mirror of
https://github.com/cesanta/mongoose.git
synced 2024-11-24 02:59:01 +08:00
17518 lines
596 KiB
C
17518 lines
596 KiB
C
// Copyright (c) 2004-2013 Sergey Lyubka
|
|
// Copyright (c) 2013-2024 Cesanta Software Limited
|
|
// All rights reserved
|
|
//
|
|
// This software is dual-licensed: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License version 2 as
|
|
// published by the Free Software Foundation. For the terms of this
|
|
// license, see http://www.gnu.org/licenses/
|
|
//
|
|
// You are free to use this software under the terms of the GNU General
|
|
// Public License, but WITHOUT ANY WARRANTY; without even the implied
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// Alternatively, you can license this software under a commercial
|
|
// license, as set out in https://www.mongoose.ws/licensing/
|
|
//
|
|
// SPDX-License-Identifier: GPL-2.0-only or commercial
|
|
|
|
#include "mongoose.h"
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/base64.c"
|
|
#endif
|
|
|
|
|
|
static int mg_base64_encode_single(int c) {
|
|
if (c < 26) {
|
|
return c + 'A';
|
|
} else if (c < 52) {
|
|
return c - 26 + 'a';
|
|
} else if (c < 62) {
|
|
return c - 52 + '0';
|
|
} else {
|
|
return c == 62 ? '+' : '/';
|
|
}
|
|
}
|
|
|
|
static int mg_base64_decode_single(int c) {
|
|
if (c >= 'A' && c <= 'Z') {
|
|
return c - 'A';
|
|
} else if (c >= 'a' && c <= 'z') {
|
|
return c + 26 - 'a';
|
|
} else if (c >= '0' && c <= '9') {
|
|
return c + 52 - '0';
|
|
} else if (c == '+') {
|
|
return 62;
|
|
} else if (c == '/') {
|
|
return 63;
|
|
} else if (c == '=') {
|
|
return 64;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
size_t mg_base64_update(unsigned char ch, char *to, size_t n) {
|
|
unsigned long rem = (n & 3) % 3;
|
|
if (rem == 0) {
|
|
to[n] = (char) mg_base64_encode_single(ch >> 2);
|
|
to[++n] = (char) ((ch & 3) << 4);
|
|
} else if (rem == 1) {
|
|
to[n] = (char) mg_base64_encode_single(to[n] | (ch >> 4));
|
|
to[++n] = (char) ((ch & 15) << 2);
|
|
} else {
|
|
to[n] = (char) mg_base64_encode_single(to[n] | (ch >> 6));
|
|
to[++n] = (char) mg_base64_encode_single(ch & 63);
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
size_t mg_base64_final(char *to, size_t n) {
|
|
size_t saved = n;
|
|
// printf("---[%.*s]\n", n, to);
|
|
if (n & 3) n = mg_base64_update(0, to, n);
|
|
if ((saved & 3) == 2) n--;
|
|
// printf(" %d[%.*s]\n", n, n, to);
|
|
while (n & 3) to[n++] = '=';
|
|
to[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
size_t mg_base64_encode(const unsigned char *p, size_t n, char *to, size_t dl) {
|
|
size_t i, len = 0;
|
|
if (dl > 0) to[0] = '\0';
|
|
if (dl < ((n / 3) + (n % 3 ? 1 : 0)) * 4 + 1) return 0;
|
|
for (i = 0; i < n; i++) len = mg_base64_update(p[i], to, len);
|
|
len = mg_base64_final(to, len);
|
|
return len;
|
|
}
|
|
|
|
size_t mg_base64_decode(const char *src, size_t n, char *dst, size_t dl) {
|
|
const char *end = src == NULL ? NULL : src + n; // Cannot add to NULL
|
|
size_t len = 0;
|
|
if (dl < n / 4 * 3 + 1) goto fail;
|
|
while (src != NULL && src + 3 < end) {
|
|
int a = mg_base64_decode_single(src[0]),
|
|
b = mg_base64_decode_single(src[1]),
|
|
c = mg_base64_decode_single(src[2]),
|
|
d = mg_base64_decode_single(src[3]);
|
|
if (a == 64 || a < 0 || b == 64 || b < 0 || c < 0 || d < 0) {
|
|
goto fail;
|
|
}
|
|
dst[len++] = (char) ((a << 2) | (b >> 4));
|
|
if (src[2] != '=') {
|
|
dst[len++] = (char) ((b << 4) | (c >> 2));
|
|
if (src[3] != '=') dst[len++] = (char) ((c << 6) | d);
|
|
}
|
|
src += 4;
|
|
}
|
|
dst[len] = '\0';
|
|
return len;
|
|
fail:
|
|
if (dl > 0) dst[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/device_ch32v307.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_DEVICE == MG_DEVICE_CH32V307
|
|
// RM: https://www.wch-ic.com/downloads/CH32FV2x_V3xRM_PDF.html
|
|
|
|
#define FLASH_BASE 0x40022000
|
|
#define FLASH_ACTLR (FLASH_BASE + 0)
|
|
#define FLASH_KEYR (FLASH_BASE + 4)
|
|
#define FLASH_OBKEYR (FLASH_BASE + 8)
|
|
#define FLASH_STATR (FLASH_BASE + 12)
|
|
#define FLASH_CTLR (FLASH_BASE + 16)
|
|
#define FLASH_ADDR (FLASH_BASE + 20)
|
|
#define FLASH_OBR (FLASH_BASE + 28)
|
|
#define FLASH_WPR (FLASH_BASE + 32)
|
|
|
|
void *mg_flash_start(void) {
|
|
return (void *) 0x08000000;
|
|
}
|
|
size_t mg_flash_size(void) {
|
|
return 480 * 1024; // First 320k is 0-wait
|
|
}
|
|
size_t mg_flash_sector_size(void) {
|
|
return 4096;
|
|
}
|
|
size_t mg_flash_write_align(void) {
|
|
return 4;
|
|
}
|
|
int mg_flash_bank(void) {
|
|
return 0;
|
|
}
|
|
void mg_device_reset(void) {
|
|
*((volatile uint32_t *) 0xbeef0000) |= 1U << 7; // NVIC_SystemReset()
|
|
}
|
|
static void flash_unlock(void) {
|
|
static bool unlocked;
|
|
if (unlocked == false) {
|
|
MG_REG(FLASH_KEYR) = 0x45670123;
|
|
MG_REG(FLASH_KEYR) = 0xcdef89ab;
|
|
unlocked = true;
|
|
}
|
|
}
|
|
static void flash_wait(void) {
|
|
while (MG_REG(FLASH_STATR) & MG_BIT(0)) (void) 0;
|
|
}
|
|
|
|
bool mg_flash_erase(void *addr) {
|
|
//MG_INFO(("%p", addr));
|
|
flash_unlock();
|
|
flash_wait();
|
|
MG_REG(FLASH_ADDR) = (uint32_t) addr;
|
|
MG_REG(FLASH_CTLR) |= MG_BIT(1) | MG_BIT(6); // PER | STRT;
|
|
flash_wait();
|
|
return true;
|
|
}
|
|
|
|
static bool is_page_boundary(const void *addr) {
|
|
uint32_t val = (uint32_t) addr;
|
|
return (val & (mg_flash_sector_size() - 1)) == 0;
|
|
}
|
|
|
|
bool mg_flash_write(void *addr, const void *buf, size_t len) {
|
|
//MG_INFO(("%p %p %lu", addr, buf, len));
|
|
//mg_hexdump(buf, len);
|
|
flash_unlock();
|
|
const uint16_t *src = (uint16_t *) buf, *end = &src[len / 2];
|
|
uint16_t *dst = (uint16_t *) addr;
|
|
MG_REG(FLASH_CTLR) |= MG_BIT(0); // Set PG
|
|
//MG_INFO(("CTLR: %#lx", MG_REG(FLASH_CTLR)));
|
|
while (src < end) {
|
|
if (is_page_boundary(dst)) mg_flash_erase(dst);
|
|
*dst++ = *src++;
|
|
flash_wait();
|
|
}
|
|
MG_REG(FLASH_CTLR) &= ~MG_BIT(0); // Clear PG
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/device_dummy.c"
|
|
#endif
|
|
|
|
|
|
#if MG_DEVICE == MG_DEVICE_NONE
|
|
void *mg_flash_start(void) {
|
|
return NULL;
|
|
}
|
|
size_t mg_flash_size(void) {
|
|
return 0;
|
|
}
|
|
size_t mg_flash_sector_size(void) {
|
|
return 0;
|
|
}
|
|
size_t mg_flash_write_align(void) {
|
|
return 0;
|
|
}
|
|
int mg_flash_bank(void) {
|
|
return 0;
|
|
}
|
|
bool mg_flash_erase(void *location) {
|
|
(void) location;
|
|
return false;
|
|
}
|
|
bool mg_flash_swap_bank(void) {
|
|
return true;
|
|
}
|
|
bool mg_flash_write(void *addr, const void *buf, size_t len) {
|
|
(void) addr, (void) buf, (void) len;
|
|
return false;
|
|
}
|
|
void mg_device_reset(void) {
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/device_flash.c"
|
|
#endif
|
|
|
|
|
|
#if MG_DEVICE == MG_DEVICE_STM32H7 || MG_DEVICE == MG_DEVICE_STM32H5 || \
|
|
MG_DEVICE == MG_DEVICE_RT1020 || MG_DEVICE == MG_DEVICE_RT1060
|
|
// Flash can be written only if it is erased. Erased flash is 0xff (all bits 1)
|
|
// Writes must be mg_flash_write_align() - aligned. Thus if we want to save an
|
|
// object, we pad it at the end for alignment.
|
|
//
|
|
// Objects in the flash sector are stored sequentially:
|
|
// | 32-bit size | 32-bit KEY | ..data.. | ..pad.. | 32-bit size | ......
|
|
//
|
|
// In order to get to the next object, read its size, then align up.
|
|
|
|
// Traverse the list of saved objects
|
|
size_t mg_flash_next(char *p, char *end, uint32_t *key, size_t *size) {
|
|
size_t aligned_size = 0, align = mg_flash_write_align(), left = end - p;
|
|
uint32_t *p32 = (uint32_t *) p, min_size = sizeof(uint32_t) * 2;
|
|
if (p32[0] != 0xffffffff && left > MG_ROUND_UP(min_size, align)) {
|
|
if (size) *size = (size_t) p32[0];
|
|
if (key) *key = p32[1];
|
|
aligned_size = MG_ROUND_UP(p32[0] + sizeof(uint32_t) * 2, align);
|
|
if (left < aligned_size) aligned_size = 0; // Out of bounds, fail
|
|
}
|
|
return aligned_size;
|
|
}
|
|
|
|
// Return the last sector of Bank 2
|
|
static char *flash_last_sector(void) {
|
|
size_t ss = mg_flash_sector_size(), size = mg_flash_size();
|
|
char *base = (char *) mg_flash_start(), *last = base + size - ss;
|
|
if (mg_flash_bank() == 2) last -= size / 2;
|
|
return last;
|
|
}
|
|
|
|
// Find a saved object with a given key
|
|
bool mg_flash_load(void *sector, uint32_t key, void *buf, size_t len) {
|
|
char *base = (char *) mg_flash_start(), *s = (char *) sector, *res = NULL;
|
|
size_t ss = mg_flash_sector_size(), ofs = 0, n, sz;
|
|
bool ok = false;
|
|
if (s == NULL) s = flash_last_sector();
|
|
if (s < base || s >= base + mg_flash_size()) {
|
|
MG_ERROR(("%p is outsize of flash", sector));
|
|
} else if (((s - base) % ss) != 0) {
|
|
MG_ERROR(("%p is not a sector boundary", sector));
|
|
} else {
|
|
uint32_t k, scanned = 0;
|
|
while ((n = mg_flash_next(s + ofs, s + ss, &k, &sz)) > 0) {
|
|
// MG_DEBUG((" > obj %lu, ofs %lu, key %x/%x", scanned, ofs, k, key));
|
|
// mg_hexdump(s + ofs, n);
|
|
if (k == key && sz == len) {
|
|
res = s + ofs + sizeof(uint32_t) * 2;
|
|
memcpy(buf, res, len); // Copy object
|
|
ok = true; // Keep scanning for the newer versions of it
|
|
}
|
|
ofs += n, scanned++;
|
|
}
|
|
MG_DEBUG(("Scanned %u objects, key %x is @ %p", scanned, key, res));
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
// For all saved objects in the sector, delete old versions of objects
|
|
static void mg_flash_sector_cleanup(char *sector) {
|
|
// Buffer all saved objects into an IO buffer (backed by RAM)
|
|
// erase sector, and re-save them.
|
|
struct mg_iobuf io = {0, 0, 0, 2048};
|
|
size_t ss = mg_flash_sector_size();
|
|
size_t n, size, size2, ofs = 0, hs = sizeof(uint32_t) * 2;
|
|
uint32_t key;
|
|
// Traverse all objects
|
|
MG_DEBUG(("Cleaning up sector %p", sector));
|
|
while ((n = mg_flash_next(sector + ofs, sector + ss, &key, &size)) > 0) {
|
|
// Delete an old copy of this object in the cache
|
|
for (size_t o = 0; o < io.len; o += size2 + hs) {
|
|
uint32_t k = *(uint32_t *) (io.buf + o + sizeof(uint32_t));
|
|
size2 = *(uint32_t *) (io.buf + o);
|
|
if (k == key) {
|
|
mg_iobuf_del(&io, o, size2 + hs);
|
|
break;
|
|
}
|
|
}
|
|
// And add the new copy
|
|
mg_iobuf_add(&io, io.len, sector + ofs, size + hs);
|
|
ofs += n;
|
|
}
|
|
// All objects are cached in RAM now
|
|
if (mg_flash_erase(sector)) { // Erase sector. If successful,
|
|
for (ofs = 0; ofs < io.len; ofs += size + hs) { // Traverse cached objects
|
|
size = *(uint32_t *) (io.buf + ofs);
|
|
key = *(uint32_t *) (io.buf + ofs + sizeof(uint32_t));
|
|
mg_flash_save(sector, key, io.buf + ofs + hs, size); // Save to flash
|
|
}
|
|
}
|
|
mg_iobuf_free(&io);
|
|
}
|
|
|
|
// Save an object with a given key - append to the end of an object list
|
|
bool mg_flash_save(void *sector, uint32_t key, const void *buf, size_t len) {
|
|
char *base = (char *) mg_flash_start(), *s = (char *) sector;
|
|
size_t ss = mg_flash_sector_size(), ofs = 0, n;
|
|
bool ok = false;
|
|
if (s == NULL) s = flash_last_sector();
|
|
if (s < base || s >= base + mg_flash_size()) {
|
|
MG_ERROR(("%p is outsize of flash", sector));
|
|
} else if (((s - base) % ss) != 0) {
|
|
MG_ERROR(("%p is not a sector boundary", sector));
|
|
} else {
|
|
char ab[mg_flash_write_align()]; // Aligned write block
|
|
uint32_t hdr[2] = {(uint32_t) len, key};
|
|
size_t needed = sizeof(hdr) + len;
|
|
size_t needed_aligned = MG_ROUND_UP(needed, sizeof(ab));
|
|
while ((n = mg_flash_next(s + ofs, s + ss, NULL, NULL)) > 0) ofs += n;
|
|
|
|
// If there is not enough space left, cleanup sector and re-eval ofs
|
|
if (ofs + needed_aligned >= ss) {
|
|
mg_flash_sector_cleanup(s);
|
|
ofs = 0;
|
|
while ((n = mg_flash_next(s + ofs, s + ss, NULL, NULL)) > 0) ofs += n;
|
|
}
|
|
|
|
if (ofs + needed_aligned <= ss) {
|
|
// Enough space to save this object
|
|
if (sizeof(ab) < sizeof(hdr)) {
|
|
// Flash write granularity is 32 bit or less, write with no buffering
|
|
ok = mg_flash_write(s + ofs, hdr, sizeof(hdr));
|
|
if (ok) mg_flash_write(s + ofs + sizeof(hdr), buf, len);
|
|
} else {
|
|
// Flash granularity is sizeof(hdr) or more. We need to save in
|
|
// 3 chunks: initial block, bulk, rest. This is because we have
|
|
// two memory chunks to write: hdr and buf, on aligned boundaries.
|
|
n = sizeof(ab) - sizeof(hdr); // Initial chunk that we write
|
|
if (n > len) n = len; // is
|
|
memset(ab, 0xff, sizeof(ab)); // initialized to all-one
|
|
memcpy(ab, hdr, sizeof(hdr)); // contains the header (key + size)
|
|
memcpy(ab + sizeof(hdr), buf, n); // and an initial part of buf
|
|
MG_INFO(("saving initial block of %lu", sizeof(ab)));
|
|
ok = mg_flash_write(s + ofs, ab, sizeof(ab));
|
|
if (ok && len > n) {
|
|
size_t n2 = MG_ROUND_DOWN(len - n, sizeof(ab));
|
|
if (n2 > 0) {
|
|
MG_INFO(("saving bulk, %lu", n2));
|
|
ok = mg_flash_write(s + ofs + sizeof(ab), (char *) buf + n, n2);
|
|
}
|
|
if (ok && len > n) {
|
|
size_t n3 = len - n - n2;
|
|
if (n3 > sizeof(ab)) n3 = sizeof(ab);
|
|
memset(ab, 0xff, sizeof(ab));
|
|
memcpy(ab, (char *) buf + n + n2, n3);
|
|
MG_INFO(("saving rest, %lu", n3));
|
|
ok = mg_flash_write(s + ofs + sizeof(ab) + n2, ab, sizeof(ab));
|
|
}
|
|
}
|
|
}
|
|
MG_DEBUG(("Saved %lu/%lu bytes @ %p, key %x: %d", len, needed_aligned,
|
|
s + ofs, key, ok));
|
|
MG_DEBUG(("Sector space left: %lu bytes", ss - ofs - needed_aligned));
|
|
} else {
|
|
MG_ERROR(("Sector is full"));
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
#else
|
|
bool mg_flash_save(void *sector, uint32_t key, const void *buf, size_t len) {
|
|
(void) sector, (void) key, (void) buf, (void) len;
|
|
return false;
|
|
}
|
|
bool mg_flash_load(void *sector, uint32_t key, void *buf, size_t len) {
|
|
(void) sector, (void) key, (void) buf, (void) len;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/device_imxrt.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_DEVICE == MG_DEVICE_RT1020 || MG_DEVICE == MG_DEVICE_RT1060
|
|
|
|
struct mg_flexspi_lut_seq {
|
|
uint8_t seqNum;
|
|
uint8_t seqId;
|
|
uint16_t reserved;
|
|
};
|
|
|
|
struct mg_flexspi_mem_config {
|
|
uint32_t tag;
|
|
uint32_t version;
|
|
uint32_t reserved0;
|
|
uint8_t readSampleClkSrc;
|
|
uint8_t csHoldTime;
|
|
uint8_t csSetupTime;
|
|
uint8_t columnAddressWidth;
|
|
uint8_t deviceModeCfgEnable;
|
|
uint8_t deviceModeType;
|
|
uint16_t waitTimeCfgCommands;
|
|
struct mg_flexspi_lut_seq deviceModeSeq;
|
|
uint32_t deviceModeArg;
|
|
uint8_t configCmdEnable;
|
|
uint8_t configModeType[3];
|
|
struct mg_flexspi_lut_seq configCmdSeqs[3];
|
|
uint32_t reserved1;
|
|
uint32_t configCmdArgs[3];
|
|
uint32_t reserved2;
|
|
uint32_t controllerMiscOption;
|
|
uint8_t deviceType;
|
|
uint8_t sflashPadType;
|
|
uint8_t serialClkFreq;
|
|
uint8_t lutCustomSeqEnable;
|
|
uint32_t reserved3[2];
|
|
uint32_t sflashA1Size;
|
|
uint32_t sflashA2Size;
|
|
uint32_t sflashB1Size;
|
|
uint32_t sflashB2Size;
|
|
uint32_t csPadSettingOverride;
|
|
uint32_t sclkPadSettingOverride;
|
|
uint32_t dataPadSettingOverride;
|
|
uint32_t dqsPadSettingOverride;
|
|
uint32_t timeoutInMs;
|
|
uint32_t commandInterval;
|
|
uint16_t dataValidTime[2];
|
|
uint16_t busyOffset;
|
|
uint16_t busyBitPolarity;
|
|
uint32_t lookupTable[64];
|
|
struct mg_flexspi_lut_seq lutCustomSeq[12];
|
|
uint32_t reserved4[4];
|
|
};
|
|
|
|
struct mg_flexspi_nor_config {
|
|
struct mg_flexspi_mem_config memConfig;
|
|
uint32_t pageSize;
|
|
uint32_t sectorSize;
|
|
uint8_t ipcmdSerialClkFreq;
|
|
uint8_t isUniformBlockSize;
|
|
uint8_t reserved0[2];
|
|
uint8_t serialNorType;
|
|
uint8_t needExitNoCmdMode;
|
|
uint8_t halfClkForNonReadCmd;
|
|
uint8_t needRestoreNoCmdMode;
|
|
uint32_t blockSize;
|
|
uint32_t reserve2[11];
|
|
};
|
|
|
|
/* FLEXSPI memory config block related defintions */
|
|
#define MG_FLEXSPI_CFG_BLK_TAG (0x42464346UL) // ascii "FCFB" Big Endian
|
|
#define MG_FLEXSPI_CFG_BLK_VERSION (0x56010400UL) // V1.4.0
|
|
|
|
#define MG_FLEXSPI_LUT_SEQ(cmd0, pad0, op0, cmd1, pad1, op1) \
|
|
(MG_FLEXSPI_LUT_OPERAND0(op0) | MG_FLEXSPI_LUT_NUM_PADS0(pad0) | MG_FLEXSPI_LUT_OPCODE0(cmd0) | \
|
|
MG_FLEXSPI_LUT_OPERAND1(op1) | MG_FLEXSPI_LUT_NUM_PADS1(pad1) | MG_FLEXSPI_LUT_OPCODE1(cmd1))
|
|
|
|
#define MG_CMD_SDR 0x01
|
|
#define MG_CMD_DDR 0x21
|
|
#define MG_DUMMY_SDR 0x0C
|
|
#define MG_DUMMY_DDR 0x2C
|
|
#define MG_RADDR_SDR 0x02
|
|
#define MG_RADDR_DDR 0x22
|
|
#define MG_READ_SDR 0x09
|
|
#define MG_READ_DDR 0x29
|
|
#define MG_WRITE_SDR 0x08
|
|
#define MG_WRITE_DDR 0x28
|
|
#define MG_STOP 0
|
|
|
|
#define MG_FLEXSPI_1PAD 0
|
|
#define MG_FLEXSPI_2PAD 1
|
|
#define MG_FLEXSPI_4PAD 2
|
|
#define MG_FLEXSPI_8PAD 3
|
|
|
|
#define MG_FLEXSPI_QSPI_LUT \
|
|
{ \
|
|
[0] = MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0xEB, MG_RADDR_SDR, MG_FLEXSPI_4PAD, \
|
|
0x18), \
|
|
[1] = MG_FLEXSPI_LUT_SEQ(MG_DUMMY_SDR, MG_FLEXSPI_4PAD, 0x06, MG_READ_SDR, MG_FLEXSPI_4PAD, \
|
|
0x04), \
|
|
[4 * 1 + 0] = \
|
|
MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0x05, MG_READ_SDR, MG_FLEXSPI_1PAD, 0x04), \
|
|
[4 * 3 + 0] = \
|
|
MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0x06, MG_STOP, MG_FLEXSPI_1PAD, 0x0), \
|
|
[4 * 5 + 0] = MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0x20, MG_RADDR_SDR, \
|
|
MG_FLEXSPI_1PAD, 0x18), \
|
|
[4 * 8 + 0] = MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0xD8, MG_RADDR_SDR, \
|
|
MG_FLEXSPI_1PAD, 0x18), \
|
|
[4 * 9 + 0] = MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0x02, MG_RADDR_SDR, \
|
|
MG_FLEXSPI_1PAD, 0x18), \
|
|
[4 * 9 + 1] = \
|
|
MG_FLEXSPI_LUT_SEQ(MG_WRITE_SDR, MG_FLEXSPI_1PAD, 0x04, MG_STOP, MG_FLEXSPI_1PAD, 0x0), \
|
|
[4 * 11 + 0] = \
|
|
MG_FLEXSPI_LUT_SEQ(MG_CMD_SDR, MG_FLEXSPI_1PAD, 0x60, MG_STOP, MG_FLEXSPI_1PAD, 0x0), \
|
|
}
|
|
|
|
#define MG_FLEXSPI_LUT_OPERAND0(x) (((uint32_t) (((uint32_t) (x)))) & 0xFFU)
|
|
#define MG_FLEXSPI_LUT_NUM_PADS0(x) (((uint32_t) (((uint32_t) (x)) << 8U)) & 0x300U)
|
|
#define MG_FLEXSPI_LUT_OPCODE0(x) (((uint32_t) (((uint32_t) (x)) << 10U)) & 0xFC00U)
|
|
#define MG_FLEXSPI_LUT_OPERAND1(x) (((uint32_t) (((uint32_t) (x)) << 16U)) & 0xFF0000U)
|
|
#define MG_FLEXSPI_LUT_NUM_PADS1(x) (((uint32_t) (((uint32_t) (x)) << 24U)) & 0x3000000U)
|
|
#define MG_FLEXSPI_LUT_OPCODE1(x) (((uint32_t) (((uint32_t) (x)) << 26U)) & 0xFC000000U)
|
|
|
|
#define FLEXSPI_NOR_INSTANCE 0
|
|
|
|
#if MG_DEVICE == MG_DEVICE_RT1020
|
|
struct mg_flexspi_nor_driver_interface {
|
|
uint32_t version;
|
|
int (*init)(uint32_t instance, struct mg_flexspi_nor_config *config);
|
|
int (*program)(uint32_t instance, struct mg_flexspi_nor_config *config, uint32_t dst_addr,
|
|
const uint32_t *src);
|
|
uint32_t reserved;
|
|
int (*erase)(uint32_t instance, struct mg_flexspi_nor_config *config, uint32_t start,
|
|
uint32_t lengthInBytes);
|
|
uint32_t reserved2;
|
|
int (*update_lut)(uint32_t instance, uint32_t seqIndex, const uint32_t *lutBase,
|
|
uint32_t seqNumber);
|
|
int (*xfer)(uint32_t instance, char *xfer);
|
|
void (*clear_cache)(uint32_t instance);
|
|
};
|
|
#elif MG_DEVICE == MG_DEVICE_RT1060
|
|
struct mg_flexspi_nor_driver_interface {
|
|
uint32_t version;
|
|
int (*init)(uint32_t instance, struct mg_flexspi_nor_config *config);
|
|
int (*program)(uint32_t instance, struct mg_flexspi_nor_config *config, uint32_t dst_addr,
|
|
const uint32_t *src);
|
|
int (*erase_all)(uint32_t instance, struct mg_flexspi_nor_config *config);
|
|
int (*erase)(uint32_t instance, struct mg_flexspi_nor_config *config, uint32_t start,
|
|
uint32_t lengthInBytes);
|
|
int (*read)(uint32_t instance, struct mg_flexspi_nor_config *config, uint32_t *dst, uint32_t addr,
|
|
uint32_t lengthInBytes);
|
|
void (*clear_cache)(uint32_t instance);
|
|
int (*xfer)(uint32_t instance, char *xfer);
|
|
int (*update_lut)(uint32_t instance, uint32_t seqIndex, const uint32_t *lutBase,
|
|
uint32_t seqNumber);
|
|
int (*get_config)(uint32_t instance, struct mg_flexspi_nor_config *config, uint32_t *option);
|
|
};
|
|
#endif
|
|
|
|
#define flexspi_nor (*((struct mg_flexspi_nor_driver_interface**) \
|
|
(*(uint32_t*)0x0020001c + 16)))
|
|
|
|
static bool s_flash_irq_disabled;
|
|
|
|
MG_IRAM void *mg_flash_start(void) {
|
|
return (void *) 0x60000000;
|
|
}
|
|
MG_IRAM size_t mg_flash_size(void) {
|
|
return 8 * 1024 * 1024;
|
|
}
|
|
MG_IRAM size_t mg_flash_sector_size(void) {
|
|
return 4 * 1024; // 4k
|
|
}
|
|
MG_IRAM size_t mg_flash_write_align(void) {
|
|
return 256;
|
|
}
|
|
MG_IRAM int mg_flash_bank(void) {
|
|
return 0;
|
|
}
|
|
|
|
MG_IRAM static bool flash_page_start(volatile uint32_t *dst) {
|
|
char *base = (char *) mg_flash_start(), *end = base + mg_flash_size();
|
|
volatile char *p = (char *) dst;
|
|
return p >= base && p < end && ((p - base) % mg_flash_sector_size()) == 0;
|
|
}
|
|
|
|
// Note: the get_config function below works both for RT1020 and 1060
|
|
#if MG_DEVICE == MG_DEVICE_RT1020
|
|
MG_IRAM static int flexspi_nor_get_config(struct mg_flexspi_nor_config *config) {
|
|
struct mg_flexspi_nor_config default_config = {
|
|
.memConfig = {.tag = MG_FLEXSPI_CFG_BLK_TAG,
|
|
.version = MG_FLEXSPI_CFG_BLK_VERSION,
|
|
.readSampleClkSrc = 1, // ReadSampleClk_LoopbackFromDqsPad
|
|
.csHoldTime = 3,
|
|
.csSetupTime = 3,
|
|
.controllerMiscOption = MG_BIT(4),
|
|
.deviceType = 1, // serial NOR
|
|
.sflashPadType = 4,
|
|
.serialClkFreq = 7, // 133MHz
|
|
.sflashA1Size = 8 * 1024 * 1024,
|
|
.lookupTable = MG_FLEXSPI_QSPI_LUT},
|
|
.pageSize = 256,
|
|
.sectorSize = 4 * 1024,
|
|
.ipcmdSerialClkFreq = 1,
|
|
.blockSize = 64 * 1024,
|
|
.isUniformBlockSize = false};
|
|
|
|
*config = default_config;
|
|
return 0;
|
|
}
|
|
#else
|
|
MG_IRAM static int flexspi_nor_get_config(struct mg_flexspi_nor_config *config) {
|
|
uint32_t options[] = {0xc0000000, 0x00};
|
|
|
|
MG_ARM_DISABLE_IRQ();
|
|
uint32_t status =
|
|
flexspi_nor->get_config(FLEXSPI_NOR_INSTANCE, config, options);
|
|
if (!s_flash_irq_disabled) {
|
|
MG_ARM_ENABLE_IRQ();
|
|
}
|
|
if (status) {
|
|
MG_ERROR(("Failed to extract flash configuration: status %u", status));
|
|
}
|
|
return status;
|
|
}
|
|
#endif
|
|
|
|
MG_IRAM bool mg_flash_erase(void *addr) {
|
|
struct mg_flexspi_nor_config config;
|
|
if (flexspi_nor_get_config(&config) != 0) {
|
|
return false;
|
|
}
|
|
if (flash_page_start(addr) == false) {
|
|
MG_ERROR(("%p is not on a sector boundary", addr));
|
|
return false;
|
|
}
|
|
|
|
void *dst = (void *)((char *) addr - (char *) mg_flash_start());
|
|
|
|
// Note: Interrupts must be disabled before any call to the ROM API on RT1020
|
|
// and 1060
|
|
MG_ARM_DISABLE_IRQ();
|
|
bool ok = (flexspi_nor->erase(FLEXSPI_NOR_INSTANCE, &config, (uint32_t) dst,
|
|
mg_flash_sector_size()) == 0);
|
|
if (!s_flash_irq_disabled) {
|
|
MG_ARM_ENABLE_IRQ(); // Reenable them after the call
|
|
}
|
|
MG_DEBUG(("Sector starting at %p erasure: %s", addr, ok ? "ok" : "fail"));
|
|
return ok;
|
|
}
|
|
|
|
MG_IRAM bool mg_flash_swap_bank(void) {
|
|
return true;
|
|
}
|
|
|
|
static inline void spin(volatile uint32_t count) {
|
|
while (count--) (void) 0;
|
|
}
|
|
|
|
static inline void flash_wait(void) {
|
|
while ((*((volatile uint32_t *)(0x402A8000 + 0xE0)) & MG_BIT(1)) == 0)
|
|
spin(1);
|
|
}
|
|
|
|
MG_IRAM static void *flash_code_location(void) {
|
|
return (void *) ((char *) mg_flash_start() + 0x2000);
|
|
}
|
|
|
|
MG_IRAM bool mg_flash_write(void *addr, const void *buf, size_t len) {
|
|
struct mg_flexspi_nor_config config;
|
|
if (flexspi_nor_get_config(&config) != 0) {
|
|
return false;
|
|
}
|
|
if ((len % mg_flash_write_align()) != 0) {
|
|
MG_ERROR(("%lu is not aligned to %lu", len, mg_flash_write_align()));
|
|
return false;
|
|
}
|
|
|
|
if ((char *) addr < (char *) mg_flash_start()) {
|
|
MG_ERROR(("Invalid flash write address: %p", addr));
|
|
return false;
|
|
}
|
|
|
|
uint32_t *dst = (uint32_t *) addr;
|
|
uint32_t *src = (uint32_t *) buf;
|
|
uint32_t *end = (uint32_t *) ((char *) buf + len);
|
|
bool ok = true;
|
|
|
|
// Note: If we overwrite the flash irq section of the image, we must also
|
|
// make sure interrupts are disabled and are not reenabled until we write
|
|
// this sector with another irq table.
