.. | ||
README.md |
User Guide
Introduction
Mongoose is a networking library for C/C++. It implements an event-driven, non-blocking APIs for TCP, UDP, HTTP, WebSocket, MQTT. It has been designed for connecting devices and bringing them online. On the market since 2004, used by vast number of open source and commercial products - it even runs on the International Space Station! Mongoose makes embedded network programming fast, robust, and easy.
Features
- Cross-platform: works on Linux/UNIX, MacOS, QNX, eCos, Windows, Android, iPhone, FreeRTOS, etc
- Supported hardware platforms: TI CC3200, TI MSP432, NRF52, STM32, PIC32, ESP8266, ESP32 and more
- Builtin protocols:
- plain TCP, plain UDP, SSL/TLS (over TCP, one-way or two-way)
- HTTP client, HTTP server
- WebSocket client, WebSocket server
- MQTT client
- DNS client, async DNS resolver
- Single-threaded, asynchronous, non-blocking core with simple event-based API
- Native support for LWIP embedded TCP/IP stack
- Tiny static and run-time footprint
- Source code is both ISO C and ISO C++ compliant
- Very easy to integrate: just copy mongoose.c and mongoose.h files to your build tree
Concept
Mongoose has three basic data structures:
struct mg_mgr
- an event manager that holds all active connectionsstruct mg_connection
- describes a connectionstruct mg_iobuf
- describes data buffer (received or sent data)
Connections could be either listening, outbound or inbound. Outbound
connections are created by the mg_connect()
call. Listening connections are
created by the mg_listen()
call. Inbound connections are those accepted by a
listening connection. Each connection is described by a struct mg_connection
structure, which has a number of fields. All fields are exposed to the
application by design, to give an application a full visibility into the
Mongoose's internals.
An application that uses mongoose should follow a standard pattern of event-driven application:
- Declare and initialise an event manager:
struct mg_mgr mgr;
mg_mgr_init(&mgr);
- Create connections. For example, a server application should create listening connections. When any connection is created (listening or outgoing), an event handler function must be specified. An event handler function defines connection's behavior.
struct mg_connection *c = mg_http_listen(&mgr, "0.0.0.0:8000", fn, arg);
- Create an event loop by calling
mg_mgr_poll()
:
for (;;) {
mg_mgr_poll(&mgr, 1000);
}
mg_mgr_poll()
iterates over all sockets, accepts new connections, sends and
receives data, closes connections and calls event handler functions for the
respective events.
Since the Mongoose's core is not protected against concurrent accesses,
make sure that all mg_*
API functions are called from the same thread
or RTOS task.
Send and receive buffers
Each connection has a send and receive buffer:
struct mg_connection::send
- data to be sent to a peerstruct mg_connection::recv
- data received from a peer
When data arrives, Mongoose appends received data to the recv
and triggers an
MG_EV_RECV
event. The user may send data back by calling one of the output
functions, like mg_send()
or mg_printf()
. Output functions append data to
the send
buffer. When Mongoose successfully writes data to the socket, it
discards data from struct mg_connection::send
and sends an MG_EV_SEND
event.
Event handler function
Each connection has an event handler function associated with it. That function must be implemented by the user. Event handler is the key element of the Mongoose application, since it defines the connection's behaviour. This is what an event handler function looks like:
static void fn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
switch (ev) {
/* Event handler code that defines behavior of the connection */
...
}
}
struct mg_connection *c
- a connection that received an eventint ev
- an event number, defined in mongoose.h. For example, when data arrives on an inbound connection, ev would beMG_EV_RECV
void *ev_data
- points to the event-specific data, and it has a different meaning for different events. For example, for anMG_EV_RECV
event,ev_data
is anint *
pointing to the number of bytes received from a remote peer and saved into thec->recv
IO buffer. The exact meaning ofev_data
is described for each event. Protocol-specific events usually haveev_data
pointing to structures that hold protocol-specific informationvoid *fn_data
- a user-defined pointer for the connection, which is a placeholder for application-specific data
Events
Below is the list of events trigged by Mongoose, taken as-is from mongoose.h
.
