStart; p != NULL; p = p->next)
{
p->tot_len += Length;
}
/* Invalidate data cache because Rx DMA's writing to physical memory makes it stale. */
SCB_InvalidateDCache_by_Addr((uint32_t *)buff, Length);
/* USER CODE END HAL ETH RxLinkCallback */
}
void HAL_ETH_TxFreeCallback(uint32_t * buff)
{
/* USER CODE BEGIN HAL ETH TxFreeCallback */
pbuf_free((struct pbuf *)buff);
/* USER CODE END HAL ETH TxFreeCallback */
}
/* USER CODE BEGIN 8 */
/* USER CODE END 8 */