|
|
if ((char *) addr == (char *) flash_code_location()) {
|
|
s_flash_irq_disabled = true;
|
|
MG_ARM_DISABLE_IRQ();
|
|
}
|
|
|
|
while (ok && src < end) {
|
|
if (flash_page_start(dst) && mg_flash_erase(dst) == false) {
|
|
break;
|
|
}
|
|
uint32_t status;
|
|
uint32_t dst_ofs = (uint32_t) dst - (uint32_t) mg_flash_start();
|
|
if ((char *) buf >= (char *) mg_flash_start()) {
|
|
// If we copy from FLASH to FLASH, then we first need to copy the source
|
|
// to RAM
|
|
size_t tmp_buf_size = mg_flash_write_align() / sizeof(uint32_t);
|
|
uint32_t tmp[tmp_buf_size];
|
|
|
|
for (size_t i = 0; i < tmp_buf_size; i++) {
|
|
flash_wait();
|
|
tmp[i] = src[i];
|
|
}
|
|
MG_ARM_DISABLE_IRQ();
|
|
status = flexspi_nor->program(FLEXSPI_NOR_INSTANCE, &config,
|
|
(uint32_t) dst_ofs, tmp);
|
|
} else {
|
|
MG_ARM_DISABLE_IRQ();
|
|
status = flexspi_nor->program(FLEXSPI_NOR_INSTANCE, &config,
|
|
(uint32_t) dst_ofs, src);
|
|
}
|
|
if (!s_flash_irq_disabled) {
|
|
MG_ARM_ENABLE_IRQ();
|
|
}
|
|
src = (uint32_t *) ((char *) src + mg_flash_write_align());
|
|
dst = (uint32_t *) ((char *) dst + mg_flash_write_align());
|
|
if (status != 0) {
|
|
ok = false;
|
|
}
|
|
}
|
|
MG_DEBUG(("Flash write %lu bytes @ %p: %s.", len, dst, ok ? "ok" : "fail"));
|
|
return ok;
|
|
}
|
|
|
|
MG_IRAM void mg_device_reset(void) {
|
|
MG_DEBUG(("Resetting device..."));
|
|
*(volatile unsigned long *) 0xe000ed0c = 0x5fa0004;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/device_stm32h5.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_DEVICE == MG_DEVICE_STM32H5
|
|
|
|
#define FLASH_BASE 0x40022000 // Base address of the flash controller
|
|
#define FLASH_KEYR (FLASH_BASE + 0x4) // See RM0481 7.11
|
|
#define FLASH_OPTKEYR (FLASH_BASE + 0xc)
|
|
#define FLASH_OPTCR (FLASH_BASE + 0x1c)
|
|
#define FLASH_NSSR (FLASH_BASE + 0x20)
|
|
#define FLASH_NSCR (FLASH_BASE + 0x28)
|
|
#define FLASH_NSCCR (FLASH_BASE + 0x30)
|
|
#define FLASH_OPTSR_CUR (FLASH_BASE + 0x50)
|
|
#define FLASH_OPTSR_PRG (FLASH_BASE + 0x54)
|
|
|
|
void *mg_flash_start(void) {
|
|
return (void *) 0x08000000;
|
|
}
|
|
size_t mg_flash_size(void) {
|
|
return 2 * 1024 * 1024; // 2Mb
|
|
}
|
|
size_t mg_flash_sector_size(void) {
|
|
return 8 * 1024; // 8k
|
|
}
|
|
size_t mg_flash_write_align(void) {
|
|
return 16; // 128 bit
|
|
}
|
|
int mg_flash_bank(void) {
|
|
return MG_REG(FLASH_OPTCR) & MG_BIT(31) ? 2 : 1;
|
|
}
|
|
|
|
static void flash_unlock(void) {
|
|
static bool unlocked = false;
|
|
if (unlocked == false) {
|
|
MG_REG(FLASH_KEYR) = 0x45670123;
|
|
MG_REG(FLASH_KEYR) = 0Xcdef89ab;
|
|
MG_REG(FLASH_OPTKEYR) = 0x08192a3b;
|
|
MG_REG(FLASH_OPTKEYR) = 0x4c5d6e7f;
|
|
unlocked = true;
|
|
}
|
|
}
|
|
|
|
static int flash_page_start(volatile uint32_t *dst) {
|
|
char *base = (char *) mg_flash_start(), *end = base + mg_flash_size();
|
|
volatile char *p = (char *) dst;
|
|
return p >= base && p < end && ((p - base) % mg_flash_sector_size()) == 0;
|
|
}
|
|
|
|
static bool flash_is_err(void) {
|
|
return MG_REG(FLASH_NSSR) & ((MG_BIT(8) - 1) << 17); // RM0481 7.11.9
|
|
}
|
|
|
|
static void flash_wait(void) {
|
|
while ((MG_REG(FLASH_NSSR) & MG_BIT(0)) &&
|
|
(MG_REG(FLASH_NSSR) & MG_BIT(16)) == 0) {
|
|
(void) 0;
|
|
}
|
|
}
|
|
|
|
static void flash_clear_err(void) {
|
|
flash_wait(); // Wait until ready
|
|
MG_REG(FLASH_NSCCR) = ((MG_BIT(9) - 1) << 16U); // Clear all errors
|
|
}
|
|
|
|
static bool flash_bank_is_swapped(void) {
|
|
return MG_REG(FLASH_OPTCR) & MG_BIT(31); // RM0481 7.11.8
|
|
}
|
|
|
|
bool mg_flash_erase(void *location) {
|
|
bool ok = false;
|
|
if (flash_page_start(location) == false) {
|
|
MG_ERROR(("%p is not on a sector boundary"));
|
|
} else {
|
|
uintptr_t diff = (char *) location - (char *) mg_flash_start();
|
|
uint32_t sector = diff / mg_flash_sector_size();
|
|
uint32_t saved_cr = MG_REG(FLASH_NSCR); // Save CR value
|
|
flash_unlock();
|
|
flash_clear_err();
|
|
MG_REG(FLASH_NSCR) = 0;
|
|
if ((sector < 128 && flash_bank_is_swapped()) ||
|
|
(sector > 127 && !flash_bank_is_swapped())) {
|
|
MG_REG(FLASH_NSCR) |= MG_BIT(31); // Set FLASH_CR_BKSEL
|
|
}
|
|
if (sector > 127) sector -= 128;
|
|
MG_REG(FLASH_NSCR) |= MG_BIT(2) | (sector << 6); // Erase | sector_num
|
|
MG_REG(FLASH_NSCR) |= MG_BIT(5); // Start erasing
|
|
flash_wait();
|
|
ok = !flash_is_err();
|
|
MG_DEBUG(("Erase sector %lu @ %p: %s. CR %#lx SR %#lx", sector, location,
|
|
ok ? "ok" : "fail", MG_REG(FLASH_NSCR), MG_REG(FLASH_NSSR)));
|
|
// mg_hexdump(location, 32);
|
|
MG_REG(FLASH_NSCR) = saved_cr; // Restore saved CR
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool mg_flash_swap_bank(void) {
|
|
uint32_t desired = flash_bank_is_swapped() ? 0 : MG_BIT(31);
|
|
flash_unlock();
|
|
flash_clear_err();
|
|
// printf("OPTSR_PRG 1 %#lx\n", FLASH->OPTSR_PRG);
|
|
MG_SET_BITS(MG_REG(FLASH_OPTSR_PRG), MG_BIT(31), desired);
|
|
// printf("OPTSR_PRG 2 %#lx\n", FLASH->OPTSR_PRG);
|
|
MG_REG(FLASH_OPTCR) |= MG_BIT(1); // OPTSTART
|
|
while ((MG_REG(FLASH_OPTSR_CUR) & MG_BIT(31)) != desired) (void) 0;
|
|
return true;
|
|
}
|
|
|
|
bool mg_flash_write(void *addr, const void *buf, size_t len) {
|
|
if ((len % mg_flash_write_align()) != 0) {
|
|
MG_ERROR(("%lu is not aligned to %lu", len, mg_flash_write_align()));
|
|
return false;
|
|
}
|
|
uint32_t *dst = (uint32_t *) addr;
|
|
uint32_t *src = (uint32_t *) buf;
|
|
uint32_t *end = (uint32_t *) ((char *) buf + len);
|
|
bool ok = true;
|
|
flash_unlock();
|
|
flash_clear_err();
|
|
MG_ARM_DISABLE_IRQ();
|
|
// MG_DEBUG(("Starting flash write %lu bytes @ %p", len, addr));
|
|
MG_REG(FLASH_NSCR) = MG_BIT(1); // Set programming flag
|
|
while (ok && src < end) {
|
|
if (flash_page_start(dst) && mg_flash_erase(dst) == false) break;
|
|
*(volatile uint32_t *) dst++ = *src++;
|
|
flash_wait();
|
|
if (flash_is_err()) ok = false;
|
|
}
|
|
MG_ARM_ENABLE_IRQ();
|
|
MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst,
|
|
flash_is_err() ? "fail" : "ok", MG_REG(FLASH_NSCR),
|
|
MG_REG(FLASH_NSSR)));
|
|
MG_REG(FLASH_NSCR) = 0; // Clear flags
|
|
return ok;
|
|
}
|
|
|
|
void mg_device_reset(void) {
|
|
// SCB->AIRCR = ((0x5fa << SCB_AIRCR_VECTKEY_Pos)|SCB_AIRCR_SYSRESETREQ_Msk);
|
|
*(volatile unsigned long *) 0xe000ed0c = 0x5fa0004;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/device_stm32h7.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_DEVICE == MG_DEVICE_STM32H7
|
|
|
|
#define FLASH_BASE1 0x52002000 // Base address for bank1
|
|
#define FLASH_BASE2 0x52002100 // Base address for bank2
|
|
#define FLASH_KEYR 0x04 // See RM0433 4.9.2
|
|
#define FLASH_OPTKEYR 0x08
|
|
#define FLASH_OPTCR 0x18
|
|
#define FLASH_SR 0x10
|
|
#define FLASH_CR 0x0c
|
|
#define FLASH_CCR 0x14
|
|
#define FLASH_OPTSR_CUR 0x1c
|
|
#define FLASH_OPTSR_PRG 0x20
|
|
#define FLASH_SIZE_REG 0x1ff1e880
|
|
|
|
MG_IRAM void *mg_flash_start(void) {
|
|
return (void *) 0x08000000;
|
|
}
|
|
MG_IRAM size_t mg_flash_size(void) {
|
|
return MG_REG(FLASH_SIZE_REG) * 1024;
|
|
}
|
|
MG_IRAM size_t mg_flash_sector_size(void) {
|
|
return 128 * 1024; // 128k
|
|
}
|
|
MG_IRAM size_t mg_flash_write_align(void) {
|
|
return 32; // 256 bit
|
|
}
|
|
MG_IRAM int mg_flash_bank(void) {
|
|
if (mg_flash_size() < 2 * 1024 * 1024) return 0; // No dual bank support
|
|
return MG_REG(FLASH_BASE1 + FLASH_OPTCR) & MG_BIT(31) ? 2 : 1;
|
|
}
|
|
|
|
MG_IRAM static void flash_unlock(void) {
|
|
static bool unlocked = false;
|
|
if (unlocked == false) {
|
|
MG_REG(FLASH_BASE1 + FLASH_KEYR) = 0x45670123;
|
|
MG_REG(FLASH_BASE1 + FLASH_KEYR) = 0xcdef89ab;
|
|
if (mg_flash_bank() > 0) {
|
|
MG_REG(FLASH_BASE2 + FLASH_KEYR) = 0x45670123;
|
|
MG_REG(FLASH_BASE2 + FLASH_KEYR) = 0xcdef89ab;
|
|
}
|
|
MG_REG(FLASH_BASE1 + FLASH_OPTKEYR) = 0x08192a3b; // opt reg is "shared"
|
|
MG_REG(FLASH_BASE1 + FLASH_OPTKEYR) = 0x4c5d6e7f; // thus unlock once
|
|
unlocked = true;
|
|
}
|
|
}
|
|
|
|
MG_IRAM static bool flash_page_start(volatile uint32_t *dst) {
|
|
char *base = (char *) mg_flash_start(), *end = base + mg_flash_size();
|
|
volatile char *p = (char *) dst;
|
|
return p >= base && p < end && ((p - base) % mg_flash_sector_size()) == 0;
|
|
}
|
|
|
|
MG_IRAM static bool flash_is_err(uint32_t bank) {
|
|
return MG_REG(bank + FLASH_SR) & ((MG_BIT(11) - 1) << 17); // RM0433 4.9.5
|
|
}
|
|
|
|
MG_IRAM static void flash_wait(uint32_t bank) {
|
|
while (MG_REG(bank + FLASH_SR) & (MG_BIT(0) | MG_BIT(2))) (void) 0;
|
|
}
|
|
|
|
MG_IRAM static void flash_clear_err(uint32_t bank) {
|
|
flash_wait(bank); // Wait until ready
|
|
MG_REG(bank + FLASH_CCR) = ((MG_BIT(11) - 1) << 16U); // Clear all errors
|
|
}
|
|
|
|
MG_IRAM static bool flash_bank_is_swapped(uint32_t bank) {
|
|
return MG_REG(bank + FLASH_OPTCR) & MG_BIT(31); // RM0433 4.9.7
|
|
}
|
|
|
|
// Figure out flash bank based on the address
|
|
MG_IRAM static uint32_t flash_bank(void *addr) {
|
|
size_t ofs = (char *) addr - (char *) mg_flash_start();
|
|
if (mg_flash_bank() == 0) return FLASH_BASE1;
|
|
return ofs < mg_flash_size() / 2 ? FLASH_BASE1 : FLASH_BASE2;
|
|
}
|
|
|
|
MG_IRAM bool mg_flash_erase(void *addr) {
|
|
bool ok = false;
|
|
if (flash_page_start(addr) == false) {
|
|
MG_ERROR(("%p is not on a sector boundary", addr));
|
|
} else {
|
|
uintptr_t diff = (char *) addr - (char *) mg_flash_start();
|
|
uint32_t sector = diff / mg_flash_sector_size();
|
|
uint32_t bank = flash_bank(addr);
|
|
uint32_t saved_cr = MG_REG(bank + FLASH_CR); // Save CR value
|
|
|
|
flash_unlock();
|
|
if (sector > 7) sector -= 8;
|
|
|
|
flash_clear_err(bank);
|
|
MG_REG(bank + FLASH_CR) = MG_BIT(5); // 32-bit write parallelism
|
|
MG_REG(bank + FLASH_CR) |= (sector & 7U) << 8U; // Sector to erase
|
|
MG_REG(bank + FLASH_CR) |= MG_BIT(2); // Sector erase bit
|
|
MG_REG(bank + FLASH_CR) |= MG_BIT(7); // Start erasing
|
|
ok = !flash_is_err(bank);
|
|
MG_DEBUG(("Erase sector %lu @ %p %s. CR %#lx SR %#lx", sector, addr,
|
|
ok ? "ok" : "fail", MG_REG(bank + FLASH_CR),
|
|
MG_REG(bank + FLASH_SR)));
|
|
MG_REG(bank + FLASH_CR) = saved_cr; // Restore CR
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
MG_IRAM bool mg_flash_swap_bank(void) {
|
|
if (mg_flash_bank() == 0) return true;
|
|
uint32_t bank = FLASH_BASE1;
|
|
uint32_t desired = flash_bank_is_swapped(bank) ? 0 : MG_BIT(31);
|
|
flash_unlock();
|
|
flash_clear_err(bank);
|
|
// printf("OPTSR_PRG 1 %#lx\n", FLASH->OPTSR_PRG);
|
|
MG_SET_BITS(MG_REG(bank + FLASH_OPTSR_PRG), MG_BIT(31), desired);
|
|
// printf("OPTSR_PRG 2 %#lx\n", FLASH->OPTSR_PRG);
|
|
MG_REG(bank + FLASH_OPTCR) |= MG_BIT(1); // OPTSTART
|
|
while ((MG_REG(bank + FLASH_OPTSR_CUR) & MG_BIT(31)) != desired) (void) 0;
|
|
return true;
|
|
}
|
|
|
|
MG_IRAM bool mg_flash_write(void *addr, const void *buf, size_t len) {
|
|
if ((len % mg_flash_write_align()) != 0) {
|
|
MG_ERROR(("%lu is not aligned to %lu", len, mg_flash_write_align()));
|
|
return false;
|
|
}
|
|
uint32_t bank = flash_bank(addr);
|
|
uint32_t *dst = (uint32_t *) addr;
|
|
uint32_t *src = (uint32_t *) buf;
|
|
uint32_t *end = (uint32_t *) ((char *) buf + len);
|
|
bool ok = true;
|
|
flash_unlock();
|
|
flash_clear_err(bank);
|
|
MG_REG(bank + FLASH_CR) = MG_BIT(1); // Set programming flag
|
|
MG_REG(bank + FLASH_CR) |= MG_BIT(5); // 32-bit write parallelism
|
|
MG_DEBUG(("Writing flash @ %p, %lu bytes", addr, len));
|
|
MG_ARM_DISABLE_IRQ();
|
|
while (ok && src < end) {
|
|
if (flash_page_start(dst) && mg_flash_erase(dst) == false) break;
|
|
*(volatile uint32_t *) dst++ = *src++;
|
|
flash_wait(bank);
|
|
if (flash_is_err(bank)) ok = false;
|
|
}
|
|
MG_ARM_ENABLE_IRQ();
|
|
MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst,
|
|
ok ? "ok" : "fail", MG_REG(bank + FLASH_CR),
|
|
MG_REG(bank + FLASH_SR)));
|
|
MG_REG(bank + FLASH_CR) &= ~MG_BIT(1); // Clear programming flag
|
|
return ok;
|
|
}
|
|
|
|
MG_IRAM void mg_device_reset(void) {
|
|
// SCB->AIRCR = ((0x5fa << SCB_AIRCR_VECTKEY_Pos)|SCB_AIRCR_SYSRESETREQ_Msk);
|
|
*(volatile unsigned long *) 0xe000ed0c = 0x5fa0004;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/dns.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct dns_data {
|
|
struct dns_data *next;
|
|
struct mg_connection *c;
|
|
uint64_t expire;
|
|
uint16_t txnid;
|
|
};
|
|
|
|
static void mg_sendnsreq(struct mg_connection *, struct mg_str *, int,
|
|
struct mg_dns *, bool);
|
|
|
|
static void mg_dns_free(struct dns_data **head, struct dns_data *d) {
|
|
LIST_DELETE(struct dns_data, head, d);
|
|
free(d);
|
|
}
|
|
|
|
void mg_resolve_cancel(struct mg_connection *c) {
|
|
struct dns_data *tmp, *d;
|
|
struct dns_data **head = (struct dns_data **) &c->mgr->active_dns_requests;
|
|
for (d = *head; d != NULL; d = tmp) {
|
|
tmp = d->next;
|
|
if (d->c == c) mg_dns_free(head, d);
|
|
}
|
|
}
|
|
|
|
static size_t mg_dns_parse_name_depth(const uint8_t *s, size_t len, size_t ofs,
|
|
char *to, size_t tolen, size_t j,
|
|
int depth) {
|
|
size_t i = 0;
|
|
if (tolen > 0 && depth == 0) to[0] = '\0';
|
|
if (depth > 5) return 0;
|
|
// MG_INFO(("ofs %lx %x %x", (unsigned long) ofs, s[ofs], s[ofs + 1]));
|
|
while (ofs + i + 1 < len) {
|
|
size_t n = s[ofs + i];
|
|
if (n == 0) {
|
|
i++;
|
|
break;
|
|
}
|
|
if (n & 0xc0) {
|
|
size_t ptr = (((n & 0x3f) << 8) | s[ofs + i + 1]); // 12 is hdr len
|
|
// MG_INFO(("PTR %lx", (unsigned long) ptr));
|
|
if (ptr + 1 < len && (s[ptr] & 0xc0) == 0 &&
|
|
mg_dns_parse_name_depth(s, len, ptr, to, tolen, j, depth + 1) == 0)
|
|
return 0;
|
|
i += 2;
|
|
break;
|
|
}
|
|
if (ofs + i + n + 1 >= len) return 0;
|
|
if (j > 0) {
|
|
if (j < tolen) to[j] = '.';
|
|
j++;
|
|
}
|
|
if (j + n < tolen) memcpy(&to[j], &s[ofs + i + 1], n);
|
|
j += n;
|
|
i += n + 1;
|
|
if (j < tolen) to[j] = '\0'; // Zero-terminate this chunk
|
|
// MG_INFO(("--> [%s]", to));
|
|
}
|
|
if (tolen > 0) to[tolen - 1] = '\0'; // Make sure make sure it is nul-term
|
|
return i;
|
|
}
|
|
|
|
static size_t mg_dns_parse_name(const uint8_t *s, size_t n, size_t ofs,
|
|
char *dst, size_t dstlen) {
|
|
return mg_dns_parse_name_depth(s, n, ofs, dst, dstlen, 0, 0);
|
|
}
|
|
|
|
size_t mg_dns_parse_rr(const uint8_t *buf, size_t len, size_t ofs,
|
|
bool is_question, struct mg_dns_rr *rr) {
|
|
const uint8_t *s = buf + ofs, *e = &buf[len];
|
|
|
|
memset(rr, 0, sizeof(*rr));
|
|
if (len < sizeof(struct mg_dns_header)) return 0; // Too small
|
|
if (len > 512) return 0; // Too large, we don't expect that
|
|
if (s >= e) return 0; // Overflow
|
|
|
|
if ((rr->nlen = (uint16_t) mg_dns_parse_name(buf, len, ofs, NULL, 0)) == 0)
|
|
return 0;
|
|
s += rr->nlen + 4;
|
|
if (s > e) return 0;
|
|
rr->atype = (uint16_t) (((uint16_t) s[-4] << 8) | s[-3]);
|
|
rr->aclass = (uint16_t) (((uint16_t) s[-2] << 8) | s[-1]);
|
|
if (is_question) return (size_t) (rr->nlen + 4);
|
|
|
|
s += 6;
|
|
if (s > e) return 0;
|
|
rr->alen = (uint16_t) (((uint16_t) s[-2] << 8) | s[-1]);
|
|
if (s + rr->alen > e) return 0;
|
|
return (size_t) (rr->nlen + rr->alen + 10);
|
|
}
|
|
|
|
bool mg_dns_parse(const uint8_t *buf, size_t len, struct mg_dns_message *dm) {
|
|
const struct mg_dns_header *h = (struct mg_dns_header *) buf;
|
|
struct mg_dns_rr rr;
|
|
size_t i, n, num_answers, ofs = sizeof(*h);
|
|
memset(dm, 0, sizeof(*dm));
|
|
|
|
if (len < sizeof(*h)) return 0; // Too small, headers dont fit
|
|
if (mg_ntohs(h->num_questions) > 1) return 0; // Sanity
|
|
num_answers = mg_ntohs(h->num_answers);
|
|
if (num_answers > 10) {
|
|
MG_DEBUG(("Got %u answers, ignoring beyond 10th one", num_answers));
|
|
num_answers = 10; // Sanity cap
|
|
}
|
|
dm->txnid = mg_ntohs(h->txnid);
|
|
|
|
for (i = 0; i < mg_ntohs(h->num_questions); i++) {
|
|
if ((n = mg_dns_parse_rr(buf, len, ofs, true, &rr)) == 0) return false;
|
|
// MG_INFO(("Q %lu %lu %hu/%hu", ofs, n, rr.atype, rr.aclass));
|
|
ofs += n;
|
|
}
|
|
for (i = 0; i < num_answers; i++) {
|
|