For each event, a comment describes a meaning of the ev_data
pointer passed
to an event handler:
enum {
MG_EV_ERROR, // Error char *error_message
MG_EV_POLL, // mg_mgr_poll iteration unsigned long *millis
MG_EV_RESOLVE, // Host name is resolved NULL
MG_EV_CONNECT, // Connection established NULL
MG_EV_ACCEPT, // Connection accepted NULL
MG_EV_READ, // Data received from socket struct mg_str *
MG_EV_WRITE, // Data written to socket int *num_bytes_written
MG_EV_CLOSE, // Connection closed NULL
MG_EV_HTTP_MSG, // HTTP request/response struct mg_http_message *
MG_EV_WS_OPEN, // Websocket handshake done struct mg_http_message *
MG_EV_WS_MSG, // Websocket msg, text or bin struct mg_ws_message *
MG_EV_WS_CTL, // Websocket control msg struct mg_ws_message *
MG_EV_MQTT_CMD, // MQTT low-level command struct mg_mqtt_message *
MG_EV_MQTT_MSG, // MQTT PUBLISH received struct mg_mqtt_message *
MG_EV_MQTT_OPEN, // MQTT CONNACK received int *connack_status_code
MG_EV_SNTP_TIME, // SNTP time received struct timeval *
MG_EV_USER, // Starting ID for user events
};
Connection flags
struct mg_connection
has a bitfield with connection flags. Flags are binary,
they can be either 0 or 1. Some flags are set by Mongoose and must be not
changed by an application code, for example is_udp
flag tells application if
that connection is UDP or not. Some flags can be changed by application, for
example, is_draining
flag, if set by an application, tells Mongoose to send
the remaining data to peer, and when everything is sent, close the connection.
User-changeable flags are: is_hexdumping
, is_draining
, is_closing
.
This is taken from mongoose.h
as-is:
struct mg_connection {
...
unsigned is_listening : 1; // Listening connection
unsigned is_client : 1; // Outbound (client) connection
unsigned is_accepted : 1; // Accepted (server) connection
unsigned is_resolving : 1; // Non-blocking DNS resolv is in progress
unsigned is_connecting : 1; // Non-blocking connect is in progress
unsigned is_tls : 1; // TLS-enabled connection
unsigned is_tls_hs : 1; // TLS handshake is in progress
unsigned is_udp : 1; // UDP connection
unsigned is_websocket : 1; // WebSocket connection
unsigned is_hexdumping : 1; // Hexdump in/out traffic
unsigned is_draining : 1; // Send remaining data, then close and free
unsigned is_closing : 1; // Close and free the connection immediately
unsigned is_readable : 1; // Connection is ready to read
unsigned is_writable : 1; // Connection is ready to write
};
Build options
Mongoose source code ships in two files:
- mongoose.h - API definitions
- mongoose.c - implementation
Therefore to integrate Mongoose into an application, simply copy these two files to the application's source tree.
The mongoose.c
and mongoose.h
files are, actually, an amalgamation -
a non-amalgamated sources can be found at https://github.com/cesanta/mongoose/tree/master/src
Mongoose source code uses a bunch of build constants defined at https://github.com/cesanta/mongoose/blob/master/src/config.h, together with their default values.
In order to change the constant during build time, use the -D <PREPROCESSOR_FLAG>
compiler option. For example, to disable both MQTT,
compile the application my_app.c
like this (assumed UNIX system):
$ cc my_app.c mongoose.c -D MG_MQTT_ENABLE=0
Here is a list of build constants and their default values:
Name | Default | Description |
---|---|---|
MG_ENABLE_LWIP |
0 | Use LWIP low-level API instead of BSD sockets |
MG_ENABLE_SOCKET |
1 | Use BSD socket low-level API |
MG_ENABLE_MBEDTLS |
0 | Enable Mbed TLS library |
MG_ENABLE_OPENSSL |
0 | Enable OpenSSL library |
MG_ENABLE_FS |
1 | Enable API that use filesystem, like mg_http_send_file() |
MG_ENABLE_IPV6 |
0 | Enable IPv6 |
MG_ENABLE_LOG |
1 | Enable LOG() macro |
MG_ENABLE_MD5 |
0 | Use native MD5 implementation |
MG_ENABLE_DIRECTORY_LISTING |
0 | Enable directory listing for HTTP server |
MG_ENABLE_SOCKETPAIR |
0 | Enable mg_socketpair() for multi-threading |
MG_ENABLE_SSI |
0 | Enable serving SSI files by mg_http_serve_dir() |
MG_IO_SIZE |
512 | Granularity of the send/recv IO buffer growth |
MG_MAX_RECV_BUF_SIZE |
(3 * 1024 * 1024) | Maximum recv buffer size |
MG_MAX_HTTP_HEADERS |
40 | Maximum number of HTTP headers |
NOTE: MG_IO_SIZE
controls the maximum UDP message size, see
https://github.com/cesanta/mongoose/issues/907 for details. If application
uses large UDP messages, increase the MG_IO_SIZE
limit accordingly.