if ((n = mg_dns_parse_rr(buf, len, ofs, false, &rr)) == 0) return false;
|
|
// MG_INFO(("A -- %lu %lu %hu/%hu %s", ofs, n, rr.atype, rr.aclass,
|
|
// dm->name));
|
|
mg_dns_parse_name(buf, len, ofs, dm->name, sizeof(dm->name));
|
|
ofs += n;
|
|
|
|
if (rr.alen == 4 && rr.atype == 1 && rr.aclass == 1) {
|
|
dm->addr.is_ip6 = false;
|
|
memcpy(&dm->addr.ip, &buf[ofs - 4], 4);
|
|
dm->resolved = true;
|
|
break; // Return success
|
|
} else if (rr.alen == 16 && rr.atype == 28 && rr.aclass == 1) {
|
|
dm->addr.is_ip6 = true;
|
|
memcpy(&dm->addr.ip, &buf[ofs - 16], 16);
|
|
dm->resolved = true;
|
|
break; // Return success
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void dns_cb(struct mg_connection *c, int ev, void *ev_data) {
|
|
struct dns_data *d, *tmp;
|
|
struct dns_data **head = (struct dns_data **) &c->mgr->active_dns_requests;
|
|
if (ev == MG_EV_POLL) {
|
|
uint64_t now = *(uint64_t *) ev_data;
|
|
for (d = *head; d != NULL; d = tmp) {
|
|
tmp = d->next;
|
|
// MG_DEBUG ("%lu %lu dns poll", d->expire, now));
|
|
if (now > d->expire) mg_error(d->c, "DNS timeout");
|
|
}
|
|
} else if (ev == MG_EV_READ) {
|
|
struct mg_dns_message dm;
|
|
int resolved = 0;
|
|
if (mg_dns_parse(c->recv.buf, c->recv.len, &dm) == false) {
|
|
MG_ERROR(("Unexpected DNS response:"));
|
|
mg_hexdump(c->recv.buf, c->recv.len);
|
|
} else {
|
|
// MG_VERBOSE(("%s %d", dm.name, dm.resolved));
|
|
for (d = *head; d != NULL; d = tmp) {
|
|
tmp = d->next;
|
|
// MG_INFO(("d %p %hu %hu", d, d->txnid, dm.txnid));
|
|
if (dm.txnid != d->txnid) continue;
|
|
if (d->c->is_resolving) {
|
|
if (dm.resolved) {
|
|
dm.addr.port = d->c->rem.port; // Save port
|
|
d->c->rem = dm.addr; // Copy resolved address
|
|
MG_DEBUG(
|
|
("%lu %s is %M", d->c->id, dm.name, mg_print_ip, &d->c->rem));
|
|
mg_connect_resolved(d->c);
|
|
#if MG_ENABLE_IPV6
|
|
} else if (dm.addr.is_ip6 == false && dm.name[0] != '\0' &&
|
|
c->mgr->use_dns6 == false) {
|
|
struct mg_str x = mg_str(dm.name);
|
|
mg_sendnsreq(d->c, &x, c->mgr->dnstimeout, &c->mgr->dns6, true);
|
|
#endif
|
|
} else {
|
|
mg_error(d->c, "%s DNS lookup failed", dm.name);
|
|
}
|
|
} else {
|
|
MG_ERROR(("%lu already resolved", d->c->id));
|
|
}
|
|
mg_dns_free(head, d);
|
|
resolved = 1;
|
|
}
|
|
}
|
|
if (!resolved) MG_ERROR(("stray DNS reply"));
|
|
c->recv.len = 0;
|
|
} else if (ev == MG_EV_CLOSE) {
|
|
for (d = *head; d != NULL; d = tmp) {
|
|
tmp = d->next;
|
|
mg_error(d->c, "DNS error");
|
|
mg_dns_free(head, d);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool mg_dns_send(struct mg_connection *c, const struct mg_str *name,
|
|
uint16_t txnid, bool ipv6) {
|
|
struct {
|
|
struct mg_dns_header header;
|
|
uint8_t data[256];
|
|
} pkt;
|
|
size_t i, n;
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.header.txnid = mg_htons(txnid);
|
|
pkt.header.flags = mg_htons(0x100);
|
|
pkt.header.num_questions = mg_htons(1);
|
|
for (i = n = 0; i < sizeof(pkt.data) - 5; i++) {
|
|
if (name->buf[i] == '.' || i >= name->len) {
|
|
pkt.data[n] = (uint8_t) (i - n);
|
|
memcpy(&pkt.data[n + 1], name->buf + n, i - n);
|
|
n = i + 1;
|
|
}
|
|
if (i >= name->len) break;
|
|
}
|
|
memcpy(&pkt.data[n], "\x00\x00\x01\x00\x01", 5); // A query
|
|
n += 5;
|
|
if (ipv6) pkt.data[n - 3] = 0x1c; // AAAA query
|
|
// memcpy(&pkt.data[n], "\xc0\x0c\x00\x1c\x00\x01", 6); // AAAA query
|
|
// n += 6;
|
|
return mg_send(c, &pkt, sizeof(pkt.header) + n);
|
|
}
|
|
|
|
static void mg_sendnsreq(struct mg_connection *c, struct mg_str *name, int ms,
|
|
struct mg_dns *dnsc, bool ipv6) {
|
|
struct dns_data *d = NULL;
|
|
if (dnsc->url == NULL) {
|
|
mg_error(c, "DNS server URL is NULL. Call mg_mgr_init()");
|
|
} else if (dnsc->c == NULL) {
|
|
dnsc->c = mg_connect(c->mgr, dnsc->url, NULL, NULL);
|
|
if (dnsc->c != NULL) {
|
|
dnsc->c->pfn = dns_cb;
|
|
// dnsc->c->is_hexdumping = 1;
|
|
}
|
|
}
|
|
if (dnsc->c == NULL) {
|
|
mg_error(c, "resolver");
|
|
} else if ((d = (struct dns_data *) calloc(1, sizeof(*d))) == NULL) {
|
|
mg_error(c, "resolve OOM");
|
|
} else {
|
|
struct dns_data *reqs = (struct dns_data *) c->mgr->active_dns_requests;
|
|
d->txnid = reqs ? (uint16_t) (reqs->txnid + 1) : 1;
|
|
d->next = (struct dns_data *) c->mgr->active_dns_requests;
|
|
c->mgr->active_dns_requests = d;
|
|
d->expire = mg_millis() + (uint64_t) ms;
|
|
d->c = c;
|
|
c->is_resolving = 1;
|
|
MG_VERBOSE(("%lu resolving %.*s @ %s, txnid %hu", c->id, (int) name->len,
|
|
name->buf, dnsc->url, d->txnid));
|
|
if (!mg_dns_send(dnsc->c, name, d->txnid, ipv6)) {
|
|
mg_error(dnsc->c, "DNS send");
|
|
}
|
|
}
|
|
}
|
|
|
|
void mg_resolve(struct mg_connection *c, const char *url) {
|
|
struct mg_str host = mg_url_host(url);
|
|
c->rem.port = mg_htons(mg_url_port(url));
|
|
if (mg_aton(host, &c->rem)) {
|
|
// host is an IP address, do not fire name resolution
|
|
mg_connect_resolved(c);
|
|
} else {
|
|
// host is not an IP, send DNS resolution request
|
|
struct mg_dns *dns = c->mgr->use_dns6 ? &c->mgr->dns6 : &c->mgr->dns4;
|
|
mg_sendnsreq(c, &host, c->mgr->dnstimeout, dns, c->mgr->use_dns6);
|
|
}
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/event.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void mg_call(struct mg_connection *c, int ev, void *ev_data) {
|
|
#if MG_ENABLE_PROFILE
|
|
const char *names[] = {
|
|
"EV_ERROR", "EV_OPEN", "EV_POLL", "EV_RESOLVE",
|
|
"EV_CONNECT", "EV_ACCEPT", "EV_TLS_HS", "EV_READ",
|
|
"EV_WRITE", "EV_CLOSE", "EV_HTTP_MSG", "EV_HTTP_CHUNK",
|
|
"EV_WS_OPEN", "EV_WS_MSG", "EV_WS_CTL", "EV_MQTT_CMD",
|
|
"EV_MQTT_MSG", "EV_MQTT_OPEN", "EV_SNTP_TIME", "EV_USER"};
|
|
if (ev != MG_EV_POLL && ev < (int) (sizeof(names) / sizeof(names[0]))) {
|
|
MG_PROF_ADD(c, names[ev]);
|
|
}
|
|
#endif
|
|
// Fire protocol handler first, user handler second. See #2559
|
|
if (c->pfn != NULL) c->pfn(c, ev, ev_data);
|
|
if (c->fn != NULL) c->fn(c, ev, ev_data);
|
|
}
|
|
|
|
void mg_error(struct mg_connection *c, const char *fmt, ...) {
|
|
char buf[64];
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mg_vsnprintf(buf, sizeof(buf), fmt, &ap);
|
|
va_end(ap);
|
|
MG_ERROR(("%lu %ld %s", c->id, c->fd, buf));
|
|
c->is_closing = 1; // Set is_closing before sending MG_EV_CALL
|
|
mg_call(c, MG_EV_ERROR, buf); // Let user handler override it
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/fmt.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static bool is_digit(int c) {
|
|
return c >= '0' && c <= '9';
|
|
}
|
|
|
|
static int addexp(char *buf, int e, int sign) {
|
|
int n = 0;
|
|
buf[n++] = 'e';
|
|
buf[n++] = (char) sign;
|
|
if (e > 400) return 0;
|
|
if (e < 10) buf[n++] = '0';
|
|
if (e >= 100) buf[n++] = (char) (e / 100 + '0'), e -= 100 * (e / 100);
|
|
if (e >= 10) buf[n++] = (char) (e / 10 + '0'), e -= 10 * (e / 10);
|
|
buf[n++] = (char) (e + '0');
|
|
return n;
|
|
}
|
|
|
|
static int xisinf(double x) {
|
|
union {
|
|
double f;
|
|
uint64_t u;
|
|
} ieee754 = {x};
|
|
return ((unsigned) (ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
|
|
((unsigned) ieee754.u == 0);
|
|
}
|
|
|
|
static int xisnan(double x) {
|
|
union {
|
|
double f;
|
|
uint64_t u;
|
|
} ieee754 = {x};
|
|
return ((unsigned) (ieee754.u >> 32) & 0x7fffffff) +
|
|
((unsigned) ieee754.u != 0) >
|
|
0x7ff00000;
|
|
}
|
|
|
|
static size_t mg_dtoa(char *dst, size_t dstlen, double d, int width, bool tz) {
|
|
char buf[40];
|
|
int i, s = 0, n = 0, e = 0;
|
|
double t, mul, saved;
|
|
if (d == 0.0) return mg_snprintf(dst, dstlen, "%s", "0");
|
|
if (xisinf(d)) return mg_snprintf(dst, dstlen, "%s", d > 0 ? "inf" : "-inf");
|
|
if (xisnan(d)) return mg_snprintf(dst, dstlen, "%s", "nan");
|
|
if (d < 0.0) d = -d, buf[s++] = '-';
|
|
|
|
// Round
|
|
saved = d;
|
|
mul = 1.0;
|
|
while (d >= 10.0 && d / mul >= 10.0) mul *= 10.0;
|
|
while (d <= 1.0 && d / mul <= 1.0) mul /= 10.0;
|
|
for (i = 0, t = mul * 5; i < width; i++) t /= 10.0;
|
|
d += t;
|
|
// Calculate exponent, and 'mul' for scientific representation
|
|
mul = 1.0;
|
|
while (d >= 10.0 && d / mul >= 10.0) mul *= 10.0, e++;
|
|
while (d < 1.0 && d / mul < 1.0) mul /= 10.0, e--;
|
|
// printf(" --> %g %d %g %g\n", saved, e, t, mul);
|
|
|
|
if (e >= width && width > 1) {
|
|
n = (int) mg_dtoa(buf, sizeof(buf), saved / mul, width, tz);
|
|
// printf(" --> %.*g %d [%.*s]\n", 10, d / t, e, n, buf);
|
|
n += addexp(buf + s + n, e, '+');
|
|
return mg_snprintf(dst, dstlen, "%.*s", n, buf);
|
|
} else if (e <= -width && width > 1) {
|
|
n = (int) mg_dtoa(buf, sizeof(buf), saved / mul, width, tz);
|
|
// printf(" --> %.*g %d [%.*s]\n", 10, d / mul, e, n, buf);
|
|
n += addexp(buf + s + n, -e, '-');
|
|
return mg_snprintf(dst, dstlen, "%.*s", n, buf);
|
|
} else {
|
|
for (i = 0, t = mul; t >= 1.0 && s + n < (int) sizeof(buf); i++) {
|
|
int ch = (int) (d / t);
|
|
if (n > 0 || ch > 0) buf[s + n++] = (char) (ch + '0');
|
|
d -= ch * t;
|
|
t /= 10.0;
|
|
}
|
|
// printf(" --> [%g] -> %g %g (%d) [%.*s]\n", saved, d, t, n, s + n, buf);
|
|
if (n == 0) buf[s++] = '0';
|
|
while (t >= 1.0 && n + s < (int) sizeof(buf)) buf[n++] = '0', t /= 10.0;
|
|
if (s + n < (int) sizeof(buf)) buf[n + s++] = '.';
|
|
// printf(" 1--> [%g] -> [%.*s]\n", saved, s + n, buf);
|
|
for (i = 0, t = 0.1; s + n < (int) sizeof(buf) && n < width; i++) {
|
|
int ch = (int) (d / t);
|
|
buf[s + n++] = (char) (ch + '0');
|
|
d -= ch * t;
|
|
t /= 10.0;
|
|
}
|
|
}
|
|
while (tz && n > 0 && buf[s + n - 1] == '0') n--; // Trim trailing zeroes
|
|
if (n > 0 && buf[s + n - 1] == '.') n--; // Trim trailing dot
|
|
n += s;
|
|
if (n >= (int) sizeof(buf)) n = (int) sizeof(buf) - 1;
|
|
buf[n] = '\0';
|
|
return mg_snprintf(dst, dstlen, "%s", buf);
|
|
}
|
|
|
|
static size_t mg_lld(char *buf, int64_t val, bool is_signed, bool is_hex) {
|
|
const char *letters = "0123456789abcdef";
|
|
uint64_t v = (uint64_t) val;
|
|
size_t s = 0, n, i;
|
|
if (is_signed && val < 0) buf[s++] = '-', v = (uint64_t) (-val);
|
|
// This loop prints a number in reverse order. I guess this is because we
|
|
// write numbers from right to left: least significant digit comes last.
|
|
// Maybe because we use Arabic numbers, and Arabs write RTL?
|
|
if (is_hex) {
|
|
for (n = 0; v; v >>= 4) buf[s + n++] = letters[v & 15];
|
|
} else {
|
|
for (n = 0; v; v /= 10) buf[s + n++] = letters[v % 10];
|
|
}
|
|
// Reverse a string
|
|
for (i = 0; i < n / 2; i++) {
|
|
char t = buf[s + i];
|
|
buf[s + i] = buf[s + n - i - 1], buf[s + n - i - 1] = t;
|
|
}
|
|
if (val == 0) buf[n++] = '0'; // Handle special case
|
|
return n + s;
|
|
}
|
|
|
|
static size_t scpy(void (*out)(char, void *), void *ptr, char *buf,
|
|
size_t len) {
|
|
size_t i = 0;
|
|
while (i < len && buf[i] != '\0') out(buf[i++], ptr);
|
|
return i;
|
|
}
|
|
|
|
size_t mg_xprintf(void (*out)(char, void *), void *ptr, const char *fmt, ...) {
|
|
size_t len = 0;
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
len = mg_vxprintf(out, ptr, fmt, &ap);
|
|
va_end(ap);
|
|
return len;
|
|
}
|
|
|
|
size_t mg_vxprintf(void (*out)(char, void *), void *param, const char *fmt,
|
|
va_list *ap) {
|
|
size_t i = 0, n = 0;
|
|
while (fmt[i] != '\0') {
|
|
if (fmt[i] == '%') {
|
|
size_t j, k, x = 0, is_long = 0, w = 0 /* width */, pr = ~0U /* prec */;
|
|
char pad = ' ', minus = 0, c = fmt[++i];
|
|
if (c == '#') x++, c = fmt[++i];
|
|
if (c == '-') minus++, c = fmt[++i];
|
|
if (c == '0') pad = '0', c = fmt[++i];
|
|
while (is_digit(c)) w *= 10, w += (size_t) (c - '0'), c = fmt[++i];
|
|
if (c == '.') {
|
|
c = fmt[++i];
|
|
if (c == '*') {
|
|
pr = (size_t) va_arg(*ap, int);
|
|
c = fmt[++i];
|
|
} else {
|
|
pr = 0;
|
|
while (is_digit(c)) pr *= 10, pr += (size_t) (c - '0'), c = fmt[++i];
|
|
}
|
|
}
|
|
while (c == 'h') c = fmt[++i]; // Treat h and hh as int
|
|
if (c == 'l') {
|
|
is_long++, c = fmt[++i];
|
|
if (c == 'l') is_long++, c = fmt[++i];
|
|
}
|
|
if (c == 'p') x = 1, is_long = 1;
|
|
if (c == 'd' || c == 'u' || c == 'x' || c == 'X' || c == 'p' ||
|
|
c == 'g' || c == 'f') {
|
|
bool s = (c == 'd'), h = (c == 'x' || c == 'X' || c == 'p');
|
|
char tmp[40];
|
|
size_t xl = x ? 2 : 0;
|
|
if (c == 'g' || c == 'f') {
|
|
double v = va_arg(*ap, double);
|
|
if (pr == ~0U) pr = 6;
|
|
k = mg_dtoa(tmp, sizeof(tmp), v, (int) pr, c == 'g');
|
|
} else if (is_long == 2) {
|
|
int64_t v = va_arg(*ap, int64_t);
|
|
k = mg_lld(tmp, v, s, h);
|
|
} else if (is_long == 1) {
|
|
long v = va_arg(*ap, long);
|
|
k = mg_lld(tmp, s ? (int64_t) v : (int64_t) (unsigned long) v, s, h);
|
|
} else {
|
|
int v = va_arg(*ap, int);
|
|
k = mg_lld(tmp, s ? (int64_t) v : (int64_t) (unsigned) v, s, h);
|
|
}
|
|
for (j = 0; j < xl && w > 0; j++) w--;
|
|
for (j = 0; pad == ' ' && !minus && k < w && j + k < w; j++)
|
|
n += scpy(out, param, &pad, 1);
|
|
n += scpy(out, param, (char *) "0x", xl);
|
|
for (j = 0; pad == '0' && k < w && j + k < w; j++)
|
|
n += scpy(out, param, &pad, 1);
|
|
n += scpy(out, param, tmp, k);
|
|
for (j = 0; pad == ' ' && minus && k < w && j + k < w; j++)
|
|
n += scpy(out, param, &pad, 1);
|
|
} else if (c == 'm' || c == 'M') {
|
|
mg_pm_t f = va_arg(*ap, mg_pm_t);
|
|
if (c == 'm') out('"', param);
|
|
n += f(out, param, ap);
|
|
if (c == 'm') n += 2, out('"', param);
|
|
} else if (c == 'c') {
|
|
int ch = va_arg(*ap, int);
|
|
out((char) ch, param);
|
|
n++;
|
|
} else if (c == 's') {
|
|
char *p = va_arg(*ap, char *);
|
|
if (pr == ~0U) pr = p == NULL ? 0 : strlen(p);
|
|
for (j = 0; !minus && pr < w && j + pr < w; j++)
|
|
n += scpy(out, param, &pad, 1);
|
|
n += scpy(out, param, p, pr);
|
|
for (j = 0; minus && pr < w && j + pr < w; j++)
|
|
n += scpy(out, param, &pad, 1);
|
|
} else if (c == '%') {
|
|
out('%', param);
|
|
n++;
|
|
} else {
|
|
out('%', param);
|
|
out(c, param);
|
|
n += 2;
|
|
}
|
|
i++;
|
|
} else {
|
|
out(fmt[i], param), n++, i++;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/fs.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
struct mg_fd *mg_fs_open(struct mg_fs *fs, const char *path, int flags) {
|
|
struct mg_fd *fd = (struct mg_fd *) calloc(1, sizeof(*fd));
|
|
if (fd != NULL) {
|
|
fd->fd = fs->op(path, flags);
|
|
fd->fs = fs;
|
|
if (fd->fd == NULL) {
|
|
free(fd);
|
|
fd = NULL;
|
|
}
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
void mg_fs_close(struct mg_fd *fd) {
|
|
if (fd != NULL) {
|
|
fd->fs->cl(fd->fd);
|
|
free(fd);
|
|
}
|
|
}
|
|
|
|
struct mg_str mg_file_read(struct mg_fs *fs, const char *path) {
|
|
struct mg_str result = {NULL, 0};
|
|
void *fp;
|
|
fs->st(path, &result.len, NULL);
|
|
if ((fp = fs->op(path, MG_FS_READ)) != NULL) {
|
|
result.buf = (char *) calloc(1, result.len + 1);
|
|
if (result.buf != NULL &&
|
|
fs->rd(fp, (void *) result.buf, result.len) != result.len) {
|
|
free((void *) result.buf);
|
|
result.buf = NULL;
|
|
}
|
|
fs->cl(fp);
|
|
}
|
|
if (result.buf == NULL) result.len = 0;
|
|
return result;
|
|
}
|
|
|
|
bool mg_file_write(struct mg_fs *fs, const char *path, const void *buf,
|
|
size_t len) {
|
|
bool result = false;
|
|
struct mg_fd *fd;
|
|
char tmp[MG_PATH_MAX];
|
|
mg_snprintf(tmp, sizeof(tmp), "%s..%d", path, rand());
|
|
if ((fd = mg_fs_open(fs, tmp, MG_FS_WRITE)) != NULL) {
|
|
result = fs->wr(fd->fd, buf, len) == len;
|
|
mg_fs_close(fd);
|
|
if (result) {
|
|
fs->rm(path);
|
|
fs->mv(tmp, path);
|
|
} else {
|
|
fs->rm(tmp);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool mg_file_printf(struct mg_fs *fs, const char *path, const char *fmt, ...) {
|
|
va_list ap;
|
|
char *data;
|
|
bool result = false;
|
|
va_start(ap, fmt);
|
|
data = mg_vmprintf(fmt, &ap);
|
|
va_end(ap);
|
|
result = mg_file_write(fs, path, data, strlen(data));
|
|
free(data);
|
|
return result;
|
|
}
|
|
|
|
// This helper function allows to scan a filesystem in a sequential way,
|
|
// without using callback function:
|
|
// char buf[100] = "";
|
|
// while (mg_fs_ls(&mg_fs_posix, "./", buf, sizeof(buf))) {
|
|
// ...