Custom build
It is possible to use Mongoose on an architecture that is not yet supported by the current codebase. In order to do so, follow these steps:
- Create a file called
mongoose_custom.h
, with defines and includes that are relevant to your platform. Mongoose usesbool
type,MG_DIRSEP
define, and optionally other structures likeDIR *
depending on the functionality you have enabled - see previous section. Below is an example:
#include <dirent.h> // For DIR *
#include <stdbool.h> // For bool
#include <sys/time.h> // For gettimeofday()
#include <unistd.h> // For usleep()
#define MG_DIRSEP '/'
#define MG_ENABLE_SOCKET 0 // Disable BSD socket API, implement your own
-
Add
-DMG_ARCH=MG_ARCH_CUSTOM
to your build flags. -
This step is optional. If you have disabled BSD socket API, your build is going to fail due to several undefined symbols. Create
mongoose_custom.c
and implement the following functions (take a look atsrc/sock.c
for the reference implementation):
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
// implement this!
}
void mg_connect_resolved(struct mg_connection *c) {
// implement this!
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
// implement this!
}
void mg_mgr_poll(struct mg_mgr *mgr, int ms) {
// implement this!
}
int mg_send(struct mg_connection *c, const void *buf, size_t len) {
// implement this!
}
Minimal HTTP server
This example is a simple static HTTP server that serves current directory:
#include "mongoose.h"
static const char *s_web_root_dir = ".";
static const char *s_listening_address = "http://localhost:8000";
static void cb(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
struct mg_http_serve_opts opts = {.root_dir = s_web_root_dir};
if (ev == MG_EV_HTTP_MSG) mg_http_serve_dir(c, ev_data, &opts);
}
int main(int argc, char *argv[]) {
struct mg_mgr mgr;
mg_mgr_init(&mgr);
mg_http_listen(&mgr, s_listening_address, cb, &mgr);
for (;;) mg_mgr_poll(&mgr, 1000);
mg_mgr_free(&mgr);
return 0;
}
Minimal TCP echo server
This example is a simple TCP echo server that listens on port 1234:
#include "mongoose.h"
static const char *s_listening_address = "tcp://0.0.0.0:1234";
static void cb(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
if (ev == MG_EV_RECV) {
mg_send(c, c->recv.buf, c->recv.len); // Echo received data back
mg_iobuf_delete(&c->recv, c->recv.len); // And discard it
}
}
int main(int argc, char *argv[]) {
struct mg_mgr mgr;
mg_mgr_init(&mgr);
mg_listen(&mgr, s_listening_address, cb, &mgr);
for (;;) mg_mgr_poll(&mgr, 1000);
mg_mgr_free(&mgr);
return 0;
}
API Reference
Core
struct mg_mgr
struct mg_mgr {
struct mg_connection *conns; // List of active connections
struct mg_connection *dnsc; // DNS resolver connection
const char *dnsserver; // DNS server URL
int dnstimeout; // DNS resolve timeout in milliseconds
};
Event management structure that holds a list of active connections, together with some housekeeping information.
struct mg_connection
struct mg_connection {
struct mg_connection *next; // Linkage in struct mg_mgr :: connections
struct mg_mgr *mgr; // Our container
struct mg_addr peer; // Remote peer address
void *fd; // Connected socket, or LWIP data
struct mg_iobuf recv; // Incoming data
struct mg_iobuf send; // Outgoing data
mg_event_handler_t fn; // User-specified event handler function
void *fn_data; // User-speficied function parameter
mg_event_handler_t pfn; // Protocol-specific handler function
void *pfn_data; // Protocol-specific function parameter
char label[32]; // Arbitrary label
void *tls; // TLS specific data
unsigned is_listening : 1; // Listening connection
unsigned is_client : 1; // Outbound (client) connection
unsigned is_accepted : 1; // Accepted (server) connection
unsigned is_resolving : 1; // Non-blocking DNS resolv is in progress
unsigned is_connecting : 1; // Non-blocking connect is in progress
unsigned is_tls : 1; // TLS-enabled connection
unsigned is_tls_hs : 1; // TLS handshake is in progress
unsigned is_udp : 1; // UDP connection
unsigned is_websocket : 1; // WebSocket connection
unsigned is_hexdumping : 1; // Hexdump in/out traffic
unsigned is_draining : 1; // Send remaining data, then close and free
unsigned is_closing : 1; // Close and free the connection immediately
unsigned is_readable : 1; // Connection is ready to read
unsigned is_writable : 1; // Connection is ready to write
};
A connection - either a listening connection, or an accepted connection, or an outbout connection.
mg_mgr_init()
void mg_mgr_init(struct mg_mgr *);
Initialise event manager structure: set a list of active connections to NULL, set DNS server and timeout to their default values, etc.
mg_mgr_poll()
void mg_mgr_poll(struct mg_mgr *mgr, int ms);
Perform a single poll iteration. For each connection in the mgr->conns
list,
- See if there is incoming data. If it is, read it into the
c->recv
buffer, sendMG_EV_RECV
event - See if there is data in the
c->send
buffer, and write it, sendMG_EV_WRITE
event - If a connection is listening, accept an incoming connection if any, and send
MG_EV_ACCEPT
event to it - Send
MG_EV_POLL
event
Each connection has two event handler functions: c->fn
and c->pfn
. The
c->fn
is a user-specified event handler function. The c->pfn
is a
protocol-specific handler function that is set implicitly. For example, a
mg_http_listen()
sets c->pfn
to a Mongoose's HTTP event handler. A
protocol-specific handler is called before user-specific handler. It parses
incoming data and may invoke protocol-specific events like MG_EV_HTTP_MSG
.
mg_mgr_free()
void mg_mgr_free(struct mg_mgr *mgr);
Close all connections, and free all resources.
mg_listen()
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data);
Create a listening connection, append this connection to mgr->conns
.
url
- specifies local IP address and port to listen on, e.g.tcp://127.0.0.1:1234
orudp://0.0.0.0:9000
fn
- an event handler functionfn_data
- an arbitrary pointer, which will be passed asfn_data
when an event handler is called. This pointer is also stored in a connection structure asc->fn_data
Return value: created connection, or NULL
on error.
mg_connect()
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data);
Create an outbout connection, append this connection to mgr->conns
.
url
- specifies remote IP address/port to connect to, e.g.http://a.com
fn
- an event handler functionfn_data
- an arbitrary pointer, which will be passed asfn_data
when an event handler is called. This pointer is also stored in a connection structure asc->fn_data
Return value: created connection, or NULL
on error.
mg_send()
int mg_send(struct mg_connection *c, const void *data, size_t size);
Append data
of size size
to the c->send
buffer. Return number of bytes
appended.
Note: this function does not push data to the network! It only appends data to
the output buffer. The data is being sent when mg_mgr_poll()
is called. If
mg_send()
is called multiple times, the output buffer grows.
mg_printf()
int mg_printf(struct mg_connection *, const char *fmt, ...);
Same as mg_send()
, but formats data using printf()
semantics. Return
number of bytes appended to the output buffer.
mg_vprintf()
int mg_vprintf(struct mg_connection *, const char *fmt, va_list ap);
Same as mg_printf()
, but takes va_list
argument as a parameter.
mg_socketpair()
bool mg_socketpair(int *blocking, int *non_blocking);
Create a socket pair for exchanging data in multi-threaded environment. The
blocking
socket is blocking - it should be passed to the processing task.
The non_blocking
socket is non blocking, it should be used by an event
handler function. Return value: true on success, false on error.