|
|
static void mg_fs_ls_fn(const char *filename, void *param) {
|
|
struct mg_str *s = (struct mg_str *) param;
|
|
if (s->buf[0] == '\0') {
|
|
mg_snprintf((char *) s->buf, s->len, "%s", filename);
|
|
} else if (strcmp(s->buf, filename) == 0) {
|
|
((char *) s->buf)[0] = '\0'; // Fetch next file
|
|
}
|
|
}
|
|
|
|
bool mg_fs_ls(struct mg_fs *fs, const char *path, char *buf, size_t len) {
|
|
struct mg_str s = {buf, len};
|
|
fs->ls(path, mg_fs_ls_fn, &s);
|
|
return buf[0] != '\0';
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/fs_fat.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_ENABLE_FATFS
|
|
#include <ff.h>
|
|
|
|
static int mg_days_from_epoch(int y, int m, int d) {
|
|
y -= m <= 2;
|
|
int era = y / 400;
|
|
int yoe = y - era * 400;
|
|
int doy = (153 * (m + (m > 2 ? -3 : 9)) + 2) / 5 + d - 1;
|
|
int doe = yoe * 365 + yoe / 4 - yoe / 100 + doy;
|
|
return era * 146097 + doe - 719468;
|
|
}
|
|
|
|
static time_t mg_timegm(const struct tm *t) {
|
|
int year = t->tm_year + 1900;
|
|
int month = t->tm_mon; // 0-11
|
|
if (month > 11) {
|
|
year += month / 12;
|
|
month %= 12;
|
|
} else if (month < 0) {
|
|
int years_diff = (11 - month) / 12;
|
|
year -= years_diff;
|
|
month += 12 * years_diff;
|
|
}
|
|
int x = mg_days_from_epoch(year, month + 1, t->tm_mday);
|
|
return 60 * (60 * (24L * x + t->tm_hour) + t->tm_min) + t->tm_sec;
|
|
}
|
|
|
|
static time_t ff_time_to_epoch(uint16_t fdate, uint16_t ftime) {
|
|
struct tm tm;
|
|
memset(&tm, 0, sizeof(struct tm));
|
|
tm.tm_sec = (ftime << 1) & 0x3e;
|
|
tm.tm_min = ((ftime >> 5) & 0x3f);
|
|
tm.tm_hour = ((ftime >> 11) & 0x1f);
|
|
tm.tm_mday = (fdate & 0x1f);
|
|
tm.tm_mon = ((fdate >> 5) & 0x0f) - 1;
|
|
tm.tm_year = ((fdate >> 9) & 0x7f) + 80;
|
|
return mg_timegm(&tm);
|
|
}
|
|
|
|
static int ff_stat(const char *path, size_t *size, time_t *mtime) {
|
|
FILINFO fi;
|
|
if (path[0] == '\0') {
|
|
if (size) *size = 0;
|
|
if (mtime) *mtime = 0;
|
|
return MG_FS_DIR;
|
|
} else if (f_stat(path, &fi) == 0) {
|
|
if (size) *size = (size_t) fi.fsize;
|
|
if (mtime) *mtime = ff_time_to_epoch(fi.fdate, fi.ftime);
|
|
return MG_FS_READ | MG_FS_WRITE | ((fi.fattrib & AM_DIR) ? MG_FS_DIR : 0);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ff_list(const char *dir, void (*fn)(const char *, void *),
|
|
void *userdata) {
|
|
DIR d;
|
|
FILINFO fi;
|
|
if (f_opendir(&d, dir) == FR_OK) {
|
|
while (f_readdir(&d, &fi) == FR_OK && fi.fname[0] != '\0') {
|
|
if (!strcmp(fi.fname, ".") || !strcmp(fi.fname, "..")) continue;
|
|
fn(fi.fname, userdata);
|
|
}
|
|
f_closedir(&d);
|
|
}
|
|
}
|
|
|
|
static void *ff_open(const char *path, int flags) {
|
|
FIL f;
|
|
unsigned char mode = FA_READ;
|
|
if (flags & MG_FS_WRITE) mode |= FA_WRITE | FA_OPEN_ALWAYS | FA_OPEN_APPEND;
|
|
if (f_open(&f, path, mode) == 0) {
|
|
FIL *fp;
|
|
if ((fp = calloc(1, sizeof(*fp))) != NULL) {
|
|
memcpy(fp, &f, sizeof(*fp));
|
|
return fp;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void ff_close(void *fp) {
|
|
if (fp != NULL) {
|
|
f_close((FIL *) fp);
|
|
free(fp);
|
|
}
|
|
}
|
|
|
|
static size_t ff_read(void *fp, void *buf, size_t len) {
|
|
UINT n = 0, misalign = ((size_t) buf) & 3;
|
|
if (misalign) {
|
|
char aligned[4];
|
|
f_read((FIL *) fp, aligned, len > misalign ? misalign : len, &n);
|
|
memcpy(buf, aligned, n);
|
|
} else {
|
|
f_read((FIL *) fp, buf, len, &n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static size_t ff_write(void *fp, const void *buf, size_t len) {
|
|
UINT n = 0;
|
|
return f_write((FIL *) fp, (char *) buf, len, &n) == FR_OK ? n : 0;
|
|
}
|
|
|
|
static size_t ff_seek(void *fp, size_t offset) {
|
|
f_lseek((FIL *) fp, offset);
|
|
return offset;
|
|
}
|
|
|
|
static bool ff_rename(const char *from, const char *to) {
|
|
return f_rename(from, to) == FR_OK;
|
|
}
|
|
|
|
static bool ff_remove(const char *path) {
|
|
return f_unlink(path) == FR_OK;
|
|
}
|
|
|
|
static bool ff_mkdir(const char *path) {
|
|
return f_mkdir(path) == FR_OK;
|
|
}
|
|
|
|
struct mg_fs mg_fs_fat = {ff_stat, ff_list, ff_open, ff_close, ff_read,
|
|
ff_write, ff_seek, ff_rename, ff_remove, ff_mkdir};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/fs_packed.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
struct packed_file {
|
|
const char *data;
|
|
size_t size;
|
|
size_t pos;
|
|
};
|
|
|
|
#if MG_ENABLE_PACKED_FS
|
|
#else
|
|
const char *mg_unpack(const char *path, size_t *size, time_t *mtime) {
|
|
*size = 0, *mtime = 0;
|
|
(void) path;
|
|
return NULL;
|
|
}
|
|
const char *mg_unlist(size_t no) {
|
|
(void) no;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
struct mg_str mg_unpacked(const char *path) {
|
|
size_t len = 0;
|
|
const char *buf = mg_unpack(path, &len, NULL);
|
|
return mg_str_n(buf, len);
|
|
}
|
|
|
|
static int is_dir_prefix(const char *prefix, size_t n, const char *path) {
|
|
// MG_INFO(("[%.*s] [%s] %c", (int) n, prefix, path, path[n]));
|
|
return n < strlen(path) && strncmp(prefix, path, n) == 0 &&
|
|
(n == 0 || path[n] == '/' || path[n - 1] == '/');
|
|
}
|
|
|
|
static int packed_stat(const char *path, size_t *size, time_t *mtime) {
|
|
const char *p;
|
|
size_t i, n = strlen(path);
|
|
if (mg_unpack(path, size, mtime)) return MG_FS_READ; // Regular file
|
|
// Scan all files. If `path` is a dir prefix for any of them, it's a dir
|
|
for (i = 0; (p = mg_unlist(i)) != NULL; i++) {
|
|
if (is_dir_prefix(path, n, p)) return MG_FS_DIR;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void packed_list(const char *dir, void (*fn)(const char *, void *),
|
|
void *userdata) {
|
|
char buf[MG_PATH_MAX], tmp[sizeof(buf)];
|
|
const char *path, *begin, *end;
|
|
size_t i, n = strlen(dir);
|
|
tmp[0] = '\0'; // Previously listed entry
|
|
for (i = 0; (path = mg_unlist(i)) != NULL; i++) {
|
|
if (!is_dir_prefix(dir, n, path)) continue;
|
|
begin = &path[n + 1];
|
|
end = strchr(begin, '/');
|
|
if (end == NULL) end = begin + strlen(begin);
|
|
mg_snprintf(buf, sizeof(buf), "%.*s", (int) (end - begin), begin);
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
// If this entry has been already listed, skip
|
|
// NOTE: we're assuming that file list is sorted alphabetically
|
|
if (strcmp(buf, tmp) == 0) continue;
|
|
fn(buf, userdata); // Not yet listed, call user function
|
|
strcpy(tmp, buf); // And save this entry as listed
|
|
}
|
|
}
|
|
|
|
static void *packed_open(const char *path, int flags) {
|
|
size_t size = 0;
|
|
const char *data = mg_unpack(path, &size, NULL);
|
|
struct packed_file *fp = NULL;
|
|
if (data == NULL) return NULL;
|
|
if (flags & MG_FS_WRITE) return NULL;
|
|
if ((fp = (struct packed_file *) calloc(1, sizeof(*fp))) != NULL) {
|
|
fp->size = size;
|
|
fp->data = data;
|
|
}
|
|
return (void *) fp;
|
|
}
|
|
|
|
static void packed_close(void *fp) {
|
|
if (fp != NULL) free(fp);
|
|
}
|
|
|
|
static size_t packed_read(void *fd, void *buf, size_t len) {
|
|
struct packed_file *fp = (struct packed_file *) fd;
|
|
if (fp->pos + len > fp->size) len = fp->size - fp->pos;
|
|
memcpy(buf, &fp->data[fp->pos], len);
|
|
fp->pos += len;
|
|
return len;
|
|
}
|
|
|
|
static size_t packed_write(void *fd, const void *buf, size_t len) {
|
|
(void) fd, (void) buf, (void) len;
|
|
return 0;
|
|
}
|
|
|
|
static size_t packed_seek(void *fd, size_t offset) {
|
|
struct packed_file *fp = (struct packed_file *) fd;
|
|
fp->pos = offset;
|
|
if (fp->pos > fp->size) fp->pos = fp->size;
|
|
return fp->pos;
|
|
}
|
|
|
|
static bool packed_rename(const char *from, const char *to) {
|
|
(void) from, (void) to;
|
|
return false;
|
|
}
|
|
|
|
static bool packed_remove(const char *path) {
|
|
(void) path;
|
|
return false;
|
|
}
|
|
|
|
static bool packed_mkdir(const char *path) {
|
|
(void) path;
|
|
return false;
|
|
}
|
|
|
|
struct mg_fs mg_fs_packed = {
|
|
packed_stat, packed_list, packed_open, packed_close, packed_read,
|
|
packed_write, packed_seek, packed_rename, packed_remove, packed_mkdir};
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/fs_posix.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_POSIX_FS
|
|
|
|
#ifndef MG_STAT_STRUCT
|
|
#define MG_STAT_STRUCT stat
|
|
#endif
|
|
|
|
#ifndef MG_STAT_FUNC
|
|
#define MG_STAT_FUNC stat
|
|
#endif
|
|
|
|
static int p_stat(const char *path, size_t *size, time_t *mtime) {
|
|
#if !defined(S_ISDIR)
|
|
MG_ERROR(("stat() API is not supported. %p %p %p", path, size, mtime));
|
|
return 0;
|
|
#else
|
|
#if MG_ARCH == MG_ARCH_WIN32
|
|
struct _stati64 st;
|
|
wchar_t tmp[MG_PATH_MAX];
|
|
MultiByteToWideChar(CP_UTF8, 0, path, -1, tmp, sizeof(tmp) / sizeof(tmp[0]));
|
|
if (_wstati64(tmp, &st) != 0) return 0;
|
|
// If path is a symlink, windows reports 0 in st.st_size.
|
|
// Get a real file size by opening it and jumping to the end
|
|
if (st.st_size == 0 && (st.st_mode & _S_IFREG)) {
|
|
FILE *fp = _wfopen(tmp, L"rb");
|
|
if (fp != NULL) {
|
|
fseek(fp, 0, SEEK_END);
|
|
if (ftell(fp) > 0) st.st_size = ftell(fp); // Use _ftelli64 on win10+
|
|
fclose(fp);
|
|
}
|
|
}
|
|
#else
|
|
struct MG_STAT_STRUCT st;
|
|
if (MG_STAT_FUNC(path, &st) != 0) return 0;
|
|
#endif
|
|
if (size) *size = (size_t) st.st_size;
|
|
if (mtime) *mtime = st.st_mtime;
|
|
return MG_FS_READ | MG_FS_WRITE | (S_ISDIR(st.st_mode) ? MG_FS_DIR : 0);
|
|
#endif
|
|
}
|
|
|
|
#if MG_ARCH == MG_ARCH_WIN32
|
|
struct dirent {
|
|
char d_name[MAX_PATH];
|
|
};
|
|
|
|
typedef struct win32_dir {
|
|
HANDLE handle;
|
|
WIN32_FIND_DATAW info;
|
|
struct dirent result;
|
|
} DIR;
|
|
|
|
#if 0
|
|
int gettimeofday(struct timeval *tv, void *tz) {
|
|
FILETIME ft;
|
|
unsigned __int64 tmpres = 0;
|
|
|
|
if (tv != NULL) {
|
|
GetSystemTimeAsFileTime(&ft);
|
|
tmpres |= ft.dwHighDateTime;
|
|
tmpres <<= 32;
|
|
tmpres |= ft.dwLowDateTime;
|
|
tmpres /= 10; // convert into microseconds
|
|
tmpres -= (int64_t) 11644473600000000;
|
|
tv->tv_sec = (long) (tmpres / 1000000UL);
|
|
tv->tv_usec = (long) (tmpres % 1000000UL);
|
|
}
|
|
(void) tz;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int to_wchar(const char *path, wchar_t *wbuf, size_t wbuf_len) {
|
|
int ret;
|
|
char buf[MAX_PATH * 2], buf2[MAX_PATH * 2], *p;
|
|
strncpy(buf, path, sizeof(buf));
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
// Trim trailing slashes. Leave backslash for paths like "X:\"
|
|
p = buf + strlen(buf) - 1;
|
|
while (p > buf && p[-1] != ':' && (p[0] == '\\' || p[0] == '/')) *p-- = '\0';
|
|
memset(wbuf, 0, wbuf_len * sizeof(wchar_t));
|
|
ret = MultiByteToWideChar(CP_UTF8, 0, buf, -1, wbuf, (int) wbuf_len);
|
|
// Convert back to Unicode. If doubly-converted string does not match the
|
|
// original, something is fishy, reject.
|
|
WideCharToMultiByte(CP_UTF8, 0, wbuf, (int) wbuf_len, buf2, sizeof(buf2),
|
|
NULL, NULL);
|
|
if (strcmp(buf, buf2) != 0) {
|
|
wbuf[0] = L'\0';
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
DIR *opendir(const char *name) {
|
|
DIR *d = NULL;
|
|
wchar_t wpath[MAX_PATH];
|
|
DWORD attrs;
|
|
|
|
if (name == NULL) {
|
|
SetLastError(ERROR_BAD_ARGUMENTS);
|
|
} else if ((d = (DIR *) calloc(1, sizeof(*d))) == NULL) {
|
|
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
|
|
} else {
|
|
to_wchar(name, wpath, sizeof(wpath) / sizeof(wpath[0]));
|
|
attrs = GetFileAttributesW(wpath);
|
|
if (attrs != 0Xffffffff && (attrs & FILE_ATTRIBUTE_DIRECTORY)) {
|
|
(void) wcscat(wpath, L"\\*");
|
|
d->handle = FindFirstFileW(wpath, &d->info);
|
|
d->result.d_name[0] = '\0';
|
|
} else {
|
|
free(d);
|
|
d = NULL;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
int closedir(DIR *d) {
|
|
int result = 0;
|
|
if (d != NULL) {
|
|
if (d->handle != INVALID_HANDLE_VALUE)
|
|
result = FindClose(d->handle) ? 0 : -1;
|
|
free(d);
|
|
} else {
|
|
result = -1;
|
|
SetLastError(ERROR_BAD_ARGUMENTS);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct dirent *readdir(DIR *d) {
|
|
struct dirent *result = NULL;
|
|
if (d != NULL) {
|
|
memset(&d->result, 0, sizeof(d->result));
|
|
if (d->handle != INVALID_HANDLE_VALUE) {
|
|
result = &d->result;
|
|
WideCharToMultiByte(CP_UTF8, 0, d->info.cFileName, -1, result->d_name,
|
|
sizeof(result->d_name), NULL, NULL);
|
|
if (!FindNextFileW(d->handle, &d->info)) {
|
|
FindClose(d->handle);
|
|
d->handle = INVALID_HANDLE_VALUE;
|
|
}
|
|
} else {
|
|
SetLastError(ERROR_FILE_NOT_FOUND);
|
|
}
|
|
} else {
|
|
SetLastError(ERROR_BAD_ARGUMENTS);
|
|
}
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
static void p_list(const char *dir, void (*fn)(const char *, void *),
|
|
void *userdata) {
|
|
#if MG_ENABLE_DIRLIST
|
|
struct dirent *dp;
|
|
DIR *dirp;
|
|
if ((dirp = (opendir(dir))) == NULL) return;
|
|
while ((dp = readdir(dirp)) != NULL) {
|
|
if (!strcmp(dp->d_name, ".") || !strcmp(dp->d_name, "..")) continue;
|
|
fn(dp->d_name, userdata);
|
|
}
|
|
closedir(dirp);
|
|
#else
|
|
(void) dir, (void) fn, (void) userdata;
|
|
#endif
|
|
}
|
|
|
|
static void *p_open(const char *path, int flags) {
|
|
#if MG_ARCH == MG_ARCH_WIN32
|
|
const char *mode = flags == MG_FS_READ ? "rb" : "a+b";
|
|
wchar_t b1[MG_PATH_MAX], b2[10];
|
|
MultiByteToWideChar(CP_UTF8, 0, path, -1, b1, sizeof(b1) / sizeof(b1[0]));
|
|
MultiByteToWideChar(CP_UTF8, 0, mode, -1, b2, sizeof(b2) / sizeof(b2[0]));
|
|
return (void *) _wfopen(b1, b2);
|
|
#else
|
|
const char *mode = flags == MG_FS_READ ? "rbe" : "a+be"; // e for CLOEXEC
|
|
return (void *) fopen(path, mode);
|
|
#endif
|
|
}
|
|
|
|
static void p_close(void *fp) {
|
|
fclose((FILE *) fp);
|
|
}
|
|
|
|
static size_t p_read(void *fp, void *buf, size_t len) {
|
|
return fread(buf, 1, len, (FILE *) fp);
|
|
}
|
|
|
|
static size_t p_write(void *fp, const void *buf, size_t len) {
|
|
return fwrite(buf, 1, len, (FILE *) fp);
|
|
}
|
|
|
|
static size_t p_seek(void *fp, size_t offset) {
|
|
#if (defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64) || \
|
|
(defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) || \
|
|
(defined(_XOPEN_SOURCE) && _XOPEN_SOURCE >= 600)
|
|
if (fseeko((FILE *) fp, (off_t) offset, SEEK_SET) != 0) (void) 0;
|
|
#else
|
|
if (fseek((FILE *) fp, (long) offset, SEEK_SET) != 0) (void) 0;
|
|
#endif
|
|
return (size_t) ftell((FILE *) fp);
|
|
}
|
|
|
|
static bool p_rename(const char *from, const char *to) {
|
|
return rename(from, to) == 0;
|
|
}
|
|
|
|
static bool p_remove(const char *path) {
|
|
return remove(path) == 0;
|
|
}
|
|
|
|
static bool p_mkdir(const char *path) {
|
|
return mkdir(path, 0775) == 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static int p_stat(const char *path, size_t *size, time_t *mtime) {
|
|
(void) path, (void) size, (void) mtime;
|
|
return 0;
|
|
}
|
|
static void p_list(const char *path, void (*fn)(const char *, void *),
|
|
void *userdata) {
|
|
(void) path, (void) fn, (void) userdata;
|
|
}
|
|
static void *p_open(const char *path, int flags) {
|
|
(void) path, (void) flags;
|
|
return NULL;
|
|
}
|
|
static void p_close(void *fp) {
|
|
(void) fp;
|
|
}
|
|
static size_t p_read(void *fd, void *buf, size_t len) {
|
|
(void) fd, (void) buf, (void) len;
|
|
return 0;
|
|
}
|
|
static size_t p_write(void *fd, const void *buf, size_t len) {
|
|
(void) fd, (void) buf, (void) len;
|
|
return 0;
|
|
}
|
|
static size_t p_seek(void *fd, size_t offset) {
|
|
(void) fd, (void) offset;
|
|
return (size_t) ~0;
|
|
}
|
|
static bool p_rename(const char *from, const char *to) {
|
|
(void) from, (void) to;
|
|
return false;
|
|
}
|
|
static bool p_remove(const char *path) {
|
|
(void) path;
|
|
return false;
|
|
}
|
|
static bool p_mkdir(const char *path) {
|
|
(void) path;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
struct mg_fs mg_fs_posix = {p_stat, p_list, p_open, p_close, p_read,
|
|
p_write, p_seek, p_rename, p_remove, p_mkdir};
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/http.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int mg_ncasecmp(const char *s1, const char *s2, size_t len) {
|
|
int diff = 0;
|
|
if (len > 0) do {
|
|
char c = *s1++, d = *s2++;
|
|
if (c >= 'A' && c <= 'Z') c += 'a' - 'A';
|
|
if (d >= 'A' && d <= 'Z') d += 'a' - 'A';
|
|
diff = c - d;
|
|
} while (diff == 0 && s1[-1] != '\0' && --len > 0);
|
|
return diff;
|
|
}
|
|
|
|
bool mg_to_size_t(struct mg_str str, size_t *val);
|
|
bool mg_to_size_t(struct mg_str str, size_t *val) {
|
|
size_t i = 0, max = (size_t) -1, max2 = max / 10, result = 0, ndigits = 0;
|
|
while (i < str.len && (str.buf[i] == ' ' || str.buf[i] == '\t')) i++;
|
|
if (i < str.len && str.buf[i] == '-') return false;
|
|
while (i < str.len && str.buf[i] >= '0' && str.buf[i] <= '9') {
|
|
size_t digit = (size_t) (str.buf[i] - '0');
|
|
if (result > max2) return false; // Overflow
|
|
result *= 10;
|
|
if (result > max - digit) return false; // Overflow
|
|
result += digit;
|
|
i++, ndigits++;
|
|
}
|
|
while (i < str.len && (str.buf[i] == ' ' || str.buf[i] == '\t')) i++;
|
|
if (ndigits == 0) return false; // #2322: Content-Length = 1 * DIGIT
|
|
if (i != str.len) return false; // Ditto
|
|
*val = (size_t) result;
|
|
return true;
|
|
}
|
|
|
|
// Chunk deletion marker is the MSB in the "processed" counter
|
|
#define MG_DMARK ((size_t) 1 << (sizeof(size_t) * 8 - 1))
|
|
|
|
// Multipart POST example:
|
|
// --xyz
|
|
// Content-Disposition: form-data; name="val"
|
|
//
|
|
// abcdef
|
|
// --xyz
|
|
// Content-Disposition: form-data; name="foo"; filename="a.txt"
|
|
// Content-Type: text/plain
|
|
//
|
|
// hello world
|
|
//
|
|
// --xyz--
|
|
size_t mg_http_next_multipart(struct mg_str body, size_t ofs,
|
|
struct mg_http_part *part) {
|
|
struct mg_str cd = mg_str_n("Content-Disposition", 19);
|
|
const char *s = body.buf;
|
|
size_t b = ofs, h1, h2, b1, b2, max = body.len;
|
|
|
|
// Init part params
|
|
if (part != NULL) part->name = part->filename = part->body = mg_str_n(0, 0);
|
|
|
|
// Skip boundary
|
|
while (b + 2 < max && s[b] != '\r' && s[b + 1] != '\n') b++;
|
|
if (b <= ofs || b + 2 >= max) return 0;
|
|
// MG_INFO(("B: %zu %zu [%.*s]", ofs, b - ofs, (int) (b - ofs), s));
|
|
|
|
// Skip headers
|
|
h1 = h2 = b + 2;
|
|
for (;;) {
|
|
while (h2 + 2 < max && s[h2] != '\r' && s[h2 + 1] != '\n') h2++;
|
|
if (h2 == h1) break;
|
|
if (h2 + 2 >= max) return 0;
|
|
// MG_INFO(("Header: [%.*s]", (int) (h2 - h1), &s[h1]));
|
|
if (part != NULL && h1 + cd.len + 2 < h2 && s[h1 + cd.len] == ':' &&
|
|
mg_ncasecmp(&s[h1], cd.buf, cd.len) == 0) {
|
|
struct mg_str v = mg_str_n(&s[h1 + cd.len + 2], h2 - (h1 + cd.len + 2));
|
|
part->name = mg_http_get_header_var(v, mg_str_n("name", 4));
|
|
part->filename = mg_http_get_header_var(v, mg_str_n("filename", 8));
|
|
}
|
|
h1 = h2 = h2 + 2;
|
|
}
|
|
b1 = b2 = h2 + 2;
|
|
while (b2 + 2 + (b - ofs) + 2 < max && !(s[b2] == '\r' && s[b2 + 1] == '\n' &&
|
|
memcmp(&s[b2 + 2], s, b - ofs) == 0))
|
|
b2++;
|
|
|
|
if (b2 + 2 >= max) return 0;
|
|
if (part != NULL) part->body = mg_str_n(&s[b1], b2 - b1);
|
|
// MG_INFO(("Body: [%.*s]", (int) (b2 - b1), &s[b1]));
|
|
return b2 + 2;
|
|
}
|
|
|
|
void mg_http_bauth(struct mg_connection *c, const char *user,
|
|
const char *pass) {
|
|
struct mg_str u = mg_str(user), p = mg_str(pass);
|
|
size_t need = c->send.len + 36 + (u.len + p.len) * 2;
|
|
if (c->send.size < need) mg_iobuf_resize(&c->send, need);
|
|
if (c->send.size >= need) {
|
|
size_t i, n = 0;
|
|
char *buf = (char *) &c->send.buf[c->send.len];
|
|
memcpy(buf, "Authorization: Basic ", 21); // DON'T use mg_send!