IO buffers
struct mg_iobuf
struct mg_iobuf {
unsigned char *buf;
size_t size, len;
};
Generic IO buffer. The size
specifies an allocation size of the data pointed
by buf
, and len
specifies number of bytes currently stored.
mg_iobuf_init()
int mg_iobuf_init(struct mg_iobuf *io, size_t size);
Initialise IO buffer, allocate size
bytes. Return 1 on success,
0 on allocation failure.
mg_iobuf_resize()
int mg_iobuf_resize(struct mg_iobuf *io, size_t size);
Resize IO buffer, set the new size to size
. The io->buf
pointer could
change after this, for example if the buffer grows. If size
is 0, then the
io->buf
is freed and set to NULL, and both size
and len
are set to 0.
Return 1 on success, 0 on allocation failure.
mg_iobuf_free()
void mg_iobuf_free(struct mg_iobuf *io);
Free memory pointed by io->buf
and set to NULL. Both size
and len
are set
to 0.
mg_iobuf_append()
size_t mg_iobuf_append(struct mg_iobuf *io, const void *data, size_t data_size, size_t granularity);
Append data
bytes of size data_size
to the end of the buffer. The buffer
is expanded if data_size
is greater than io->size - io->len
. If that
happens, the io->buf
can change. The resulting io->size
is always
set to the granularity
byte boundary. Example:
struct mg_iobuf io;
mg_iobuf_init(&io, 0); // Empty buffer
mg_iobuf_append(&io, "hi", 2, 1024); // io->len is 2, io->size is 1024
mg_iobuf_delete()
size_t mg_iobuf_delete(struct mg_iobuf *io, size_t len);
Discard len
bytes from the beginning of the buffer, and shift the remaining
bytes to the beginning. If len
is greater than io->len
, nothing happens,
so such call is silently ignored.
HTTP
struct mg_http_header
struct mg_http_header {
struct mg_str name;
struct mg_str value;
};
struct mg_http_message
struct mg_http_message {
// GET /foo/bar/baz?aa=b&cc=ddd HTTP/1.1
// method |-| |----uri---| |--query--| |proto-|
struct mg_str method, uri, query, proto; // Request/response line
struct mg_http_header headers[MG_MAX_HTTP_HEADERS]; // Headers
struct mg_str body; // Body
struct mg_str message; // Request line + headers + body
};
mg_http_listen()
struct mg_connection *mg_http_listen(struct mg_mgr *, const char *url,
mg_event_handler_t fn, void *fn_data);
Create HTTP listener.
url
- specifies local IP address and port to listen on, e.g.http://0.0.0.0:8000
fn
- an event handler functionfn_data
- an arbitrary pointer, which will be passed asfn_data
when an event handler is called. This pointer is also stored in a connection structure asc->fn_data
mg_http_connect()
struct mg_connection *mg_http_connect(struct mg_mgr *, const char *url,
mg_event_handler_t fn, void *fn_data);
Create HTTP client connection.
url
- specifies remote URL, e.g.http://google.com
fn
- an event handler functionfn_data
- an arbitrary pointer, which will be passed asfn_data
when an event handler is called. This pointer is also stored in a connection structure asc->fn_data
mg_http_get_request_len()
int mg_http_get_request_len(const unsigned char *buf, size_t buf_len);
Return value: -1 on error, 0 if a message is incomplete, or the length of request. The length of request is a number of bytes till the end of HTTP headers. It does not include length of HTTP body.
mg_http_parse()
int mg_http_parse(const char *s, size_t len, struct mg_http_message *hm);
Parse string s
, len
into a structure hm
. Return request length - see
mg_http_get_request_len()
.
mg_http_printf_chunk()
void mg_http_printf_chunk(struct mg_connection *cnn, const char *fmt, ...);
Write a chunk of data in chunked encoding format, using printf()
semantic.
mg_http_write_chunk()
void mg_http_write_chunk(struct mg_connection *c, const char *buf, size_t len);
Write a chunk of data in chunked encoding format.
mg_http_serve_dir()
struct mg_http_serve_opts {
const char *root_dir; // Web root directory, must be non-NULL
const char *ssi_pattern; // SSI filename pattern, e.g. #.shtml
};
void mg_http_serve_dir(struct mg_connection *, struct mg_http_message *hm,
const struct mg_http_serve_opts *opts);
Serve static files according to the given options. Note that in order to
enable SSI, set a -DMG_ENABLE_SSI=1
build flag.