|
|
for (i = 0; i < u.len; i++) {
|
|
n = mg_base64_update(((unsigned char *) u.buf)[i], buf + 21, n);
|
|
}
|
|
if (p.len > 0) {
|
|
n = mg_base64_update(':', buf + 21, n);
|
|
for (i = 0; i < p.len; i++) {
|
|
n = mg_base64_update(((unsigned char *) p.buf)[i], buf + 21, n);
|
|
}
|
|
}
|
|
n = mg_base64_final(buf + 21, n);
|
|
c->send.len += 21 + (size_t) n + 2;
|
|
memcpy(&c->send.buf[c->send.len - 2], "\r\n", 2);
|
|
} else {
|
|
MG_ERROR(("%lu oom %d->%d ", c->id, (int) c->send.size, (int) need));
|
|
}
|
|
}
|
|
|
|
struct mg_str mg_http_var(struct mg_str buf, struct mg_str name) {
|
|
struct mg_str entry, k, v, result = mg_str_n(NULL, 0);
|
|
while (mg_span(buf, &entry, &buf, '&')) {
|
|
if (mg_span(entry, &k, &v, '=') && name.len == k.len &&
|
|
mg_ncasecmp(name.buf, k.buf, k.len) == 0) {
|
|
result = v;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int mg_http_get_var(const struct mg_str *buf, const char *name, char *dst,
|
|
size_t dst_len) {
|
|
int len;
|
|
if (dst != NULL && dst_len > 0) {
|
|
dst[0] = '\0'; // If destination buffer is valid, always nul-terminate it
|
|
}
|
|
if (dst == NULL || dst_len == 0) {
|
|
len = -2; // Bad destination
|
|
} else if (buf->buf == NULL || name == NULL || buf->len == 0) {
|
|
len = -1; // Bad source
|
|
} else {
|
|
struct mg_str v = mg_http_var(*buf, mg_str(name));
|
|
if (v.buf == NULL) {
|
|
len = -4; // Name does not exist
|
|
} else {
|
|
len = mg_url_decode(v.buf, v.len, dst, dst_len, 1);
|
|
if (len < 0) len = -3; // Failed to decode
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static bool isx(int c) {
|
|
return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') ||
|
|
(c >= 'A' && c <= 'F');
|
|
}
|
|
|
|
int mg_url_decode(const char *src, size_t src_len, char *dst, size_t dst_len,
|
|
int is_form_url_encoded) {
|
|
size_t i, j;
|
|
for (i = j = 0; i < src_len && j + 1 < dst_len; i++, j++) {
|
|
if (src[i] == '%') {
|
|
// Use `i + 2 < src_len`, not `i < src_len - 2`, note small src_len
|
|
if (i + 2 < src_len && isx(src[i + 1]) && isx(src[i + 2])) {
|
|
mg_unhex(src + i + 1, 2, (uint8_t *) &dst[j]);
|
|
i += 2;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if (is_form_url_encoded && src[i] == '+') {
|
|
dst[j] = ' ';
|
|
} else {
|
|
dst[j] = src[i];
|
|
}
|
|
}
|
|
if (j < dst_len) dst[j] = '\0'; // Null-terminate the destination
|
|
return i >= src_len && j < dst_len ? (int) j : -1;
|
|
}
|
|
|
|
static bool isok(uint8_t c) {
|
|
return c == '\n' || c == '\r' || c >= ' ';
|
|
}
|
|
|
|
int mg_http_get_request_len(const unsigned char *buf, size_t buf_len) {
|
|
size_t i;
|
|
for (i = 0; i < buf_len; i++) {
|
|
if (!isok(buf[i])) return -1;
|
|
if ((i > 0 && buf[i] == '\n' && buf[i - 1] == '\n') ||
|
|
(i > 3 && buf[i] == '\n' && buf[i - 1] == '\r' && buf[i - 2] == '\n'))
|
|
return (int) i + 1;
|
|
}
|
|
return 0;
|
|
}
|
|
struct mg_str *mg_http_get_header(struct mg_http_message *h, const char *name) {
|
|
size_t i, n = strlen(name), max = sizeof(h->headers) / sizeof(h->headers[0]);
|
|
for (i = 0; i < max && h->headers[i].name.len > 0; i++) {
|
|
struct mg_str *k = &h->headers[i].name, *v = &h->headers[i].value;
|
|
if (n == k->len && mg_ncasecmp(k->buf, name, n) == 0) return v;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Is it a valid utf-8 continuation byte
|
|
static bool vcb(uint8_t c) {
|
|
return (c & 0xc0) == 0x80;
|
|
}
|
|
|
|
// Get character length (valid utf-8). Used to parse method, URI, headers
|
|
static size_t clen(const char *s, const char *end) {
|
|
const unsigned char *u = (unsigned char *) s, c = *u;
|
|
long n = (long) (end - s);
|
|
if (c > ' ' && c < '~') return 1; // Usual ascii printed char
|
|
if ((c & 0xe0) == 0xc0 && n > 1 && vcb(u[1])) return 2; // 2-byte UTF8
|
|
if ((c & 0xf0) == 0xe0 && n > 2 && vcb(u[1]) && vcb(u[2])) return 3;
|
|
if ((c & 0xf8) == 0xf0 && n > 3 && vcb(u[1]) && vcb(u[2]) && vcb(u[3]))
|
|
return 4;
|
|
return 0;
|
|
}
|
|
|
|
// Skip until the newline. Return advanced `s`, or NULL on error
|
|
static const char *skiptorn(const char *s, const char *end, struct mg_str *v) {
|
|
v->buf = (char *) s;
|
|
while (s < end && s[0] != '\n' && s[0] != '\r') s++, v->len++; // To newline
|
|
if (s >= end || (s[0] == '\r' && s[1] != '\n')) return NULL; // Stray \r
|
|
if (s < end && s[0] == '\r') s++; // Skip \r
|
|
if (s >= end || *s++ != '\n') return NULL; // Skip \n
|
|
return s;
|
|
}
|
|
|
|
static bool mg_http_parse_headers(const char *s, const char *end,
|
|
struct mg_http_header *h, size_t max_hdrs) {
|
|
size_t i, n;
|
|
for (i = 0; i < max_hdrs; i++) {
|
|
struct mg_str k = {NULL, 0}, v = {NULL, 0};
|
|
if (s >= end) return false;
|
|
if (s[0] == '\n' || (s[0] == '\r' && s[1] == '\n')) break;
|
|
k.buf = (char *) s;
|
|
while (s < end && s[0] != ':' && (n = clen(s, end)) > 0) s += n, k.len += n;
|
|
if (k.len == 0) return false; // Empty name
|
|
if (s >= end || clen(s, end) == 0) return false; // Invalid UTF-8
|
|
if (*s++ != ':') return false; // Invalid, not followed by :
|
|
// if (clen(s, end) == 0) return false; // Invalid UTF-8
|
|
while (s < end && s[0] == ' ') s++; // Skip spaces
|
|
if ((s = skiptorn(s, end, &v)) == NULL) return false;
|
|
while (v.len > 0 && v.buf[v.len - 1] == ' ') v.len--; // Trim spaces
|
|
// MG_INFO(("--HH [%.*s] [%.*s]", (int) k.len, k.buf, (int) v.len, v.buf));
|
|
h[i].name = k, h[i].value = v; // Success. Assign values
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int mg_http_parse(const char *s, size_t len, struct mg_http_message *hm) {
|
|
int is_response, req_len = mg_http_get_request_len((unsigned char *) s, len);
|
|
const char *end = s == NULL ? NULL : s + req_len, *qs; // Cannot add to NULL
|
|
const struct mg_str *cl;
|
|
size_t n;
|
|
|
|
memset(hm, 0, sizeof(*hm));
|
|
if (req_len <= 0) return req_len;
|
|
|
|
hm->message.buf = hm->head.buf = (char *) s;
|
|
hm->body.buf = (char *) end;
|
|
hm->head.len = (size_t) req_len;
|
|
hm->message.len = hm->body.len = (size_t) -1; // Set body length to infinite
|
|
|
|
// Parse request line
|
|
hm->method.buf = (char *) s;
|
|
while (s < end && (n = clen(s, end)) > 0) s += n, hm->method.len += n;
|
|
while (s < end && s[0] == ' ') s++; // Skip spaces
|
|
hm->uri.buf = (char *) s;
|
|
while (s < end && (n = clen(s, end)) > 0) s += n, hm->uri.len += n;
|
|
while (s < end && s[0] == ' ') s++; // Skip spaces
|
|
if ((s = skiptorn(s, end, &hm->proto)) == NULL) return false;
|
|
|
|
// If URI contains '?' character, setup query string
|
|
if ((qs = (const char *) memchr(hm->uri.buf, '?', hm->uri.len)) != NULL) {
|
|
hm->query.buf = (char *) qs + 1;
|
|
hm->query.len = (size_t) (&hm->uri.buf[hm->uri.len] - (qs + 1));
|
|
hm->uri.len = (size_t) (qs - hm->uri.buf);
|
|
}
|
|
|
|
// Sanity check. Allow protocol/reason to be empty
|
|
// Do this check after hm->method.len and hm->uri.len are finalised
|
|
if (hm->method.len == 0 || hm->uri.len == 0) return -1;
|
|
|
|
if (!mg_http_parse_headers(s, end, hm->headers,
|
|
sizeof(hm->headers) / sizeof(hm->headers[0])))
|
|
return -1; // error when parsing
|
|
if ((cl = mg_http_get_header(hm, "Content-Length")) != NULL) {
|
|
if (mg_to_size_t(*cl, &hm->body.len) == false) return -1;
|
|
hm->message.len = (size_t) req_len + hm->body.len;
|
|
}
|
|
|
|
// mg_http_parse() is used to parse both HTTP requests and HTTP
|
|
// responses. If HTTP response does not have Content-Length set, then
|
|
// body is read until socket is closed, i.e. body.len is infinite (~0).
|
|
//
|
|
// For HTTP requests though, according to
|
|
// http://tools.ietf.org/html/rfc7231#section-8.1.3,
|
|
// only POST and PUT methods have defined body semantics.
|
|
// Therefore, if Content-Length is not specified and methods are
|
|
// not one of PUT or POST, set body length to 0.
|
|
//
|
|
// So, if it is HTTP request, and Content-Length is not set,
|
|
// and method is not (PUT or POST) then reset body length to zero.
|
|
is_response = mg_ncasecmp(hm->method.buf, "HTTP/", 5) == 0;
|
|
if (hm->body.len == (size_t) ~0 && !is_response &&
|
|
mg_strcasecmp(hm->method, mg_str("PUT")) != 0 &&
|
|
mg_strcasecmp(hm->method, mg_str("POST")) != 0) {
|
|
hm->body.len = 0;
|
|
hm->message.len = (size_t) req_len;
|
|
}
|
|
|
|
// The 204 (No content) responses also have 0 body length
|
|
if (hm->body.len == (size_t) ~0 && is_response &&
|
|
mg_strcasecmp(hm->uri, mg_str("204")) == 0) {
|
|
hm->body.len = 0;
|
|
hm->message.len = (size_t) req_len;
|
|
}
|
|
if (hm->message.len < (size_t) req_len) return -1; // Overflow protection
|
|
|
|
return req_len;
|
|
}
|
|
|
|
static void mg_http_vprintf_chunk(struct mg_connection *c, const char *fmt,
|
|
va_list *ap) {
|
|
size_t len = c->send.len;
|
|
mg_send(c, " \r\n", 10);
|
|
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
|
|
if (c->send.len >= len + 10) {
|
|
mg_snprintf((char *) c->send.buf + len, 9, "%08lx", c->send.len - len - 10);
|
|
c->send.buf[len + 8] = '\r';
|
|
if (c->send.len == len + 10) c->is_resp = 0; // Last chunk, reset marker
|
|
}
|
|
mg_send(c, "\r\n", 2);
|
|
}
|
|
|
|
void mg_http_printf_chunk(struct mg_connection *c, const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mg_http_vprintf_chunk(c, fmt, &ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
void mg_http_write_chunk(struct mg_connection *c, const char *buf, size_t len) {
|
|
mg_printf(c, "%lx\r\n", (unsigned long) len);
|
|
mg_send(c, buf, len);
|
|
mg_send(c, "\r\n", 2);
|
|
if (len == 0) c->is_resp = 0;
|
|
}
|
|
|
|
// clang-format off
|
|
static const char *mg_http_status_code_str(int status_code) {
|
|
switch (status_code) {
|
|
case 100: return "Continue";
|
|
case 101: return "Switching Protocols";
|
|
case 102: return "Processing";
|
|
case 200: return "OK";
|
|
case 201: return "Created";
|
|
case 202: return "Accepted";
|
|
case 203: return "Non-authoritative Information";
|
|
case 204: return "No Content";
|
|
case 205: return "Reset Content";
|
|
case 206: return "Partial Content";
|
|
case 207: return "Multi-Status";
|
|
case 208: return "Already Reported";
|
|
case 226: return "IM Used";
|
|
case 300: return "Multiple Choices";
|
|
case 301: return "Moved Permanently";
|
|
case 302: return "Found";
|
|
case 303: return "See Other";
|
|
case 304: return "Not Modified";
|
|
case 305: return "Use Proxy";
|
|
case 307: return "Temporary Redirect";
|
|
case 308: return "Permanent Redirect";
|
|
case 400: return "Bad Request";
|
|
case 401: return "Unauthorized";
|
|
case 402: return "Payment Required";
|
|
case 403: return "Forbidden";
|
|
case 404: return "Not Found";
|
|
case 405: return "Method Not Allowed";
|
|
case 406: return "Not Acceptable";
|
|
case 407: return "Proxy Authentication Required";
|
|
case 408: return "Request Timeout";
|
|
case 409: return "Conflict";
|
|
case 410: return "Gone";
|
|
case 411: return "Length Required";
|
|
case 412: return "Precondition Failed";
|
|
case 413: return "Payload Too Large";
|
|
case 414: return "Request-URI Too Long";
|
|
case 415: return "Unsupported Media Type";
|
|
case 416: return "Requested Range Not Satisfiable";
|
|
case 417: return "Expectation Failed";
|
|
case 418: return "I'm a teapot";
|
|
case 421: return "Misdirected Request";
|
|
case 422: return "Unprocessable Entity";
|
|
case 423: return "Locked";
|
|
case 424: return "Failed Dependency";
|
|
case 426: return "Upgrade Required";
|
|
case 428: return "Precondition Required";
|
|
case 429: return "Too Many Requests";
|
|
case 431: return "Request Header Fields Too Large";
|
|
case 444: return "Connection Closed Without Response";
|
|
case 451: return "Unavailable For Legal Reasons";
|
|
case 499: return "Client Closed Request";
|
|
case 500: return "Internal Server Error";
|
|
case 501: return "Not Implemented";
|
|
case 502: return "Bad Gateway";
|
|
case 503: return "Service Unavailable";
|
|
case 504: return "Gateway Timeout";
|
|
case 505: return "HTTP Version Not Supported";
|
|
case 506: return "Variant Also Negotiates";
|
|
case 507: return "Insufficient Storage";
|
|
case 508: return "Loop Detected";
|
|
case 510: return "Not Extended";
|
|
case 511: return "Network Authentication Required";
|
|
case 599: return "Network Connect Timeout Error";
|
|
default: return "";
|
|
}
|
|
}
|
|
// clang-format on
|
|
|
|
void mg_http_reply(struct mg_connection *c, int code, const char *headers,
|
|
const char *fmt, ...) {
|
|
va_list ap;
|
|
size_t len;
|
|
mg_printf(c, "HTTP/1.1 %d %s\r\n%sContent-Length: \r\n\r\n", code,
|
|
mg_http_status_code_str(code), headers == NULL ? "" : headers);
|
|
len = c->send.len;
|
|
va_start(ap, fmt);
|
|
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, &ap);
|
|
va_end(ap);
|
|
if (c->send.len > 16) {
|
|
size_t n = mg_snprintf((char *) &c->send.buf[len - 15], 11, "%-10lu",
|
|
(unsigned long) (c->send.len - len));
|
|
c->send.buf[len - 15 + n] = ' '; // Change ending 0 to space
|
|
}
|
|
c->is_resp = 0;
|
|
}
|
|
|
|
static void http_cb(struct mg_connection *, int, void *);
|
|
static void restore_http_cb(struct mg_connection *c) {
|
|
mg_fs_close((struct mg_fd *) c->pfn_data);
|
|
c->pfn_data = NULL;
|
|
c->pfn = http_cb;
|
|
c->is_resp = 0;
|
|
}
|
|
|
|
char *mg_http_etag(char *buf, size_t len, size_t size, time_t mtime);
|
|
char *mg_http_etag(char *buf, size_t len, size_t size, time_t mtime) {
|
|
mg_snprintf(buf, len, "\"%lld.%lld\"", (int64_t) mtime, (int64_t) size);
|
|
return buf;
|
|
}
|
|
|
|
static void static_cb(struct mg_connection *c, int ev, void *ev_data) {
|
|
if (ev == MG_EV_WRITE || ev == MG_EV_POLL) {
|
|
struct mg_fd *fd = (struct mg_fd *) c->pfn_data;
|
|
// Read to send IO buffer directly, avoid extra on-stack buffer
|
|
size_t n, max = MG_IO_SIZE, space;
|
|
size_t *cl = (size_t *) &c->data[(sizeof(c->data) - sizeof(size_t)) /
|
|
sizeof(size_t) * sizeof(size_t)];
|
|
if (c->send.size < max) mg_iobuf_resize(&c->send, max);
|
|
if (c->send.len >= c->send.size) return; // Rate limit
|
|
if ((space = c->send.size - c->send.len) > *cl) space = *cl;
|
|
n = fd->fs->rd(fd->fd, c->send.buf + c->send.len, space);
|
|
c->send.len += n;
|
|
*cl -= n;
|
|
if (n == 0) restore_http_cb(c);
|
|
} else if (ev == MG_EV_CLOSE) {
|
|
restore_http_cb(c);
|
|
}
|
|
(void) ev_data;
|
|
}
|
|
|
|
// Known mime types. Keep it outside guess_content_type() function, since
|
|
// some environments don't like it defined there.
|
|
// clang-format off
|
|
#define MG_C_STR(a) { (char *) (a), sizeof(a) - 1 }
|
|
static struct mg_str s_known_types[] = {
|
|
MG_C_STR("html"), MG_C_STR("text/html; charset=utf-8"),
|
|
MG_C_STR("htm"), MG_C_STR("text/html; charset=utf-8"),
|
|
MG_C_STR("css"), MG_C_STR("text/css; charset=utf-8"),
|
|
MG_C_STR("js"), MG_C_STR("text/javascript; charset=utf-8"),
|
|
MG_C_STR("gif"), MG_C_STR("image/gif"),
|
|
MG_C_STR("png"), MG_C_STR("image/png"),
|
|
MG_C_STR("jpg"), MG_C_STR("image/jpeg"),
|
|
MG_C_STR("jpeg"), MG_C_STR("image/jpeg"),
|
|
MG_C_STR("woff"), MG_C_STR("font/woff"),
|
|
MG_C_STR("ttf"), MG_C_STR("font/ttf"),
|
|
MG_C_STR("svg"), MG_C_STR("image/svg+xml"),
|
|
MG_C_STR("txt"), MG_C_STR("text/plain; charset=utf-8"),
|
|
MG_C_STR("avi"), MG_C_STR("video/x-msvideo"),
|
|
MG_C_STR("csv"), MG_C_STR("text/csv"),
|
|
MG_C_STR("doc"), MG_C_STR("application/msword"),
|
|
MG_C_STR("exe"), MG_C_STR("application/octet-stream"),
|
|
MG_C_STR("gz"), MG_C_STR("application/gzip"),
|
|
MG_C_STR("ico"), MG_C_STR("image/x-icon"),
|
|
MG_C_STR("json"), MG_C_STR("application/json"),
|
|
MG_C_STR("mov"), MG_C_STR("video/quicktime"),
|
|
MG_C_STR("mp3"), MG_C_STR("audio/mpeg"),
|
|
MG_C_STR("mp4"), MG_C_STR("video/mp4"),
|
|
MG_C_STR("mpeg"), MG_C_STR("video/mpeg"),
|
|
MG_C_STR("pdf"), MG_C_STR("application/pdf"),
|
|
MG_C_STR("shtml"), MG_C_STR("text/html; charset=utf-8"),
|
|
MG_C_STR("tgz"), MG_C_STR("application/tar-gz"),
|
|
MG_C_STR("wav"), MG_C_STR("audio/wav"),
|
|
MG_C_STR("webp"), MG_C_STR("image/webp"),
|
|
MG_C_STR("zip"), MG_C_STR("application/zip"),
|
|
MG_C_STR("3gp"), MG_C_STR("video/3gpp"),
|
|
{0, 0},
|
|
};
|
|
// clang-format on
|
|
|
|
static struct mg_str guess_content_type(struct mg_str path, const char *extra) {
|
|
struct mg_str entry, k, v, s = mg_str(extra);
|
|
size_t i = 0;
|
|
|
|
// Shrink path to its extension only
|
|
while (i < path.len && path.buf[path.len - i - 1] != '.') i++;
|
|
path.buf += path.len - i;
|
|
path.len = i;
|
|
|
|
// Process user-provided mime type overrides, if any
|
|
while (mg_span(s, &entry, &s, ',')) {
|
|
if (mg_span(entry, &k, &v, '=') && mg_strcmp(path, k) == 0) return v;
|
|
}
|
|
|
|
// Process built-in mime types
|
|
for (i = 0; s_known_types[i].buf != NULL; i += 2) {
|
|
if (mg_strcmp(path, s_known_types[i]) == 0) return s_known_types[i + 1];
|
|
}
|
|
|
|
return mg_str("text/plain; charset=utf-8");
|
|
}
|
|
|
|
static int getrange(struct mg_str *s, size_t *a, size_t *b) {
|
|
size_t i, numparsed = 0;
|
|
for (i = 0; i + 6 < s->len; i++) {
|
|
struct mg_str k, v = mg_str_n(s->buf + i + 6, s->len - i - 6);
|
|
if (memcmp(&s->buf[i], "bytes=", 6) != 0) continue;
|
|
if (mg_span(v, &k, &v, '-')) {
|
|
if (mg_to_size_t(k, a)) numparsed++;
|
|
if (v.len > 0 && mg_to_size_t(v, b)) numparsed++;
|
|
} else {
|
|
if (mg_to_size_t(v, a)) numparsed++;
|
|
}
|
|
break;
|
|
}
|
|
return (int) numparsed;
|
|
}
|
|
|
|
void mg_http_serve_file(struct mg_connection *c, struct mg_http_message *hm,
|
|
const char *path,
|
|
const struct mg_http_serve_opts *opts) {
|
|
char etag[64], tmp[MG_PATH_MAX];
|
|
struct mg_fs *fs = opts->fs == NULL ? &mg_fs_posix : opts->fs;
|
|
struct mg_fd *fd = NULL;
|
|
size_t size = 0;
|
|
time_t mtime = 0;
|
|
struct mg_str *inm = NULL;
|
|
struct mg_str mime = guess_content_type(mg_str(path), opts->mime_types);
|
|
bool gzip = false;
|
|
|
|
if (path != NULL) {
|
|
// If a browser sends us "Accept-Encoding: gzip", try to open .gz first
|
|
struct mg_str *ae = mg_http_get_header(hm, "Accept-Encoding");
|
|
if (ae != NULL) {
|
|
char *ae_ = mg_mprintf("%.*s", ae->len, ae->buf);
|
|
if (strstr(ae_, "gzip") != NULL) {
|
|
mg_snprintf(tmp, sizeof(tmp), "%s.gz", path);
|
|
fd = mg_fs_open(fs, tmp, MG_FS_READ);
|
|
if (fd != NULL) gzip = true, path = tmp;
|
|
}
|
|
free(ae_);
|
|
}
|
|
// No luck opening .gz? Open what we've told to open
|
|
if (fd == NULL) fd = mg_fs_open(fs, path, MG_FS_READ);
|
|
}
|
|
|
|
// Failed to open, and page404 is configured? Open it, then
|
|
if (fd == NULL && opts->page404 != NULL) {
|
|
fd = mg_fs_open(fs, opts->page404, MG_FS_READ);
|
|
path = opts->page404;
|
|
mime = guess_content_type(mg_str(path), opts->mime_types);
|
|
}
|
|
|
|
if (fd == NULL || fs->st(path, &size, &mtime) == 0) {
|
|
mg_http_reply(c, 404, opts->extra_headers, "Not found\n");
|
|
mg_fs_close(fd);
|
|
// NOTE: mg_http_etag() call should go first!
|
|
} else if (mg_http_etag(etag, sizeof(etag), size, mtime) != NULL &&
|
|
(inm = mg_http_get_header(hm, "If-None-Match")) != NULL &&
|
|
mg_strcasecmp(*inm, mg_str(etag)) == 0) {
|
|
mg_fs_close(fd);
|
|
mg_http_reply(c, 304, opts->extra_headers, "");
|
|
} else {
|
|
int n, status = 200;
|
|
char range[100];
|
|
size_t r1 = 0, r2 = 0, cl = size;
|
|
|
|
// Handle Range header
|
|
struct mg_str *rh = mg_http_get_header(hm, "Range");
|
|
range[0] = '\0';
|
|
if (rh != NULL && (n = getrange(rh, &r1, &r2)) > 0) {
|
|
// If range is specified like "400-", set second limit to content len
|
|
if (n == 1) r2 = cl - 1;
|
|
if (r1 > r2 || r2 >= cl) {
|
|
status = 416;
|
|
cl = 0;
|
|
mg_snprintf(range, sizeof(range), "Content-Range: bytes */%lld\r\n",
|
|
(int64_t) size);
|
|
} else {
|
|
status = 206;
|
|
cl = r2 - r1 + 1;
|
|
mg_snprintf(range, sizeof(range),
|
|
"Content-Range: bytes %llu-%llu/%llu\r\n", (uint64_t) r1,
|
|
(uint64_t) (r1 + cl - 1), (uint64_t) size);
|
|
fs->sk(fd->fd, r1);
|
|
}
|
|
}
|
|
mg_printf(c,
|
|
"HTTP/1.1 %d %s\r\n"
|
|
"Content-Type: %.*s\r\n"
|
|
"Etag: %s\r\n"
|
|
"Content-Length: %llu\r\n"
|
|
"%s%s%s\r\n",
|
|
status, mg_http_status_code_str(status), (int) mime.len, mime.buf,
|
|
etag, (uint64_t) cl, gzip ? "Content-Encoding: gzip\r\n" : "",
|
|
range, opts->extra_headers ? opts->extra_headers : "");
|
|
if (mg_strcasecmp(hm->method, mg_str("HEAD")) == 0) {
|
|
c->is_draining = 1;
|
|
c->is_resp = 0;
|
|
mg_fs_close(fd);
|
|
} else {
|
|
// Track to-be-sent content length at the end of c->data, aligned
|
|
size_t *clp = (size_t *) &c->data[(sizeof(c->data) - sizeof(size_t)) /
|
|
sizeof(size_t) * sizeof(size_t)];
|
|
c->pfn = static_cb;
|
|
c->pfn_data = fd;
|
|
*clp = cl;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct printdirentrydata {
|
|
struct mg_connection *c;
|
|
struct mg_http_message *hm;
|
|
const struct mg_http_serve_opts *opts;
|
|
const char *dir;
|
|
};
|
|
|
|
#if MG_ENABLE_DIRLIST
|
|
static void printdirentry(const char *name, void *userdata) {
|
|
struct printdirentrydata *d = (struct printdirentrydata *) userdata;
|
|
struct mg_fs *fs = d->opts->fs == NULL ? &mg_fs_posix : d->opts->fs;
|
|
size_t size = 0;
|
|
time_t t = 0;
|
|
char path[MG_PATH_MAX], sz[40], mod[40];
|
|
int flags, n = 0;
|
|
|
|
// MG_DEBUG(("[%s] [%s]", d->dir, name));
|
|
if (mg_snprintf(path, sizeof(path), "%s%c%s", d->dir, '/', name) >
|
|
sizeof(path)) {
|
|
MG_ERROR(("%s truncated", name));
|
|
} else if ((flags = fs->st(path, &size, &t)) == 0) {
|
|
MG_ERROR(("%lu stat(%s): %d", d->c->id, path, errno));
|
|
} else {
|
|
const char *slash = flags & MG_FS_DIR ? "/" : "";
|
|
if (flags & MG_FS_DIR) {
|
|
mg_snprintf(sz, sizeof(sz), "%s", "[DIR]");
|
|
} else {
|
|
mg_snprintf(sz, sizeof(sz), "%lld", (uint64_t) size);
|
|
}
|
|
#if defined(MG_HTTP_DIRLIST_TIME_FMT)
|
|
{
|
|
char time_str[40];
|
|
struct tm *time_info = localtime(&t);
|
|
strftime(time_str, sizeof time_str, "%Y/%m/%d %H:%M:%S", time_info);
|
|
mg_snprintf(mod, sizeof(mod), "%s", time_str);
|
|
}
|
|
#else
|
|
mg_snprintf(mod, sizeof(mod), "%lu", (unsigned long) t);
|
|
#endif
|
|
n = (int) mg_url_encode(name, strlen(name), path, sizeof(path));
|
|
mg_printf(d->c,
|
|
" <tr><td><a href=\"%.*s%s\">%s%s</a></td>"
|
|
"<td name=%lu>%s</td><td name=%lld>%s</td></tr>\n",
|
|
n, path, slash, name, slash, (unsigned long) t, mod,
|
|
flags & MG_FS_DIR ? (int64_t) -1 : (int64_t) size, sz);
|
|
}
|
|
}
|
|
|
|
static void listdir(struct mg_connection *c, struct mg_http_message *hm,
|
|
const struct mg_http_serve_opts *opts, char *dir) {
|
|
const char *sort_js_code =
|
|
"<script>function srt(tb, sc, so, d) {"
|
|
"var tr = Array.prototype.slice.call(tb.rows, 0),"
|
|
"tr = tr.sort(function (a, b) { var c1 = a.cells[sc], c2 = b.cells[sc],"
|
|
"n1 = c1.getAttribute('name'), n2 = c2.getAttribute('name'), "
|
|
"t1 = a.cells[2].getAttribute('name'), "
|
|
"t2 = b.cells[2].getAttribute('name'); "
|
|
"return so * (t1 < 0 && t2 >= 0 ? -1 : t2 < 0 && t1 >= 0 ? 1 : "
|
|
"n1 ? parseInt(n2) - parseInt(n1) : "
|
|
"c1.textContent.trim().localeCompare(c2.textContent.trim())); });";
|
|
const char *sort_js_code2 =
|
|
"for (var i = 0; i < tr.length; i++) tb.appendChild(tr[i]); "
|
|
"if (!d) window.location.hash = ('sc=' + sc + '&so=' + so); "
|
|
"};"
|
|
"window.onload = function() {"
|
|
"var tb = document.getElementById('tb');"
|
|
"var m = /sc=([012]).so=(1|-1)/.exec(window.location.hash) || [0, 2, 1];"
|
|
"var sc = m[1], so = m[2]; document.onclick = function(ev) { "
|
|
"var c = ev.target.rel; if (c) {if (c == sc) so *= -1; srt(tb, c, so); "
|
|
"sc = c; ev.preventDefault();}};"
|
|
"srt(tb, sc, so, true);"
|
|
"}"
|
|
"</script>";
|
|
struct mg_fs *fs = opts->fs == NULL ? &mg_fs_posix : opts->fs;
|
|
struct printdirentrydata d = {c, hm, opts, dir};
|
|
char tmp[10], buf[MG_PATH_MAX];
|
|
size_t off, n;
|
|
int len = mg_url_decode(hm->uri.buf, hm->uri.len, buf, sizeof(buf), 0);
|
|
struct mg_str uri = len > 0 ? mg_str_n(buf, (size_t) len) : hm->uri;
|
|
|
|
mg_printf(c,
|
|
"HTTP/1.1 200 OK\r\n"
|
|
"Content-Type: text/html; charset=utf-8\r\n"
|
|
"%s"
|
|
"Content-Length: \r\n\r\n",
|
|
opts->extra_headers == NULL ? "" : opts->extra_headers);
|
|
off = c->send.len; // Start of body
|
|
mg_printf(c,
|
|
"<!DOCTYPE html><html><head><title>Index of %.*s</title>%s%s"
|
|
"<style>th,td {text-align: left; padding-right: 1em; "
|
|
"font-family: monospace; }</style></head>"
|
|
"<body><h1>Index of %.*s</h1><table cellpadding=\"0\"><thead>"
|
|
"<tr><th><a href=\"#\" rel=\"0\">Name</a></th><th>"
|
|
"<a href=\"#\" rel=\"1\">Modified</a></th>"
|
|
"<th><a href=\"#\" rel=\"2\">Size</a></th></tr>"
|
|
"<tr><td colspan=\"3\"><hr></td></tr>"
|
|
"</thead>"
|
|
"<tbody id=\"tb\">\n",
|
|
(int) uri.len, uri.buf, sort_js_code, sort_js_code2, (int) uri.len,
|
|
uri.buf);
|
|
mg_printf(c, "%s",
|
|
" <tr><td><a href=\"..\">..</a></td>"
|
|
"<td name=-1></td><td name=-1>[DIR]</td></tr>\n");
|
|
|
|
fs->ls(dir, printdirentry, &d);
|
|
mg_printf(c,
|
|
"</tbody><tfoot><tr><td colspan=\"3\"><hr></td></tr></tfoot>"
|
|
"</table><address>Mongoose v.%s</address></body></html>\n",
|
|
MG_VERSION);
|
|
n = mg_snprintf(tmp, sizeof(tmp), "%lu", (unsigned long) (c->send.len - off));
|
|
if (n > sizeof(tmp)) n = 0;
|
|
memcpy(c->send.buf + off - 12, tmp, n); // Set content length
|
|
c->is_resp = 0; // Mark response end
|
|
}
|
|
#endif
|
|
|
|
// Resolve requested file into `path` and return its fs->st() result
|
|
static int uri_to_path2(struct mg_connection *c, struct mg_http_message *hm,
|
|
struct mg_fs *fs, struct mg_str url, struct mg_str dir,
|
|
char *path, size_t path_size) {
|
|
int flags, tmp;
|
|
// Append URI to the root_dir, and sanitize it
|
|
size_t n = mg_snprintf(path, path_size, "%.*s", (int) dir.len, dir.buf);
|
|
if (n + 2 >= path_size) {
|
|
mg_http_reply(c, 400, "", "Exceeded path size");
|
|
return -1;
|
|
}
|
|
path[path_size - 1] = '\0';
|
|
// Terminate root dir with slash
|
|
if (n > 0 && path[n - 1] != '/') path[n++] = '/', path[n] = '\0';
|
|
if (url.len < hm->uri.len) {
|
|
mg_url_decode(hm->uri.buf + url.len, hm->uri.len - url.len, path + n,
|
|
path_size - n, 0);
|
|
}
|
|
path[path_size - 1] = '\0'; // Double-check
|
|
if (!mg_path_is_sane(mg_str_n(path, path_size))) {
|
|
mg_http_reply(c, 400, "", "Invalid path");
|
|
return -1;
|
|
}
|
|
n = strlen(path);
|
|
while (n > 1 && path[n - 1] == '/') path[--n] = 0; // Trim trailing slashes
|
|
flags = mg_strcmp(hm->uri, mg_str("/")) == 0 ? MG_FS_DIR
|
|
: fs->st(path, NULL, NULL);
|
|
MG_VERBOSE(("%lu %.*s -> %s %d", c->id, (int) hm->uri.len, hm->uri.buf, path,
|
|
flags));
|
|
if (flags == 0) {
|
|
// Do nothing - let's caller decide
|
|
} else if ((flags & MG_FS_DIR) && hm->uri.len > 0 &&
|
|
hm->uri.buf[hm->uri.len - 1] != '/') {
|
|
mg_printf(c,
|
|
"HTTP/1.1 301 Moved\r\n"
|
|
"Location: %.*s/\r\n"
|
|
"Content-Length: 0\r\n"
|
|
"\r\n",
|
|
(int) hm->uri.len, hm->uri.buf);
|
|
c->is_resp = 0;
|
|
flags = -1;
|
|
} else if (flags & MG_FS_DIR) {
|
|
if (((mg_snprintf(path + n, path_size - n, "/" MG_HTTP_INDEX) > 0 &&
|
|
(tmp = fs->st(path, NULL, NULL)) != 0) ||
|
|
(mg_snprintf(path + n, path_size - n, "/index.shtml") > 0 &&
|
|
(tmp = fs->st(path, NULL, NULL)) != 0))) {
|
|
flags = tmp;
|
|
} else if ((mg_snprintf(path + n, path_size - n, "/" MG_HTTP_INDEX ".gz") >
|
|
0 &&
|
|
(tmp = fs->st(path, NULL, NULL)) !=
|
|
0)) { // check for gzipped index
|
|
flags = tmp;
|
|
path[n + 1 + strlen(MG_HTTP_INDEX)] =
|
|
'\0'; // Remove appended .gz in index file name
|
|
} else {
|
|
path[n] = '\0'; // Remove appended index file name
|
|
}
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static int uri_to_path(struct mg_connection *c, struct mg_http_message *hm,
|
|
const struct mg_http_serve_opts *opts, char *path,
|
|
size_t path_size) {
|
|
struct mg_fs *fs = opts->fs == NULL ? &mg_fs_posix : opts->fs;
|
|
struct mg_str k, v, part, s = mg_str(opts->root_dir), u = {NULL, 0}, p = u;
|
|
while (mg_span(s, &part, &s, ',')) {
|
|
if (!mg_span(part, &k, &v, '=')) k = part, v = mg_str_n(NULL, 0);
|
|
if (v.len == 0) v = k, k = mg_str("/"), u = k, p = v;
|
|
if (hm->uri.len < k.len) continue;
|
|
if (mg_strcmp(k, mg_str_n(hm->uri.buf, k.len)) != 0) continue;
|
|
u = k, p = v;
|
|
}
|
|
return uri_to_path2(c, hm, fs, u, p, path, path_size);
|
|
}
|
|
|
|
void mg_http_serve_dir(struct mg_connection *c, struct mg_http_message *hm,
|
|
const struct mg_http_serve_opts *opts) {
|
|
char path[MG_PATH_MAX];
|
|
const char *sp = opts->ssi_pattern;
|
|
int flags = uri_to_path(c, hm, opts, path, sizeof(path));
|
|
if (flags < 0) {
|
|
// Do nothing: the response has already been sent by uri_to_path()
|
|
} else if (flags & MG_FS_DIR) {
|
|
#if MG_ENABLE_DIRLIST
|
|
listdir(c, hm, opts, path);
|
|
#else
|
|
mg_http_reply(c, 403, "", "Forbidden\n");
|
|
#endif
|
|
} else if (flags && sp != NULL && mg_match(mg_str(path), mg_str(sp), NULL)) {
|
|
mg_http_serve_ssi(c, opts->root_dir, path);
|
|
} else {
|
|
mg_http_serve_file(c, hm, path, opts);
|
|
}
|
|
}
|
|
|
|
static bool mg_is_url_safe(int c) {
|
|
return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') ||
|
|
(c >= 'A' && c <= 'Z') || c == '.' || c == '_' || c == '-' || c == '~';
|
|
}
|
|
|
|
size_t mg_url_encode(const char *s, size_t sl, char *buf, size_t len) {
|
|
size_t i, n = 0;
|
|
for (i = 0; i < sl; i++) {
|
|
int c = *(unsigned char *) &s[i];
|
|
if (n + 4 >= len) return 0;
|
|
if (mg_is_url_safe(c)) {
|
|
buf[n++] = s[i];
|
|
} else {
|
|
mg_snprintf(&buf[n], 4, "%%%M", mg_print_hex, 1, &s[i]);
|
|
n += 3;
|
|
}
|
|
}
|
|
if (len > 0 && n < len - 1) buf[n] = '\0'; // Null-terminate the destination
|
|
if (len > 0) buf[len - 1] = '\0'; // Always.
|
|
return n;
|
|
}
|
|
|
|
void mg_http_creds(struct mg_http_message *hm, char *user, size_t userlen,
|
|
char *pass, size_t passlen) {
|
|
struct mg_str *v = mg_http_get_header(hm, "Authorization");
|
|
user[0] = pass[0] = '\0';
|
|
if (v != NULL && v->len > 6 && memcmp(v->buf, "Basic ", 6) == 0) {
|
|
char buf[256];
|
|
size_t n = mg_base64_decode(v->buf + 6, v->len - 6, buf, sizeof(buf));
|
|
const char *p = (const char *) memchr(buf, ':', n > 0 ? n : 0);
|
|
if (p != NULL) {
|
|
mg_snprintf(user, userlen, "%.*s", p - buf, buf);
|
|
mg_snprintf(pass, passlen, "%.*s", n - (size_t) (p - buf) - 1, p + 1);
|
|
}
|
|
} else if (v != NULL && v->len > 7 && memcmp(v->buf, "Bearer ", 7) == 0) {
|
|
mg_snprintf(pass, passlen, "%.*s", (int) v->len - 7, v->buf + 7);
|
|
} else if ((v = mg_http_get_header(hm, "Cookie")) != NULL) {
|
|
struct mg_str t = mg_http_get_header_var(*v, mg_str_n("access_token", 12));
|
|
if (t.len > 0) mg_snprintf(pass, passlen, "%.*s", (int) t.len, t.buf);
|
|
} else {
|
|
mg_http_get_var(&hm->query, "access_token", pass, passlen);
|
|
}
|
|
}
|
|
|
|
static struct mg_str stripquotes(struct mg_str s) {
|
|
return s.len > 1 && s.buf[0] == '"' && s.buf[s.len - 1] == '"'
|
|
? mg_str_n(s.buf + 1, s.len - 2)
|
|
: s;
|
|
}
|
|
|
|
struct mg_str mg_http_get_header_var(struct mg_str s, struct mg_str v) {
|
|
size_t i;
|
|
for (i = 0; v.len > 0 && i + v.len + 2 < s.len; i++) {
|
|
if (s.buf[i + v.len] == '=' && memcmp(&s.buf[i], v.buf, v.len) == 0) {
|
|
const char *p = &s.buf[i + v.len + 1], *b = p, *x = &s.buf[s.len];
|
|
int q = p < x && *p == '"' ? 1 : 0;
|
|
while (p < x &&
|
|
(q ? p == b || *p != '"' : *p != ';' && *p != ' ' && *p != ','))
|
|
p++;
|
|
// MG_INFO(("[%.*s] [%.*s] [%.*s]", (int) s.len, s.buf, (int) v.len,
|
|
// v.buf, (int) (p - b), b));
|
|
return stripquotes(mg_str_n(b, (size_t) (p - b + q)));
|
|
}
|
|
}
|
|
return mg_str_n(NULL, 0);
|
|
}
|
|
|
|
long mg_http_upload(struct mg_connection *c, struct mg_http_message *hm,
|
|
struct mg_fs *fs, const char *dir, size_t max_size) {
|
|
char buf[20] = "0", file[MG_PATH_MAX], path[MG_PATH_MAX];
|
|
long res = 0, offset;
|
|
mg_http_get_var(&hm->query, "offset", buf, sizeof(buf));
|
|
mg_http_get_var(&hm->query, "file", file, sizeof(file));
|
|
offset = strtol(buf, NULL, 0);
|
|
mg_snprintf(path, sizeof(path), "%s%c%s", dir, MG_DIRSEP, file);
|
|
if (hm->body.len == 0) {
|
|
mg_http_reply(c, 200, "", "%ld", res); // Nothing to write
|
|
} else if (file[0] == '\0') {
|
|
mg_http_reply(c, 400, "", "file required");
|
|
res = -1;
|
|
} else if (mg_path_is_sane(mg_str(file)) == false) {
|
|
mg_http_reply(c, 400, "", "%s: invalid file", file);
|
|
res = -2;
|
|
} else if (offset < 0) {
|
|
mg_http_reply(c, 400, "", "offset required");
|
|
res = -3;
|
|
} else if ((size_t) offset + hm->body.len > max_size) {
|
|
mg_http_reply(c, 400, "", "%s: over max size of %lu", path,
|
|
(unsigned long) max_size);
|
|
res = -4;
|
|
} else {
|
|
struct mg_fd *fd;
|
|
size_t current_size = 0;
|
|
MG_DEBUG(("%s -> %lu bytes @ %ld", path, hm->body.len, offset));
|
|
if (offset == 0) fs->rm(path); // If offset if 0, truncate file
|
|
fs->st(path, ¤t_size, NULL);
|
|
if (offset > 0 && current_size != (size_t) offset) {
|
|
mg_http_reply(c, 400, "", "%s: offset mismatch", path);
|
|
res = -5;
|
|
} else if ((fd = mg_fs_open(fs, path, MG_FS_WRITE)) == NULL) {
|
|
mg_http_reply(c, 400, "", "open(%s): %d", path, errno);
|
|
res = -6;
|
|
} else {
|
|
res = offset + (long) fs->wr(fd->fd, hm->body.buf, hm->body.len);
|
|
mg_fs_close(fd);
|
|
mg_http_reply(c, 200, "", "%ld", res);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int mg_http_status(const struct mg_http_message *hm) {
|
|
return atoi(hm->uri.buf);
|
|
}
|
|
|
|
static bool is_hex_digit(int c) {
|
|
return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') ||
|
|
(c >= 'A' && c <= 'F');
|
|
}
|
|
|
|
static int skip_chunk(const char *buf, int len, int *pl, int *dl) {
|
|
int i = 0, n = 0;
|
|
if (len < 3) return 0;
|
|
while (i < len && is_hex_digit(buf[i])) i++;
|
|
if (i == 0) return -1; // Error, no length specified
|
|
if (i > (int) sizeof(int) * 2) return -1; // Chunk length is too big
|
|
if (len < i + 1 || buf[i] != '\r' || buf[i + 1] != '\n') return -1; // Error
|
|
n = (int) mg_unhexn(buf, (size_t) i); // Decode chunk length
|
|
if (n < 0) return -1; // Error
|
|
if (n > len - i - 4) return 0; // Chunk not yet fully buffered
|
|
if (buf[i + n + 2] != '\r' || buf[i + n + 3] != '\n') return -1; // Error
|
|
*pl = i + 2, *dl = n;
|
|
return i + 2 + n + 2;
|
|
}
|
|
|
|
static void http_cb(struct mg_connection *c, int ev, void *ev_data) {
|
|
if (ev == MG_EV_READ || ev == MG_EV_CLOSE) {
|
|
struct mg_http_message hm;
|
|
size_t ofs = 0; // Parsing offset
|
|
while (c->is_resp == 0 && ofs < c->recv.len) {
|
|
const char *buf = (char *) c->recv.buf + ofs;
|
|
int n = mg_http_parse(buf, c->recv.len - ofs, &hm);
|
|
struct mg_str *te; // Transfer - encoding header
|
|
bool is_chunked = false;
|
|
if (n < 0) {
|
|
// We don't use mg_error() here, to avoid closing pipelined requests
|
|
// prematurely, see #2592
|
|
MG_ERROR(("HTTP parse, %lu bytes", c->recv.len));
|
|
c->is_draining = 1;
|
|
mg_hexdump(buf, c->recv.len - ofs > 16 ? 16 : c->recv.len - ofs);
|
|
c->recv.len = 0;
|
|
return;
|
|
}
|
|
if (n == 0) break; // Request is not buffered yet
|
|
mg_call(c, MG_EV_HTTP_HDRS, &hm); // Got all HTTP headers
|
|
if (ev == MG_EV_CLOSE) { // If client did not set Content-Length
|
|
hm.message.len = c->recv.len - ofs; // and closes now, deliver MSG
|
|
hm.body.len = hm.message.len - (size_t) (hm.body.buf - hm.message.buf);
|
|
}
|
|
if ((te = mg_http_get_header(&hm, "Transfer-Encoding")) != NULL) {
|
|
if (mg_strcasecmp(*te, mg_str("chunked")) == 0) {
|
|
is_chunked = true;
|
|
} else {
|
|
mg_error(c, "Invalid Transfer-Encoding"); // See #2460
|
|
return;
|
|
}
|
|
} else if (mg_http_get_header(&hm, "Content-length") == NULL) {
|
|
// #2593: HTTP packets must contain either Transfer-Encoding or
|
|
// Content-length
|
|
bool is_response = mg_ncasecmp(hm.method.buf, "HTTP/", 5) == 0;
|
|
bool require_content_len = false;
|
|
if (!is_response && (mg_strcasecmp(hm.method, mg_str("POST")) == 0 ||
|
|
mg_strcasecmp(hm.method, mg_str("PUT")) == 0)) {
|
|
// POST and PUT should include an entity body. Therefore, they should
|
|
// contain a Content-length header. Other requests can also contain a
|
|
// body, but their content has no defined semantics (RFC 7231)
|
|
require_content_len = true;
|
|
} else if (is_response) {
|
|
// HTTP spec 7.2 Entity body: All other responses must include a body
|
|
// or Content-Length header field defined with a value of 0.
|
|
int status = mg_http_status(&hm);
|
|
require_content_len = status >= 200 && status != 204 && status != 304;
|
|
}
|
|
if (require_content_len) {
|
|
mg_http_reply(c, 411, "", "");
|
|
MG_ERROR(("%s", "Content length missing from request"));
|
|
}
|
|
}
|
|
|
|
if (is_chunked) {
|
|
// For chunked data, strip off prefixes and suffixes from chunks
|
|
// and relocate them right after the headers, then report a message
|
|
char *s = (char *) c->recv.buf + ofs + n;
|
|
int o = 0, pl, dl, cl, len = (int) (c->recv.len - ofs - (size_t) n);
|
|
|
|
// Find zero-length chunk (the end of the body)
|
|
while ((cl = skip_chunk(s + o, len - o, &pl, &dl)) > 0 && dl) o += cl;
|
|
if (cl == 0) break; // No zero-len chunk, buffer more data
|
|
if (cl < 0) {
|
|
mg_error(c, "Invalid chunk");
|
|
break;
|
|
}
|
|
|
|
// Zero chunk found. Second pass: strip + relocate
|
|
o = 0, hm.body.len = 0, hm.message.len = (size_t) n;
|
|
while ((cl = skip_chunk(s + o, len - o, &pl, &dl)) > 0) {
|
|
memmove(s + hm.body.len, s + o + pl, (size_t) dl);
|
|
o += cl, hm.body.len += (size_t) dl, hm.message.len += (size_t) dl;
|
|
if (dl == 0) break;
|
|
}
|
|
ofs += (size_t) (n + o);
|
|
} else { // Normal, non-chunked data
|
|
size_t len = c->recv.len - ofs - (size_t) n;
|
|
if (hm.body.len > len) break; // Buffer more data
|
|
ofs += (size_t) n + hm.body.len;
|
|
}
|
|
|
|
if (c->is_accepted) c->is_resp = 1; // Start generating response
|
|
mg_call(c, MG_EV_HTTP_MSG, &hm); // User handler can clear is_resp
|
|
}
|
|
if (ofs > 0) mg_iobuf_del(&c->recv, 0, ofs); // Delete processed data
|
|
}
|
|
(void) ev_data;
|
|
}
|
|
|
|
static void mg_hfn(struct mg_connection *c, int ev, void *ev_data) {
|
|
if (ev == MG_EV_HTTP_MSG) {
|
|
struct mg_http_message *hm = (struct mg_http_message *) ev_data;
|
|
if (mg_match(hm->uri, mg_str("/quit"), NULL)) {
|
|
mg_http_reply(c, 200, "", "ok\n");
|
|
c->is_draining = 1;
|
|
c->data[0] = 'X';
|
|
} else if (mg_match(hm->uri, mg_str("/debug"), NULL)) {
|
|
int level = (int) mg_json_get_long(hm->body, "$.level", MG_LL_DEBUG);
|
|
mg_log_set(level);
|
|
mg_http_reply(c, 200, "", "Debug level set to %d\n", level);
|
|
} else {
|
|
mg_http_reply(c, 200, "", "hi\n");
|
|
}
|
|
} else if (ev == MG_EV_CLOSE) {
|
|
if (c->data[0] == 'X') *(bool *) c->fn_data = true;
|
|
}
|
|
}
|
|
|
|
void mg_hello(const char *url) {
|
|
struct mg_mgr mgr;
|
|
bool done = false;
|
|
mg_mgr_init(&mgr);
|
|
if (mg_http_listen(&mgr, url, mg_hfn, &done) == NULL) done = true;
|
|
while (done == false) mg_mgr_poll(&mgr, 100);
|
|
mg_mgr_free(&mgr);
|
|
}
|
|
|
|
struct mg_connection *mg_http_connect(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = mg_connect(mgr, url, fn, fn_data);
|
|
if (c != NULL) c->pfn = http_cb;
|
|
return c;
|
|
}
|
|
|
|
struct mg_connection *mg_http_listen(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = mg_listen(mgr, url, fn, fn_data);
|
|
if (c != NULL) c->pfn = http_cb;
|
|
return c;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/iobuf.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
static size_t roundup(size_t size, size_t align) {
|
|
return align == 0 ? size : (size + align - 1) / align * align;
|
|
}
|
|
|
|
int mg_iobuf_resize(struct mg_iobuf *io, size_t new_size) {
|
|
int ok = 1;
|
|
new_size = roundup(new_size, io->align);
|
|
if (new_size == 0) {
|
|
mg_bzero(io->buf, io->size);
|
|
free(io->buf);
|
|
io->buf = NULL;
|
|
io->len = io->size = 0;
|
|
} else if (new_size != io->size) {
|
|
// NOTE(lsm): do not use realloc here. Use calloc/free only, to ease the
|
|
// porting to some obscure platforms like FreeRTOS
|
|
void *p = calloc(1, new_size);
|
|
if (p != NULL) {
|
|
size_t len = new_size < io->len ? new_size : io->len;
|
|
if (len > 0 && io->buf != NULL) memmove(p, io->buf, len);
|
|
mg_bzero(io->buf, io->size);
|
|
free(io->buf);
|
|
io->buf = (unsigned char *) p;
|
|
io->size = new_size;
|
|
} else {
|
|
ok = 0;
|
|
MG_ERROR(("%lld->%lld", (uint64_t) io->size, (uint64_t) new_size));
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
int mg_iobuf_init(struct mg_iobuf *io, size_t size, size_t align) {
|
|
io->buf = NULL;
|
|
io->align = align;
|
|
io->size = io->len = 0;
|
|
return mg_iobuf_resize(io, size);
|
|
}
|
|
|
|
size_t mg_iobuf_add(struct mg_iobuf *io, size_t ofs, const void *buf,
|
|
size_t len) {
|
|
size_t new_size = roundup(io->len + len, io->align);
|
|
mg_iobuf_resize(io, new_size); // Attempt to resize
|
|
if (new_size != io->size) len = 0; // Resize failure, append nothing
|
|
if (ofs < io->len) memmove(io->buf + ofs + len, io->buf + ofs, io->len - ofs);
|
|
if (buf != NULL) memmove(io->buf + ofs, buf, len);
|
|
if (ofs > io->len) io->len += ofs - io->len;
|
|
io->len += len;
|
|
return len;
|
|
}
|
|
|
|
size_t mg_iobuf_del(struct mg_iobuf *io, size_t ofs, size_t len) {
|
|
if (ofs > io->len) ofs = io->len;
|
|
if (ofs + len > io->len) len = io->len - ofs;
|
|
if (io->buf) memmove(io->buf + ofs, io->buf + ofs + len, io->len - ofs - len);
|
|
if (io->buf) mg_bzero(io->buf + io->len - len, len);
|
|
io->len -= len;
|
|
return len;
|
|
}
|
|
|
|
void mg_iobuf_free(struct mg_iobuf *io) {
|
|
mg_iobuf_resize(io, 0);
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/json.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static const char *escapeseq(int esc) {
|
|
return esc ? "\b\f\n\r\t\\\"" : "bfnrt\\\"";
|
|
}
|
|
|
|
static char json_esc(int c, int esc) {
|
|
const char *p, *esc1 = escapeseq(esc), *esc2 = escapeseq(!esc);
|
|
for (p = esc1; *p != '\0'; p++) {
|
|
if (*p == c) return esc2[p - esc1];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mg_pass_string(const char *s, int len) {
|
|
int i;
|
|
for (i = 0; i < len; i++) {
|
|
if (s[i] == '\\' && i + 1 < len && json_esc(s[i + 1], 1)) {
|
|
i++;
|
|
} else if (s[i] == '\0') {
|
|
return MG_JSON_INVALID;
|
|
} else if (s[i] == '"') {
|
|
return i;
|
|
}
|
|
}
|
|
return MG_JSON_INVALID;
|
|
}
|
|
|
|
static double mg_atod(const char *p, int len, int *numlen) {
|
|
double d = 0.0;
|
|
int i = 0, sign = 1;
|
|
|
|
// Sign
|
|
if (i < len && *p == '-') {
|
|
sign = -1, i++;
|
|
} else if (i < len && *p == '+') {
|
|
i++;
|
|
}
|
|
|
|
// Decimal
|
|
for (; i < len && p[i] >= '0' && p[i] <= '9'; i++) {
|
|
d *= 10.0;
|
|
d += p[i] - '0';
|
|
}
|
|
d *= sign;
|
|
|
|
// Fractional
|
|
if (i < len && p[i] == '.') {
|
|
double frac = 0.0, base = 0.1;
|
|
i++;
|
|
for (; i < len && p[i] >= '0' && p[i] <= '9'; i++) {
|
|
frac += base * (p[i] - '0');
|
|
base /= 10.0;
|
|
}
|
|
d += frac * sign;
|
|
}
|
|
|
|
// Exponential
|
|
if (i < len && (p[i] == 'e' || p[i] == 'E')) {
|
|
int j, exp = 0, minus = 0;
|
|
i++;
|
|
if (i < len && p[i] == '-') minus = 1, i++;
|
|
if (i < len && p[i] == '+') i++;
|
|
while (i < len && p[i] >= '0' && p[i] <= '9' && exp < 308)
|
|
exp = exp * 10 + (p[i++] - '0');
|
|
if (minus) exp = -exp;
|
|
for (j = 0; j < exp; j++) d *= 10.0;
|
|
for (j = 0; j < -exp; j++) d /= 10.0;
|
|
}
|
|
|
|
if (numlen != NULL) *numlen = i;
|
|
return d;
|
|
}
|
|
|
|
// Iterate over object or array elements
|
|
size_t mg_json_next(struct mg_str obj, size_t ofs, struct mg_str *key,
|
|
struct mg_str *val) {
|
|
if (ofs >= obj.len) {
|
|
ofs = 0; // Out of boundaries, stop scanning
|
|
} else if (obj.len < 2 || (*obj.buf != '{' && *obj.buf != '[')) {
|
|
ofs = 0; // Not an array or object, stop
|
|
} else {
|
|
struct mg_str sub = mg_str_n(obj.buf + ofs, obj.len - ofs);
|
|
if (ofs == 0) ofs++, sub.buf++, sub.len--;
|
|
if (*obj.buf == '[') { // Iterate over an array
|
|
int n = 0, o = mg_json_get(sub, "$", &n);
|
|
if (n < 0 || o < 0 || (size_t) (o + n) > sub.len) {
|
|
ofs = 0; // Error parsing key, stop scanning
|
|
} else {
|
|
if (key) *key = mg_str_n(NULL, 0);
|
|
if (val) *val = mg_str_n(sub.buf + o, (size_t) n);
|
|
ofs = (size_t) (&sub.buf[o + n] - obj.buf);
|
|
}
|
|
} else { // Iterate over an object
|
|
int n = 0, o = mg_json_get(sub, "$", &n);
|
|
if (n < 0 || o < 0 || (size_t) (o + n) > sub.len) {
|
|
ofs = 0; // Error parsing key, stop scanning
|
|
} else {
|
|
if (key) *key = mg_str_n(sub.buf + o, (size_t) n);
|
|
sub.buf += o + n, sub.len -= (size_t) (o + n);
|
|
while (sub.len > 0 && *sub.buf != ':') sub.len--, sub.buf++;
|
|
if (sub.len > 0 && *sub.buf == ':') sub.len--, sub.buf++;
|
|
n = 0, o = mg_json_get(sub, "$", &n);
|
|
if (n < 0 || o < 0 || (size_t) (o + n) > sub.len) {
|
|
ofs = 0; // Error parsing value, stop scanning
|
|
} else {
|
|
if (val) *val = mg_str_n(sub.buf + o, (size_t) n);
|
|
ofs = (size_t) (&sub.buf[o + n] - obj.buf);
|
|
}
|
|
}
|
|
}
|
|
// MG_INFO(("SUB ofs %u %.*s", ofs, sub.len, sub.buf));
|
|
while (ofs && ofs < obj.len &&
|
|
(obj.buf[ofs] == ' ' || obj.buf[ofs] == '\t' ||
|
|
obj.buf[ofs] == '\n' || obj.buf[ofs] == '\r')) {
|
|
ofs++;
|
|
}
|
|
if (ofs && ofs < obj.len && obj.buf[ofs] == ',') ofs++;
|
|
if (ofs > obj.len) ofs = 0;
|
|
}
|
|
return ofs;
|
|
}
|
|
|
|
int mg_json_get(struct mg_str json, const char *path, int *toklen) {
|
|
const char *s = json.buf;
|
|
int len = (int) json.len;
|
|
enum { S_VALUE, S_KEY, S_COLON, S_COMMA_OR_EOO } expecting = S_VALUE;
|
|
unsigned char nesting[MG_JSON_MAX_DEPTH];
|
|
int i = 0; // Current offset in `s`
|
|
int j = 0; // Offset in `s` we're looking for (return value)
|
|
int depth = 0; // Current depth (nesting level)
|
|
int ed = 0; // Expected depth
|
|
int pos = 1; // Current position in `path`
|
|
int ci = -1, ei = -1; // Current and expected index in array
|
|
|
|
if (toklen) *toklen = 0;
|
|
if (path[0] != '$') return MG_JSON_INVALID;
|
|
|
|
#define MG_CHECKRET(x) \
|
|
do { \
|
|
if (depth == ed && path[pos] == '\0' && ci == ei) { \
|
|
if (toklen) *toklen = i - j + 1; \
|
|
return j; \
|
|
} \
|
|
} while (0)
|
|
|
|
// In the ascii table, the distance between `[` and `]` is 2.