mg_http_serve_file()
void mg_http_serve_file(struct mg_connection *, struct mg_http_message *hm,
const char *path, const char *mimetype,
const char *extra_headers);
Serve static file. Note that the extra_headers
must end with \r\n
. Here
is an example call:
mg_http_serve_file(c, hm, "a.png", "image/png", "AA: bb\r\nCC: dd\r\n");
mg_http_reply()
void mg_http_reply(struct mg_connection *c, int status_code, const char *headers,
const char *body_fmt, ...);
Send simple HTTP response using printf()
semantic. This function formats
response body according to a body_fmt
, and automatically appends a correct
Content-Length
header. Extra headers could be passed via headers
parameter.
status_code
- an HTTP response codeheaders
- extra headers, default NULL. If not NULL, must end with\r\n
fmt
- a format string for the HTTP body, in a printf semantics
mg_http_header()
struct mg_str *mg_http_get_header(struct mg_http_message *, const char *name);
Return value of HTTP header, or NULL if not found.
mg_http_get_var()
int mg_http_get_var(const struct mg_str *, const char *name, char *buf, int len);
Decode HTTP variable name
into a given buffer. Return length of decoded
variable. Zero or negative value means error.
mg_url_decode()
int mg_url_decode(const char *s, size_t n, char *to, size_t to_len, int form);
URL-decode string s
, n
unto a buffer buf
, len
. Return decoded length.
If form
is non-zero, then +
is decoded as whitespace.
mg_http_creds()
void mg_http_creds(struct mg_http_message *, char *user, int userlen, char *pass, int passlen);
Fetch authentication credential from the request, and store into the
user
, userlen
and pass
, passlen
buffers. The credentials are looked
up in the following order:
- from the
Authorization
HTTP header,- Basic auth fills both user and pass
- Bearer auth fills only pass
- from the
access_token
cookie, fills pass - from the
?access_token=...
query string parameter, fills pass
If none is found, then both user and pass are set to empty nul-terminated strings.
mg_http_match_uri()
bool mg_http_match_uri(const struct mg_http_message *, const char *glob);
Return true if HTTP request matches a given glob pattern; false otherwise.
mg_http_upload()
int mg_http_upload(struct mg_connection *, struct mg_http_message *hm,
const char *dir);
Handle file upload. See file upload example.
This function expects a series of POST requests with file data. POST requests
should have name
and offset
query string parameters set:
POST /whatever_uri?name=myfile.txt&offset=1234 HTTP/1.0
Content-Length: 5
hello
name
- a mandatory query string parameter, specifies a file name. It it created in thedir
directoryoffset
- an optional parameter, default0
. If it set to0
, or omitted, then a file gets truncated before write. Otherwise, the body of the POST request gets appended to the file- Server must call
mg_http_upload()
when/whatever_uri
is hit
So, the expected usage of this API function is this:
- A client splits a file into small enough chunks, to ensure that a chunk fits into the server's RAM
- Then, each chunk is POST-ed to the server with using URI like
/some_uri?name=FILENAME&offset=OFFSET
- Initial OFFSET is
0
, and subsequent offsets are non-zero - Each chunk gets appended to the file
- When the last chunk is POSTed, upload finishes
- POST data must not be encoded in any way, it it saved as-is
mg_http_bauth()
void mg_http_bauth(struct mg_connection *, const char *user, const char *pass);
Write a Basic Authorization
header to the output buffer.
Websocket
struct mg_ws_message
struct mg_ws_message {
struct mg_str data;
uint8_t flags; // Websocket message flags
};
mg_ws_connect()
struct mg_connection *mg_ws_connect(struct mg_mgr *, const char *url,
mg_event_handler_t fn, void *fn_data,
const char *fmt, ...);
Create client Websocket connection.
url
- specifies remote URL, e.g.http://google.com
opts
- MQTT options, with client ID, qos, etcfn
- an event handler functionfn_data
- an arbitrary pointer, which will be passed asfn_data
when an event handler is called. This pointer is also stored in a connection structure asc->fn_data
fmt
- printf-like format string for additional HTTP headers, or NULL
mg_ws_upgrade()
void mg_ws_upgrade(struct mg_connection *, struct mg_http_message *,
const char *fmt, ...);
Upgrade given HTTP connection to Websocket. The fmt
is a printf-like
format string for the extra HTTP headers returned to the client in a
Websocket handshake. Set fmt
to NULL
if no extra headers needs to be passed.
mg_ws_send()
size_t mg_ws_send(struct mg_connection *, const char *buf, size_t len, int op);
Send buf
, len
to the websocket peer. op
is the Websocket message type:
#define WEBSOCKET_OP_CONTINUE 0
#define WEBSOCKET_OP_TEXT 1
#define WEBSOCKET_OP_BINARY 2
#define WEBSOCKET_OP_CLOSE 8
#define WEBSOCKET_OP_PING 9
#define WEBSOCKET_OP_PONG 10
MQTT
struct mg_mqtt_opts
struct mg_mqtt_opts {
struct mg_str client_id;
struct mg_str will_topic;
struct mg_str will_message;
uint8_t qos; // Quality of service
bool will_retain; // Retain last will
bool clean; // Use clean session, 0 or 1
uint16_t keepalive; // Keep-alive timer in seconds
};
struct mg_mqtt_message
struct mg_mqtt_message {
struct mg_str topic;
struct mg_str data;
};
mg_mqtt_connect()
struct mg_connection *mg_mqtt_connect(struct mg_mgr *, const char *url,
struct mg_mqtt_opts *opts,
mg_event_handler_t fn, void *fn_data);
Create client MQTT connection.
url
- specifies remote URL, e.g.http://google.com
opts
- MQTT options, with client ID, qos, etcfn
- an event handler functionfn_data
- an arbitrary pointer, which will be passed asfn_data
when an event handler is called. This pointer is also stored in a connection structure asc->fn_data
mg_mqtt_pub()
void mg_mqtt_pub(struct mg_connection *, struct mg_str *topic,
struct mg_str *data);
Publish message data
to the topic topic
.
mg_mqtt_sub()
void mg_mqtt_sub(struct mg_connection *, struct mg_str *topic);
Subscribe to topic topic
.
TLS
mg_tls_init()
struct mg_tls_opts {
const char *ca; // CA certificate file. For both listeners and clients
const char *cert; // Certificate
const char *certkey; // Certificate key
const char *ciphers; // Cipher list
struct mg_str srvname; // If not empty, enables server name verification
};
int mg_tls_init(struct mg_connection *c, struct mg_tls_opts *opts);
Initialise TLS on a given connection.
Timers
struct mg_timer
struct mg_timer {
int period_ms; // Timer period in milliseconds
int flags; // Possible flags values below
#define MG_TIMER_REPEAT 1 // Call function periodically, otherwise run once
#define MG_TIMER_RUN_NOW 2 // Call immediately when timer is set
void (*fn)(void *); // Function to call
void *arg; // Function agrument
unsigned long expire; // Expiration timestamp in milliseconds
struct mg_timer *next; // Linkage in g_timers list
};
Timer structure.
mg_timer_init()
void mg_timer_init(struct mg_timer *, int ms, int flags, void (*fn)(void *), void *fn_data);
Setup a timer.
ms
- an interval in millisecondsflags
- timer flags bitmask,MG_TIMER_REPEAT
andMG_TIMER_RUN_NOW
fn
- function to invokefn_data
- function argument
A timer gets initialised and linked into the g_timers
list:
struct mg_timer *g_timers;
mg_timer_free()
void mg_timer_free(struct mg_timer *);
Free timer, remove it from the g_timers
list.
mg_timer_poll()
void mg_timer_poll(unsigned long uptime_ms);
Traverse list of timers, and call them if current timestamp uptime_ms
is
past the timer's expiration time.
Utility functions
mg_file_read()
char *mg_file_read(const char *path);
Read file contents into a nul-terminated malloc-ed string. It is a caller's responsibility to free() a returned pointer.
mg_file_size()
size_t mg_file_size(const char *path);
Return file size, or 0 on failure. Empty files also report 0 length.
mg_file_write()
bool mg_file_write(const char *path, const void *buf, size_t len);
Write data to a file, return true
if written, false
otherwise.