|
|
// Ditto for `{` and `}`. Hence +2 in the code below.
|
|
#define MG_EOO(x) \
|
|
do { \
|
|
if (depth == ed && ci != ei) return MG_JSON_NOT_FOUND; \
|
|
if (c != nesting[depth - 1] + 2) return MG_JSON_INVALID; \
|
|
depth--; \
|
|
MG_CHECKRET(x); \
|
|
} while (0)
|
|
|
|
for (i = 0; i < len; i++) {
|
|
unsigned char c = ((unsigned char *) s)[i];
|
|
if (c == ' ' || c == '\t' || c == '\n' || c == '\r') continue;
|
|
switch (expecting) {
|
|
case S_VALUE:
|
|
// p("V %s [%.*s] %d %d %d %d\n", path, pos, path, depth, ed, ci, ei);
|
|
if (depth == ed) j = i;
|
|
if (c == '{') {
|
|
if (depth >= (int) sizeof(nesting)) return MG_JSON_TOO_DEEP;
|
|
if (depth == ed && path[pos] == '.' && ci == ei) {
|
|
// If we start the object, reset array indices
|
|
ed++, pos++, ci = ei = -1;
|
|
}
|
|
nesting[depth++] = c;
|
|
expecting = S_KEY;
|
|
break;
|
|
} else if (c == '[') {
|
|
if (depth >= (int) sizeof(nesting)) return MG_JSON_TOO_DEEP;
|
|
if (depth == ed && path[pos] == '[' && ei == ci) {
|
|
ed++, pos++, ci = 0;
|
|
for (ei = 0; path[pos] != ']' && path[pos] != '\0'; pos++) {
|
|
ei *= 10;
|
|
ei += path[pos] - '0';
|
|
}
|
|
if (path[pos] != 0) pos++;
|
|
}
|
|
nesting[depth++] = c;
|
|
break;
|
|
} else if (c == ']' && depth > 0) { // Empty array
|
|
MG_EOO(']');
|
|
} else if (c == 't' && i + 3 < len && memcmp(&s[i], "true", 4) == 0) {
|
|
i += 3;
|
|
} else if (c == 'n' && i + 3 < len && memcmp(&s[i], "null", 4) == 0) {
|
|
i += 3;
|
|
} else if (c == 'f' && i + 4 < len && memcmp(&s[i], "false", 5) == 0) {
|
|
i += 4;
|
|
} else if (c == '-' || ((c >= '0' && c <= '9'))) {
|
|
int numlen = 0;
|
|
mg_atod(&s[i], len - i, &numlen);
|
|
i += numlen - 1;
|
|
} else if (c == '"') {
|
|
int n = mg_pass_string(&s[i + 1], len - i - 1);
|
|
if (n < 0) return n;
|
|
i += n + 1;
|
|
} else {
|
|
return MG_JSON_INVALID;
|
|
}
|
|
MG_CHECKRET('V');
|
|
if (depth == ed && ei >= 0) ci++;
|
|
expecting = S_COMMA_OR_EOO;
|
|
break;
|
|
|
|
case S_KEY:
|
|
if (c == '"') {
|
|
int n = mg_pass_string(&s[i + 1], len - i - 1);
|
|
if (n < 0) return n;
|
|
if (i + 1 + n >= len) return MG_JSON_NOT_FOUND;
|
|
if (depth < ed) return MG_JSON_NOT_FOUND;
|
|
if (depth == ed && path[pos - 1] != '.') return MG_JSON_NOT_FOUND;
|
|
// printf("K %s [%.*s] [%.*s] %d %d %d %d %d\n", path, pos, path, n,
|
|
// &s[i + 1], n, depth, ed, ci, ei);
|
|
// NOTE(cpq): in the check sequence below is important.
|
|
// strncmp() must go first: it fails fast if the remaining length
|
|
// of the path is smaller than `n`.
|
|
if (depth == ed && path[pos - 1] == '.' &&
|
|
strncmp(&s[i + 1], &path[pos], (size_t) n) == 0 &&
|
|
(path[pos + n] == '\0' || path[pos + n] == '.' ||
|
|
path[pos + n] == '[')) {
|
|
pos += n;
|
|
}
|
|
i += n + 1;
|
|
expecting = S_COLON;
|
|
} else if (c == '}') { // Empty object
|
|
MG_EOO('}');
|
|
expecting = S_COMMA_OR_EOO;
|
|
if (depth == ed && ei >= 0) ci++;
|
|
} else {
|
|
return MG_JSON_INVALID;
|
|
}
|
|
break;
|
|
|
|
case S_COLON:
|
|
if (c == ':') {
|
|
expecting = S_VALUE;
|
|
} else {
|
|
return MG_JSON_INVALID;
|
|
}
|
|
break;
|
|
|
|
case S_COMMA_OR_EOO:
|
|
if (depth <= 0) {
|
|
return MG_JSON_INVALID;
|
|
} else if (c == ',') {
|
|
expecting = (nesting[depth - 1] == '{') ? S_KEY : S_VALUE;
|
|
} else if (c == ']' || c == '}') {
|
|
if (depth == ed && c == '}' && path[pos - 1] == '.')
|
|
return MG_JSON_NOT_FOUND;
|
|
if (depth == ed && c == ']' && path[pos - 1] == ',')
|
|
return MG_JSON_NOT_FOUND;
|
|
MG_EOO('O');
|
|
if (depth == ed && ei >= 0) ci++;
|
|
} else {
|
|
return MG_JSON_INVALID;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return MG_JSON_NOT_FOUND;
|
|
}
|
|
|
|
struct mg_str mg_json_get_tok(struct mg_str json, const char *path) {
|
|
int len = 0, ofs = mg_json_get(json, path, &len);
|
|
return mg_str_n(ofs < 0 ? NULL : json.buf + ofs,
|
|
(size_t) (len < 0 ? 0 : len));
|
|
}
|
|
|
|
bool mg_json_get_num(struct mg_str json, const char *path, double *v) {
|
|
int n, toklen, found = 0;
|
|
if ((n = mg_json_get(json, path, &toklen)) >= 0 &&
|
|
(json.buf[n] == '-' || (json.buf[n] >= '0' && json.buf[n] <= '9'))) {
|
|
if (v != NULL) *v = mg_atod(json.buf + n, toklen, NULL);
|
|
found = 1;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool mg_json_get_bool(struct mg_str json, const char *path, bool *v) {
|
|
int found = 0, off = mg_json_get(json, path, NULL);
|
|
if (off >= 0 && (json.buf[off] == 't' || json.buf[off] == 'f')) {
|
|
if (v != NULL) *v = json.buf[off] == 't';
|
|
found = 1;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool mg_json_unescape(struct mg_str s, char *to, size_t n) {
|
|
size_t i, j;
|
|
for (i = 0, j = 0; i < s.len && j < n; i++, j++) {
|
|
if (s.buf[i] == '\\' && i + 5 < s.len && s.buf[i + 1] == 'u') {
|
|
// \uXXXX escape. We could process a simple one-byte chars
|
|
// \u00xx from the ASCII range. More complex chars would require
|
|
// dragging in a UTF8 library, which is too much for us
|
|
if (s.buf[i + 2] != '0' || s.buf[i + 3] != '0') return false; // Give up
|
|
((unsigned char *) to)[j] = (unsigned char) mg_unhexn(s.buf + i + 4, 2);
|
|
|
|
i += 5;
|
|
} else if (s.buf[i] == '\\' && i + 1 < s.len) {
|
|
char c = json_esc(s.buf[i + 1], 0);
|
|
if (c == 0) return false;
|
|
to[j] = c;
|
|
i++;
|
|
} else {
|
|
to[j] = s.buf[i];
|
|
}
|
|
}
|
|
if (j >= n) return false;
|
|
if (n > 0) to[j] = '\0';
|
|
return true;
|
|
}
|
|
|
|
char *mg_json_get_str(struct mg_str json, const char *path) {
|
|
char *result = NULL;
|
|
int len = 0, off = mg_json_get(json, path, &len);
|
|
if (off >= 0 && len > 1 && json.buf[off] == '"') {
|
|
if ((result = (char *) calloc(1, (size_t) len)) != NULL &&
|
|
!mg_json_unescape(mg_str_n(json.buf + off + 1, (size_t) (len - 2)),
|
|
result, (size_t) len)) {
|
|
free(result);
|
|
result = NULL;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
char *mg_json_get_b64(struct mg_str json, const char *path, int *slen) {
|
|
char *result = NULL;
|
|
int len = 0, off = mg_json_get(json, path, &len);
|
|
if (off >= 0 && json.buf[off] == '"' && len > 1 &&
|
|
(result = (char *) calloc(1, (size_t) len)) != NULL) {
|
|
size_t k = mg_base64_decode(json.buf + off + 1, (size_t) (len - 2), result,
|
|
(size_t) len);
|
|
if (slen != NULL) *slen = (int) k;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
char *mg_json_get_hex(struct mg_str json, const char *path, int *slen) {
|
|
char *result = NULL;
|
|
int len = 0, off = mg_json_get(json, path, &len);
|
|
if (off >= 0 && json.buf[off] == '"' && len > 1 &&
|
|
(result = (char *) calloc(1, (size_t) len / 2)) != NULL) {
|
|
mg_unhex(json.buf + off + 1, (size_t) (len - 2), (uint8_t *) result);
|
|
result[len / 2 - 1] = '\0';
|
|
if (slen != NULL) *slen = len / 2 - 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
long mg_json_get_long(struct mg_str json, const char *path, long dflt) {
|
|
double dv;
|
|
long result = dflt;
|
|
if (mg_json_get_num(json, path, &dv)) result = (long) dv;
|
|
return result;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/log.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
int mg_log_level = MG_LL_INFO;
|
|
static mg_pfn_t s_log_func = mg_pfn_stdout;
|
|
static void *s_log_func_param = NULL;
|
|
|
|
void mg_log_set_fn(mg_pfn_t fn, void *param) {
|
|
s_log_func = fn;
|
|
s_log_func_param = param;
|
|
}
|
|
|
|
static void logc(unsigned char c) {
|
|
s_log_func((char) c, s_log_func_param);
|
|
}
|
|
|
|
static void logs(const char *buf, size_t len) {
|
|
size_t i;
|
|
for (i = 0; i < len; i++) logc(((unsigned char *) buf)[i]);
|
|
}
|
|
|
|
#if MG_ENABLE_CUSTOM_LOG
|
|
// Let user define their own mg_log_prefix() and mg_log()
|
|
#else
|
|
void mg_log_prefix(int level, const char *file, int line, const char *fname) {
|
|
const char *p = strrchr(file, '/');
|
|
char buf[41];
|
|
size_t n;
|
|
if (p == NULL) p = strrchr(file, '\\');
|
|
n = mg_snprintf(buf, sizeof(buf), "%-6llx %d %s:%d:%s", mg_millis(), level,
|
|
p == NULL ? file : p + 1, line, fname);
|
|
if (n > sizeof(buf) - 2) n = sizeof(buf) - 2;
|
|
while (n < sizeof(buf)) buf[n++] = ' ';
|
|
logs(buf, n - 1);
|
|
}
|
|
|
|
void mg_log(const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mg_vxprintf(s_log_func, s_log_func_param, fmt, &ap);
|
|
va_end(ap);
|
|
logs("\r\n", 2);
|
|
}
|
|
#endif
|
|
|
|
static unsigned char nibble(unsigned c) {
|
|
return (unsigned char) (c < 10 ? c + '0' : c + 'W');
|
|
}
|
|
|
|
#define ISPRINT(x) ((x) >= ' ' && (x) <= '~')
|
|
void mg_hexdump(const void *buf, size_t len) {
|
|
const unsigned char *p = (const unsigned char *) buf;
|
|
unsigned char ascii[16], alen = 0;
|
|
size_t i;
|
|
for (i = 0; i < len; i++) {
|
|
if ((i % 16) == 0) {
|
|
// Print buffered ascii chars
|
|
if (i > 0) logs(" ", 2), logs((char *) ascii, 16), logc('\n'), alen = 0;
|
|
// Print hex address, then \t
|
|
logc(nibble((i >> 12) & 15)), logc(nibble((i >> 8) & 15)),
|
|
logc(nibble((i >> 4) & 15)), logc('0'), logs(" ", 3);
|
|
}
|
|
logc(nibble(p[i] >> 4)), logc(nibble(p[i] & 15)); // Two nibbles, e.g. c5
|
|
logc(' '); // Space after hex number
|
|
ascii[alen++] = ISPRINT(p[i]) ? p[i] : '.'; // Add to the ascii buf
|
|
}
|
|
while (alen < 16) logs(" ", 3), ascii[alen++] = ' ';
|
|
logs(" ", 2), logs((char *) ascii, 16), logc('\n');
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/md5.c"
|
|
#endif
|
|
|
|
|
|
|
|
// This code implements the MD5 message-digest algorithm.
|
|
// The algorithm is due to Ron Rivest. This code was
|
|
// written by Colin Plumb in 1993, no copyright is claimed.
|
|
// This code is in the public domain; do with it what you wish.
|
|
//
|
|
// Equivalent code is available from RSA Data Security, Inc.
|
|
// This code has been tested against that, and is equivalent,
|
|
// except that you don't need to include two pages of legalese
|
|
// with every copy.
|
|
//
|
|
// To compute the message digest of a chunk of bytes, declare an
|
|
// MD5Context structure, pass it to MD5Init, call MD5Update as
|
|
// needed on buffers full of bytes, and then call MD5Final, which
|
|
// will fill a supplied 16-byte array with the digest.
|
|
|
|
#if defined(MG_ENABLE_MD5) && MG_ENABLE_MD5
|
|
|
|
static void mg_byte_reverse(unsigned char *buf, unsigned longs) {
|
|
if (MG_BIG_ENDIAN) {
|
|
do {
|
|
uint32_t t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
|
|
((unsigned) buf[1] << 8 | buf[0]);
|
|
*(uint32_t *) buf = t;
|
|
buf += 4;
|
|
} while (--longs);
|
|
} else {
|
|
(void) buf, (void) longs; // Little endian. Do nothing
|
|
}
|
|
}
|
|
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
|
#define F2(x, y, z) F1(z, x, y)
|
|
#define F3(x, y, z) (x ^ y ^ z)
|
|
#define F4(x, y, z) (y ^ (x | ~z))
|
|
|
|
#define MD5STEP(f, w, x, y, z, data, s) \
|
|
(w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
|
|
|
|
/*
|
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
|
* initialization constants.
|
|
*/
|
|
void mg_md5_init(mg_md5_ctx *ctx) {
|
|
ctx->buf[0] = 0x67452301;
|
|
ctx->buf[1] = 0xefcdab89;
|
|
ctx->buf[2] = 0x98badcfe;
|
|
ctx->buf[3] = 0x10325476;
|
|
|
|
ctx->bits[0] = 0;
|
|
ctx->bits[1] = 0;
|
|
}
|
|
|
|
static void mg_md5_transform(uint32_t buf[4], uint32_t const in[16]) {
|
|
uint32_t a, b, c, d;
|
|
|
|
a = buf[0];
|
|
b = buf[1];
|
|
c = buf[2];
|
|
d = buf[3];
|
|
|
|
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
|
|
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
|
|
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
|
|
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
|
|
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
|
|
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
|
|
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
|
|
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
|
|
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
|
|
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
|
|
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
|
|
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
|
|
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
|
|
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
|
|
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
|
|
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
|
|
|
|
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
|
|
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
|
|
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
|
|
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
|
|
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
|
|
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
|
|
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
|
|
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
|
|
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
|
|
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
|
|
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
|
|
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
|
|
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
|
|
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
|
|
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
|
|
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
|
|
|
|
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
|
|
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
|
|
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
|
|
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
|
|
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
|
|
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
|
|
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
|
|
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
|
|
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
|
|
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
|
|
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
|
|
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
|
|
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
|
|
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
|
|
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
|
|
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
|
|
|
|
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
|
|
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
|
|
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
|
|
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
|
|
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
|
|
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
|
|
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
|
|
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
|
|
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
|
|
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
|
|
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
|
|
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
|
|
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
|
|
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
|
|
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
|
|
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
}
|
|
|
|
void mg_md5_update(mg_md5_ctx *ctx, const unsigned char *buf, size_t len) {
|
|
uint32_t t;
|
|
|
|
t = ctx->bits[0];
|
|
if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) ctx->bits[1]++;
|
|
ctx->bits[1] += (uint32_t) len >> 29;
|
|
|
|
t = (t >> 3) & 0x3f;
|
|
|
|
if (t) {
|
|
unsigned char *p = (unsigned char *) ctx->in + t;
|
|
|
|
t = 64 - t;
|
|
if (len < t) {
|
|
memcpy(p, buf, len);
|
|
return;
|
|
}
|
|
memcpy(p, buf, t);
|
|
mg_byte_reverse(ctx->in, 16);
|
|
mg_md5_transform(ctx->buf, (uint32_t *) ctx->in);
|
|
buf += t;
|
|
len -= t;
|
|
}
|
|
|
|
while (len >= 64) {
|
|
memcpy(ctx->in, buf, 64);
|
|
mg_byte_reverse(ctx->in, 16);
|
|
mg_md5_transform(ctx->buf, (uint32_t *) ctx->in);
|
|
buf += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
memcpy(ctx->in, buf, len);
|
|
}
|
|
|
|
void mg_md5_final(mg_md5_ctx *ctx, unsigned char digest[16]) {
|
|
unsigned count;
|
|
unsigned char *p;
|
|
uint32_t *a;
|
|
|
|
count = (ctx->bits[0] >> 3) & 0x3F;
|
|
|
|
p = ctx->in + count;
|
|
*p++ = 0x80;
|
|
count = 64 - 1 - count;
|
|
if (count < 8) {
|
|
memset(p, 0, count);
|
|
mg_byte_reverse(ctx->in, 16);
|
|
mg_md5_transform(ctx->buf, (uint32_t *) ctx->in);
|
|
memset(ctx->in, 0, 56);
|
|
} else {
|
|
memset(p, 0, count - 8);
|
|
}
|
|
mg_byte_reverse(ctx->in, 14);
|
|
|
|
a = (uint32_t *) ctx->in;
|
|
a[14] = ctx->bits[0];
|
|
a[15] = ctx->bits[1];
|
|
|
|
mg_md5_transform(ctx->buf, (uint32_t *) ctx->in);
|
|
mg_byte_reverse((unsigned char *) ctx->buf, 4);
|
|
memcpy(digest, ctx->buf, 16);
|
|
memset((char *) ctx, 0, sizeof(*ctx));
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/mqtt.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define MQTT_CLEAN_SESSION 0x02
|
|
#define MQTT_HAS_WILL 0x04
|
|
#define MQTT_WILL_RETAIN 0x20
|
|
#define MQTT_HAS_PASSWORD 0x40
|
|
#define MQTT_HAS_USER_NAME 0x80
|
|
|
|
struct mg_mqtt_pmap {
|
|
uint8_t id;
|
|
uint8_t type;
|
|
};
|
|
|
|
static const struct mg_mqtt_pmap s_prop_map[] = {
|
|
{MQTT_PROP_PAYLOAD_FORMAT_INDICATOR, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_MESSAGE_EXPIRY_INTERVAL, MQTT_PROP_TYPE_INT},
|
|
{MQTT_PROP_CONTENT_TYPE, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_RESPONSE_TOPIC, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_CORRELATION_DATA, MQTT_PROP_TYPE_BINARY_DATA},
|
|
{MQTT_PROP_SUBSCRIPTION_IDENTIFIER, MQTT_PROP_TYPE_VARIABLE_INT},
|
|
{MQTT_PROP_SESSION_EXPIRY_INTERVAL, MQTT_PROP_TYPE_INT},
|
|
{MQTT_PROP_ASSIGNED_CLIENT_IDENTIFIER, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_SERVER_KEEP_ALIVE, MQTT_PROP_TYPE_SHORT},
|
|
{MQTT_PROP_AUTHENTICATION_METHOD, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_AUTHENTICATION_DATA, MQTT_PROP_TYPE_BINARY_DATA},
|
|
{MQTT_PROP_REQUEST_PROBLEM_INFORMATION, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_WILL_DELAY_INTERVAL, MQTT_PROP_TYPE_INT},
|
|
{MQTT_PROP_REQUEST_RESPONSE_INFORMATION, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_RESPONSE_INFORMATION, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_SERVER_REFERENCE, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_REASON_STRING, MQTT_PROP_TYPE_STRING},
|
|
{MQTT_PROP_RECEIVE_MAXIMUM, MQTT_PROP_TYPE_SHORT},
|
|
{MQTT_PROP_TOPIC_ALIAS_MAXIMUM, MQTT_PROP_TYPE_SHORT},
|
|
{MQTT_PROP_TOPIC_ALIAS, MQTT_PROP_TYPE_SHORT},
|
|
{MQTT_PROP_MAXIMUM_QOS, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_RETAIN_AVAILABLE, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_USER_PROPERTY, MQTT_PROP_TYPE_STRING_PAIR},
|
|
{MQTT_PROP_MAXIMUM_PACKET_SIZE, MQTT_PROP_TYPE_INT},
|
|
{MQTT_PROP_WILDCARD_SUBSCRIPTION_AVAILABLE, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_SUBSCRIPTION_IDENTIFIER_AVAILABLE, MQTT_PROP_TYPE_BYTE},
|
|
{MQTT_PROP_SHARED_SUBSCRIPTION_AVAILABLE, MQTT_PROP_TYPE_BYTE}};
|
|
|
|
void mg_mqtt_send_header(struct mg_connection *c, uint8_t cmd, uint8_t flags,
|
|
uint32_t len) {
|
|
uint8_t buf[1 + sizeof(len)], *vlen = &buf[1];
|
|
buf[0] = (uint8_t) ((cmd << 4) | flags);
|
|
do {
|
|
*vlen = len % 0x80;
|
|
len /= 0x80;
|
|
if (len > 0) *vlen |= 0x80;
|
|
vlen++;
|
|
} while (len > 0 && vlen < &buf[sizeof(buf)]);
|
|
mg_send(c, buf, (size_t) (vlen - buf));
|
|
}
|
|
|
|
static void mg_send_u16(struct mg_connection *c, uint16_t value) {
|
|
mg_send(c, &value, sizeof(value));
|
|
}
|
|
|
|
static void mg_send_u32(struct mg_connection *c, uint32_t value) {
|
|
mg_send(c, &value, sizeof(value));
|
|
}
|
|
|
|
static uint8_t varint_size(size_t length) {
|
|
uint8_t bytes_needed = 0;
|
|
do {
|
|
bytes_needed++;
|
|
length /= 0x80;
|
|
} while (length > 0);
|
|
return bytes_needed;
|
|
}
|
|
|
|
static size_t encode_varint(uint8_t *buf, size_t value) {
|
|
size_t len = 0;
|
|
|
|
do {
|
|
uint8_t byte = (uint8_t) (value % 128);
|
|
value /= 128;
|
|
if (value > 0) byte |= 0x80;
|
|
buf[len++] = byte;
|
|
} while (value > 0);
|
|
|
|
return len;
|
|
}
|
|
|
|
static size_t decode_varint(const uint8_t *buf, size_t len, size_t *value) {
|
|
size_t multiplier = 1, offset;
|
|
*value = 0;
|
|
|
|
for (offset = 0; offset < 4 && offset < len; offset++) {