The write is atomic, i.e. data gets written to a temporary file first,
then rename()-ed
to a destination file name.
mg_file_printf()
int mg_file_printf(const char *path, const char *fmt, ...);
Write into a file path
using printf()
semantics.
Return true
on success, false
otherwise. This function prints data to
a temporary in-memory buffer first, then calls mg_file_write()
.
mg_random()
void mg_random(void *buf, size_t len);
Fill in buffer buf
, len
with random data.
mg_globmatch()
bool mg_globmatch(const char *pattern, int plen, const char *s, int n);
Return true if string s
, n
matches glob pattern pattern
, plen
.
The glob pattern matching rules are as follows:
?
matches any single character*
matches zero or more characters except/
#
matches zero or more characters- any other caracter matches itself
mg_next_comma_entry()
bool mg_next_comma_entry(struct mg_str *s, struct mg_str *k, struct mg_str *v);
Parse string s
, which is a comma-separated list of entries. An entry could be
either an arbitrary string, which gets stored in v
, or a KEY=VALUE
which
gets stored in k
and v
respectively.
IMPORTANT: this function modifies s
by pointing to the next entry. Usage
example:
struct mg_str k, v, s = mg_str("a=333,b=777");
while (mg_next_comma_entry(&s, &k, &v)) // This loop output:
printf("[%.*s] set to [%.*s]\n", // [a] set to [333]
(int) k.len, k.ptr, (int) v.len, v.ptr); // [b] set to [777]
mg_ntohs()
uint16_t mg_ntohs(uint16_t net);
Convert uint16_t
value to host order.
mg_ntohl()
uint32_t mg_ntohl(uint32_t net);
Convert uint32_t
value to host order.
mg_hexdump()
char *mg_hexdump(const void *buf, int len);
Hexdump binary data buf
, len
into malloc-ed buffer and return it.
It is a caller's responsibility to free() returned pointer.
mg_hex()
char *mg_hex(const void *buf, int len, char *dst);
Hex-encode binary data buf
, len
into a buffer dst
and nul-terminate it.
The output buffer must be at least 2 x len
+ 1 big.
Return value: dst
pointer. The encoded characters are lowecase,
for example mg_hex("hi", 2, buf)
outputs 6869
and 0 byte, 5 bytes overall.
mg_unhex()
void mg_unhex(const char *buf, int len, unsigned char *to);
Hex-decode string buf
, len
into a buffer to
. The to
buffer should be
at least lsn
/ 2 big.
mg_unhexn()
unsigned long mg_unhexn(const char *s, int len);
Parse len
characters of the hex-encoded string s
, return parsed value.
The maximum value of len
is the width of the long
x 2, for example
on 32-bit platforms it is 8.
mg_asprintf()
int mg_asprintf(char **buf, size_t size, const char *fmt, ...);
Print message specified by printf-like format string fmt
into a buffer
pointed by buf
of size size
. If size
is large enough to hold the whole
message, then a message is stored in *buf
. If it does not fit, then
a large enough buffer is allocated to hold a message, and buf
is changed to
point to that buffer. Return value: number of bytes printed.
mg_vasprintf()
int mg_vasprintf(char **buf, size_t size, const char *fmt, va_list ap);
Same as mg_asprintf()
but uses va_list
argument.
mg_to64()
int64_t mg_to64(const char *s);
Parse 64-bit integer value held by string s
.
mg_aton()
bool mg_aton(struct mg_str str, uint32_t *ipaddr);
Parse IP address held by str
and store it in ipaddr
. Return true on success.
mg_ntoa()
char *mg_ntoa(const struct mg_addr *, char *buf, size_t len);
Stringify IP address ipaddr
into a buffer buf
, len
. Return buf
.
mg_time()
double mg_time(void);
Return current time as UNIX epoch, using double
value for sub-second accuracy.
mg_millis()
unsigned long mg_millis(void);
Return current uptime in milliseconds.
mg_usleep()
void mg_usleep(unsigned long usecs);
Block for a given number of microseconds.
mg_crc32()
uint32_t mg_crc32(uint32_t crc, const uint8_t *buf, size_t len);
Calculate CRC32 checksum for a given buffer. An initial crc
value should
be 0
.