|
|
uint8_t encoded_byte = buf[offset];
|
|
*value += (encoded_byte & 0x7f) * multiplier;
|
|
multiplier *= 128;
|
|
|
|
if ((encoded_byte & 0x80) == 0) return offset + 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mqtt_prop_type_by_id(uint8_t prop_id) {
|
|
size_t i, num_properties = sizeof(s_prop_map) / sizeof(s_prop_map[0]);
|
|
for (i = 0; i < num_properties; ++i) {
|
|
if (s_prop_map[i].id == prop_id) return s_prop_map[i].type;
|
|
}
|
|
return -1; // Property ID not found
|
|
}
|
|
|
|
// Returns the size of the properties section, without the
|
|
// size of the content's length
|
|
static size_t get_properties_length(struct mg_mqtt_prop *props, size_t count) {
|
|
size_t i, size = 0;
|
|
for (i = 0; i < count; i++) {
|
|
size++; // identifier
|
|
switch (mqtt_prop_type_by_id(props[i].id)) {
|
|
case MQTT_PROP_TYPE_STRING_PAIR:
|
|
size += (uint32_t) (props[i].val.len + props[i].key.len +
|
|
2 * sizeof(uint16_t));
|
|
break;
|
|
case MQTT_PROP_TYPE_STRING:
|
|
size += (uint32_t) (props[i].val.len + sizeof(uint16_t));
|
|
break;
|
|
case MQTT_PROP_TYPE_BINARY_DATA:
|
|
size += (uint32_t) (props[i].val.len + sizeof(uint16_t));
|
|
break;
|
|
case MQTT_PROP_TYPE_VARIABLE_INT:
|
|
size += varint_size((uint32_t) props[i].iv);
|
|
break;
|
|
case MQTT_PROP_TYPE_INT:
|
|
size += (uint32_t) sizeof(uint32_t);
|
|
break;
|
|
case MQTT_PROP_TYPE_SHORT:
|
|
size += (uint32_t) sizeof(uint16_t);
|
|
break;
|
|
case MQTT_PROP_TYPE_BYTE:
|
|
size += (uint32_t) sizeof(uint8_t);
|
|
break;
|
|
default:
|
|
return size; // cannot parse further down
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
// returns the entire size of the properties section, including the
|
|
// size of the variable length of the content
|
|
static size_t get_props_size(struct mg_mqtt_prop *props, size_t count) {
|
|
size_t size = get_properties_length(props, count);
|
|
size += varint_size(size);
|
|
return size;
|
|
}
|
|
|
|
static void mg_send_mqtt_properties(struct mg_connection *c,
|
|
struct mg_mqtt_prop *props, size_t nprops) {
|
|
size_t total_size = get_properties_length(props, nprops);
|
|
uint8_t buf_v[4] = {0, 0, 0, 0};
|
|
uint8_t buf[4] = {0, 0, 0, 0};
|
|
size_t i, len = encode_varint(buf, total_size);
|
|
|
|
mg_send(c, buf, (size_t) len);
|
|
for (i = 0; i < nprops; i++) {
|
|
mg_send(c, &props[i].id, sizeof(props[i].id));
|
|
switch (mqtt_prop_type_by_id(props[i].id)) {
|
|
case MQTT_PROP_TYPE_STRING_PAIR:
|
|
mg_send_u16(c, mg_htons((uint16_t) props[i].key.len));
|
|
mg_send(c, props[i].key.buf, props[i].key.len);
|
|
mg_send_u16(c, mg_htons((uint16_t) props[i].val.len));
|
|
mg_send(c, props[i].val.buf, props[i].val.len);
|
|
break;
|
|
case MQTT_PROP_TYPE_BYTE:
|
|
mg_send(c, &props[i].iv, sizeof(uint8_t));
|
|
break;
|
|
case MQTT_PROP_TYPE_SHORT:
|
|
mg_send_u16(c, mg_htons((uint16_t) props[i].iv));
|
|
break;
|
|
case MQTT_PROP_TYPE_INT:
|
|
mg_send_u32(c, mg_htonl((uint32_t) props[i].iv));
|
|
break;
|
|
case MQTT_PROP_TYPE_STRING:
|
|
mg_send_u16(c, mg_htons((uint16_t) props[i].val.len));
|
|
mg_send(c, props[i].val.buf, props[i].val.len);
|
|
break;
|
|
case MQTT_PROP_TYPE_BINARY_DATA:
|
|
mg_send_u16(c, mg_htons((uint16_t) props[i].val.len));
|
|
mg_send(c, props[i].val.buf, props[i].val.len);
|
|
break;
|
|
case MQTT_PROP_TYPE_VARIABLE_INT:
|
|
len = encode_varint(buf_v, props[i].iv);
|
|
mg_send(c, buf_v, (size_t) len);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t mg_mqtt_next_prop(struct mg_mqtt_message *msg, struct mg_mqtt_prop *prop,
|
|
size_t ofs) {
|
|
uint8_t *i = (uint8_t *) msg->dgram.buf + msg->props_start + ofs;
|
|
uint8_t *end = (uint8_t *) msg->dgram.buf + msg->dgram.len;
|
|
size_t new_pos = ofs, len;
|
|
prop->id = i[0];
|
|
|
|
if (ofs >= msg->dgram.len || ofs >= msg->props_start + msg->props_size)
|
|
return 0;
|
|
i++, new_pos++;
|
|
|
|
switch (mqtt_prop_type_by_id(prop->id)) {
|
|
case MQTT_PROP_TYPE_STRING_PAIR:
|
|
prop->key.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]);
|
|
prop->key.buf = (char *) i + 2;
|
|
i += 2 + prop->key.len;
|
|
prop->val.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]);
|
|
prop->val.buf = (char *) i + 2;
|
|
new_pos += 2 * sizeof(uint16_t) + prop->val.len + prop->key.len;
|
|
break;
|
|
case MQTT_PROP_TYPE_BYTE:
|
|
prop->iv = (uint8_t) i[0];
|
|
new_pos++;
|
|
break;
|
|
case MQTT_PROP_TYPE_SHORT:
|
|
prop->iv = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]);
|
|
new_pos += sizeof(uint16_t);
|
|
break;
|
|
case MQTT_PROP_TYPE_INT:
|
|
prop->iv = ((uint32_t) i[0] << 24) | ((uint32_t) i[1] << 16) |
|
|
((uint32_t) i[2] << 8) | i[3];
|
|
new_pos += sizeof(uint32_t);
|
|
break;
|
|
case MQTT_PROP_TYPE_STRING:
|
|
prop->val.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]);
|
|
prop->val.buf = (char *) i + 2;
|
|
new_pos += 2 + prop->val.len;
|
|
break;
|
|
case MQTT_PROP_TYPE_BINARY_DATA:
|
|
prop->val.len = (uint16_t) ((((uint16_t) i[0]) << 8) | i[1]);
|
|
prop->val.buf = (char *) i + 2;
|
|
new_pos += 2 + prop->val.len;
|
|
break;
|
|
case MQTT_PROP_TYPE_VARIABLE_INT:
|
|
len = decode_varint(i, (size_t) (end - i), (size_t *) &prop->iv);
|
|
new_pos = (!len) ? 0 : new_pos + len;
|
|
break;
|
|
default:
|
|
new_pos = 0;
|
|
}
|
|
|
|
return new_pos;
|
|
}
|
|
|
|
void mg_mqtt_login(struct mg_connection *c, const struct mg_mqtt_opts *opts) {
|
|
char client_id[21];
|
|
struct mg_str cid = opts->client_id;
|
|
size_t total_len = 7 + 1 + 2 + 2;
|
|
uint8_t hdr[8] = {0, 4, 'M', 'Q', 'T', 'T', opts->version, 0};
|
|
|
|
if (cid.len == 0) {
|
|
mg_random_str(client_id, sizeof(client_id) - 1);
|
|
client_id[sizeof(client_id) - 1] = '\0';
|
|
cid = mg_str(client_id);
|
|
}
|
|
|
|
if (hdr[6] == 0) hdr[6] = 4; // If version is not set, use 4 (3.1.1)
|
|
c->is_mqtt5 = hdr[6] == 5; // Set version 5 flag
|
|
hdr[7] = (uint8_t) ((opts->qos & 3) << 3); // Connection flags
|
|
if (opts->user.len > 0) {
|
|
total_len += 2 + (uint32_t) opts->user.len;
|
|
hdr[7] |= MQTT_HAS_USER_NAME;
|
|
}
|
|
if (opts->pass.len > 0) {
|
|
total_len += 2 + (uint32_t) opts->pass.len;
|
|
hdr[7] |= MQTT_HAS_PASSWORD;
|
|
}
|
|
if (opts->topic.len > 0) { // allow zero-length msgs, message.len is size_t
|
|
total_len += 4 + (uint32_t) opts->topic.len + (uint32_t) opts->message.len;
|
|
hdr[7] |= MQTT_HAS_WILL;
|
|
}
|
|
if (opts->clean || cid.len == 0) hdr[7] |= MQTT_CLEAN_SESSION;
|
|
if (opts->retain) hdr[7] |= MQTT_WILL_RETAIN;
|
|
total_len += (uint32_t) cid.len;
|
|
if (c->is_mqtt5) {
|
|
total_len += get_props_size(opts->props, opts->num_props);
|
|
if (hdr[7] & MQTT_HAS_WILL)
|
|
total_len += get_props_size(opts->will_props, opts->num_will_props);
|
|
}
|
|
|
|
mg_mqtt_send_header(c, MQTT_CMD_CONNECT, 0, (uint32_t) total_len);
|
|
mg_send(c, hdr, sizeof(hdr));
|
|
// keepalive == 0 means "do not disconnect us!"
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->keepalive));
|
|
|
|
if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->props, opts->num_props);
|
|
|
|
mg_send_u16(c, mg_htons((uint16_t) cid.len));
|
|
mg_send(c, cid.buf, cid.len);
|
|
|
|
if (hdr[7] & MQTT_HAS_WILL) {
|
|
if (c->is_mqtt5)
|
|
mg_send_mqtt_properties(c, opts->will_props, opts->num_will_props);
|
|
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->topic.len));
|
|
mg_send(c, opts->topic.buf, opts->topic.len);
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->message.len));
|
|
mg_send(c, opts->message.buf, opts->message.len);
|
|
}
|
|
if (opts->user.len > 0) {
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->user.len));
|
|
mg_send(c, opts->user.buf, opts->user.len);
|
|
}
|
|
if (opts->pass.len > 0) {
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->pass.len));
|
|
mg_send(c, opts->pass.buf, opts->pass.len);
|
|
}
|
|
}
|
|
|
|
uint16_t mg_mqtt_pub(struct mg_connection *c, const struct mg_mqtt_opts *opts) {
|
|
uint16_t id = opts->retransmit_id;
|
|
uint8_t flags = (uint8_t) (((opts->qos & 3) << 1) | (opts->retain ? 1 : 0));
|
|
size_t len = 2 + opts->topic.len + opts->message.len;
|
|
MG_DEBUG(("%lu [%.*s] -> [%.*s]", c->id, (int) opts->topic.len,
|
|
(char *) opts->topic.buf, (int) opts->message.len,
|
|
(char *) opts->message.buf));
|
|
if (opts->qos > 0) len += 2;
|
|
if (c->is_mqtt5) len += get_props_size(opts->props, opts->num_props);
|
|
|
|
if (opts->qos > 0 && id != 0) flags |= 1 << 3;
|
|
mg_mqtt_send_header(c, MQTT_CMD_PUBLISH, flags, (uint32_t) len);
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->topic.len));
|
|
mg_send(c, opts->topic.buf, opts->topic.len);
|
|
if (opts->qos > 0) { // need to send 'id' field
|
|
if (id == 0) { // generate new one if not resending
|
|
if (++c->mgr->mqtt_id == 0) ++c->mgr->mqtt_id;
|
|
id = c->mgr->mqtt_id;
|
|
}
|
|
mg_send_u16(c, mg_htons(id));
|
|
}
|
|
|
|
if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->props, opts->num_props);
|
|
|
|
if (opts->message.len > 0) mg_send(c, opts->message.buf, opts->message.len);
|
|
return id;
|
|
}
|
|
|
|
void mg_mqtt_sub(struct mg_connection *c, const struct mg_mqtt_opts *opts) {
|
|
uint8_t qos_ = opts->qos & 3;
|
|
size_t plen = c->is_mqtt5 ? get_props_size(opts->props, opts->num_props) : 0;
|
|
size_t len = 2 + opts->topic.len + 2 + 1 + plen;
|
|
|
|
mg_mqtt_send_header(c, MQTT_CMD_SUBSCRIBE, 2, (uint32_t) len);
|
|
if (++c->mgr->mqtt_id == 0) ++c->mgr->mqtt_id;
|
|
mg_send_u16(c, mg_htons(c->mgr->mqtt_id));
|
|
if (c->is_mqtt5) mg_send_mqtt_properties(c, opts->props, opts->num_props);
|
|
|
|
mg_send_u16(c, mg_htons((uint16_t) opts->topic.len));
|
|
mg_send(c, opts->topic.buf, opts->topic.len);
|
|
mg_send(c, &qos_, sizeof(qos_));
|
|
}
|
|
|
|
int mg_mqtt_parse(const uint8_t *buf, size_t len, uint8_t version,
|
|
struct mg_mqtt_message *m) {
|
|
uint8_t lc = 0, *p, *end;
|
|
uint32_t n = 0, len_len = 0;
|
|
|
|
memset(m, 0, sizeof(*m));
|
|
m->dgram.buf = (char *) buf;
|
|
if (len < 2) return MQTT_INCOMPLETE;
|
|
m->cmd = (uint8_t) (buf[0] >> 4);
|
|
m->qos = (buf[0] >> 1) & 3;
|
|
|
|
n = len_len = 0;
|
|
p = (uint8_t *) buf + 1;
|
|
while ((size_t) (p - buf) < len) {
|
|
lc = *((uint8_t *) p++);
|
|
n += (uint32_t) ((lc & 0x7f) << 7 * len_len);
|
|
len_len++;
|
|
if (!(lc & 0x80)) break;
|
|
if (len_len >= 4) return MQTT_MALFORMED;
|
|
}
|
|
end = p + n;
|
|
if ((lc & 0x80) || (end > buf + len)) return MQTT_INCOMPLETE;
|
|
m->dgram.len = (size_t) (end - buf);
|
|
|
|
switch (m->cmd) {
|
|
case MQTT_CMD_CONNACK:
|
|
if (end - p < 2) return MQTT_MALFORMED;
|
|
m->ack = p[1];
|
|
break;
|
|
case MQTT_CMD_PUBACK:
|
|
case MQTT_CMD_PUBREC:
|
|
case MQTT_CMD_PUBREL:
|
|
case MQTT_CMD_PUBCOMP:
|
|
case MQTT_CMD_SUBSCRIBE:
|
|
case MQTT_CMD_SUBACK:
|
|
case MQTT_CMD_UNSUBSCRIBE:
|
|
case MQTT_CMD_UNSUBACK:
|
|
if (p + 2 > end) return MQTT_MALFORMED;
|
|
m->id = (uint16_t) ((((uint16_t) p[0]) << 8) | p[1]);
|
|
p += 2;
|
|
break;
|
|
case MQTT_CMD_PUBLISH: {
|
|
if (p + 2 > end) return MQTT_MALFORMED;
|
|
m->topic.len = (uint16_t) ((((uint16_t) p[0]) << 8) | p[1]);
|
|
m->topic.buf = (char *) p + 2;
|
|
p += 2 + m->topic.len;
|
|
if (p > end) return MQTT_MALFORMED;
|
|
if (m->qos > 0) {
|
|
if (p + 2 > end) return MQTT_MALFORMED;
|
|
m->id = (uint16_t) ((((uint16_t) p[0]) << 8) | p[1]);
|
|
p += 2;
|
|
}
|
|
if (p > end) return MQTT_MALFORMED;
|
|
if (version == 5 && p + 2 < end) {
|
|
len_len =
|
|
(uint32_t) decode_varint(p, (size_t) (end - p), &m->props_size);
|
|
if (!len_len) return MQTT_MALFORMED;
|
|
m->props_start = (size_t) (p + len_len - buf);
|
|
p += len_len + m->props_size;
|
|
}
|
|
if (p > end) return MQTT_MALFORMED;
|
|
m->data.buf = (char *) p;
|
|
m->data.len = (size_t) (end - p);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return MQTT_OK;
|
|
}
|
|
|
|
static void mqtt_cb(struct mg_connection *c, int ev, void *ev_data) {
|
|
if (ev == MG_EV_READ) {
|
|
for (;;) {
|
|
uint8_t version = c->is_mqtt5 ? 5 : 4;
|
|
struct mg_mqtt_message mm;
|
|
int rc = mg_mqtt_parse(c->recv.buf, c->recv.len, version, &mm);
|
|
if (rc == MQTT_MALFORMED) {
|
|
MG_ERROR(("%lu MQTT malformed message", c->id));
|
|
c->is_closing = 1;
|
|
break;
|
|
} else if (rc == MQTT_OK) {
|
|
MG_VERBOSE(("%lu MQTT CMD %d len %d [%.*s]", c->id, mm.cmd,
|
|
(int) mm.dgram.len, (int) mm.data.len, mm.data.buf));
|
|
switch (mm.cmd) {
|
|
case MQTT_CMD_CONNACK:
|
|
mg_call(c, MG_EV_MQTT_OPEN, &mm.ack);
|
|
if (mm.ack == 0) {
|
|
MG_DEBUG(("%lu Connected", c->id));
|
|
} else {
|
|
MG_ERROR(("%lu MQTT auth failed, code %d", c->id, mm.ack));
|
|
c->is_closing = 1;
|
|
}
|
|
break;
|
|
case MQTT_CMD_PUBLISH: {
|
|
/*MG_DEBUG(("%lu [%.*s] -> [%.*s]", c->id, (int) mm.topic.len,
|
|
mm.topic.buf, (int) mm.data.len, mm.data.buf));*/
|
|
if (mm.qos > 0) {
|
|
uint16_t id = mg_ntohs(mm.id);
|
|
uint32_t remaining_len = sizeof(id);
|
|
if (c->is_mqtt5) remaining_len += 2; // 3.4.2
|
|
|
|
mg_mqtt_send_header(
|
|
c,
|
|
(uint8_t) (mm.qos == 2 ? MQTT_CMD_PUBREC : MQTT_CMD_PUBACK),
|
|
0, remaining_len);
|
|
mg_send(c, &id, sizeof(id));
|
|
|
|
if (c->is_mqtt5) {
|
|
uint16_t zero = 0;
|
|
mg_send(c, &zero, sizeof(zero));
|
|
}
|
|
}
|
|
mg_call(c, MG_EV_MQTT_MSG, &mm); // let the app handle qos stuff
|
|
break;
|
|
}
|
|
case MQTT_CMD_PUBREC: { // MQTT5: 3.5.2-1 TODO(): variable header rc
|
|
uint16_t id = mg_ntohs(mm.id);
|
|
uint32_t remaining_len = sizeof(id); // MQTT5 3.6.2-1
|
|
mg_mqtt_send_header(c, MQTT_CMD_PUBREL, 2, remaining_len);
|
|
mg_send(c, &id, sizeof(id)); // MQTT5 3.6.1-1, flags = 2
|
|
break;
|
|
}
|
|
case MQTT_CMD_PUBREL: { // MQTT5: 3.6.2-1 TODO(): variable header rc
|
|
uint16_t id = mg_ntohs(mm.id);
|
|
uint32_t remaining_len = sizeof(id); // MQTT5 3.7.2-1
|
|
mg_mqtt_send_header(c, MQTT_CMD_PUBCOMP, 0, remaining_len);
|
|
mg_send(c, &id, sizeof(id));
|
|
break;
|
|
}
|
|
}
|
|
mg_call(c, MG_EV_MQTT_CMD, &mm);
|
|
mg_iobuf_del(&c->recv, 0, mm.dgram.len);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
(void) ev_data;
|
|
}
|
|
|
|
void mg_mqtt_ping(struct mg_connection *nc) {
|
|
mg_mqtt_send_header(nc, MQTT_CMD_PINGREQ, 0, 0);
|
|
}
|
|
|
|
void mg_mqtt_pong(struct mg_connection *nc) {
|
|
mg_mqtt_send_header(nc, MQTT_CMD_PINGRESP, 0, 0);
|
|
}
|
|
|
|
void mg_mqtt_disconnect(struct mg_connection *c,
|
|
const struct mg_mqtt_opts *opts) {
|
|
size_t len = 0;
|
|
if (c->is_mqtt5) len = 1 + get_props_size(opts->props, opts->num_props);
|
|
mg_mqtt_send_header(c, MQTT_CMD_DISCONNECT, 0, (uint32_t) len);
|
|
|
|
if (c->is_mqtt5) {
|
|
uint8_t zero = 0;
|
|
mg_send(c, &zero, sizeof(zero)); // reason code
|
|
mg_send_mqtt_properties(c, opts->props, opts->num_props);
|
|
}
|
|
}
|
|
|
|
struct mg_connection *mg_mqtt_connect(struct mg_mgr *mgr, const char *url,
|
|
const struct mg_mqtt_opts *opts,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = mg_connect(mgr, url, fn, fn_data);
|
|
if (c != NULL) {
|
|
struct mg_mqtt_opts empty;
|
|
memset(&empty, 0, sizeof(empty));
|
|
mg_mqtt_login(c, opts == NULL ? &empty : opts);
|
|
c->pfn = mqtt_cb;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct mg_connection *mg_mqtt_listen(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = mg_listen(mgr, url, fn, fn_data);
|
|
if (c != NULL) c->pfn = mqtt_cb, c->pfn_data = mgr;
|
|
return c;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/net.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
|
|
size_t old = c->send.len;
|
|
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
|
|
return c->send.len - old;
|
|
}
|
|
|
|
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
|
|
size_t len = 0;
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
len = mg_vprintf(c, fmt, &ap);
|
|
va_end(ap);
|
|
return len;
|
|
}
|
|
|
|
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
|
|
uint32_t localhost = mg_htonl(0x7f000001);
|
|
if (mg_strcasecmp(str, mg_str("localhost")) != 0) return false;
|
|
memcpy(addr->ip, &localhost, sizeof(uint32_t));
|
|
addr->is_ip6 = false;
|
|
return true;
|
|
}
|
|
|
|
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
|
|
if (str.len > 0) return false;
|
|
memset(addr->ip, 0, sizeof(addr->ip));
|
|
addr->is_ip6 = false;
|
|
return true;
|
|
}
|
|
|
|
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
|
|
uint8_t data[4] = {0, 0, 0, 0};
|
|
size_t i, num_dots = 0;
|
|
for (i = 0; i < str.len; i++) {
|
|
if (str.buf[i] >= '0' && str.buf[i] <= '9') {
|
|
int octet = data[num_dots] * 10 + (str.buf[i] - '0');
|
|
if (octet > 255) return false;
|
|
data[num_dots] = (uint8_t) octet;
|
|
} else if (str.buf[i] == '.') {
|
|
if (num_dots >= 3 || i == 0 || str.buf[i - 1] == '.') return false;
|
|
num_dots++;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
if (num_dots != 3 || str.buf[i - 1] == '.') return false;
|
|
memcpy(&addr->ip, data, sizeof(data));
|
|
addr->is_ip6 = false;
|
|
return true;
|
|
}
|
|
|
|
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
|
|
int i;
|
|
uint32_t ipv4;
|
|
if (str.len < 14) return false;
|
|
if (str.buf[0] != ':' || str.buf[1] != ':' || str.buf[6] != ':') return false;
|
|
for (i = 2; i < 6; i++) {
|
|
if (str.buf[i] != 'f' && str.buf[i] != 'F') return false;
|
|
}
|
|
// struct mg_str s = mg_str_n(&str.buf[7], str.len - 7);
|
|
if (!mg_aton4(mg_str_n(&str.buf[7], str.len - 7), addr)) return false;
|
|
memcpy(&ipv4, addr->ip, sizeof(ipv4));
|
|
memset(addr->ip, 0, sizeof(addr->ip));
|
|
addr->ip[10] = addr->ip[11] = 255;
|
|
memcpy(&addr->ip[12], &ipv4, 4);
|
|
addr->is_ip6 = true;
|
|
return true;
|
|
}
|
|
|
|
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
|
|
size_t i, j = 0, n = 0, dc = 42;
|
|
addr->scope_id = 0;
|
|
if (str.len > 2 && str.buf[0] == '[') str.buf++, str.len -= 2;
|
|
if (mg_v4mapped(str, addr)) return true;
|
|
for (i = 0; i < str.len; i++) {
|
|
if ((str.buf[i] >= '0' && str.buf[i] <= '9') ||
|
|
(str.buf[i] >= 'a' && str.buf[i] <= 'f') ||
|
|
(str.buf[i] >= 'A' && str.buf[i] <= 'F')) {
|
|
unsigned long val;
|
|
if (i > j + 3) return false;
|
|
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.buf[j]));
|
|
val = mg_unhexn(&str.buf[j], i - j + 1);
|
|
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
|
|
addr->ip[n + 1] = (uint8_t) (val & 255);
|
|
} else if (str.buf[i] == ':') {
|
|
j = i + 1;
|
|
if (i > 0 && str.buf[i - 1] == ':') {
|
|
dc = n; // Double colon
|
|
if (i > 1 && str.buf[i - 2] == ':') return false;
|
|
} else if (i > 0) {
|
|
n += 2;
|
|
}
|
|
if (n > 14) return false;
|
|
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
|
|
} else if (str.buf[i] == '%') { // Scope ID
|
|
for (i = i + 1; i < str.len; i++) {
|
|
if (str.buf[i] < '0' || str.buf[i] > '9') return false;
|
|
addr->scope_id = (uint8_t) (addr->scope_id * 10);
|
|
addr->scope_id = (uint8_t) (addr->scope_id + (str.buf[i] - '0'));
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
if (n < 14 && dc == 42) return false;
|
|
if (n < 14) {
|
|
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
|
|
memset(&addr->ip[dc], 0, 14 - n);
|
|
}
|
|
|
|
addr->is_ip6 = true;
|
|
return true;
|
|
}
|
|
|
|
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
|
|
// MG_INFO(("[%.*s]", (int) str.len, str.buf));
|
|
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
|
|
mg_aton6(str, addr);
|
|
}
|
|
|
|
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
|
|
struct mg_connection *c =
|
|
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
|
|
if (c != NULL) {
|
|
c->mgr = mgr;
|
|
c->send.align = c->recv.align = c->rtls.align = MG_IO_SIZE;
|
|
c->id = ++mgr->nextid;
|
|
MG_PROF_INIT(c);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
void mg_close_conn(struct mg_connection *c) {
|
|
mg_resolve_cancel(c); // Close any pending DNS query
|
|
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
|
|
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
|
|
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
|
|
// Order of operations is important. `MG_EV_CLOSE` event must be fired
|
|
// before we deallocate received data, see #1331
|
|
mg_call(c, MG_EV_CLOSE, NULL);
|
|
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
|
|
MG_PROF_DUMP(c);
|
|
MG_PROF_FREE(c);
|
|
|
|
mg_tls_free(c);
|
|
mg_iobuf_free(&c->recv);
|
|
mg_iobuf_free(&c->send);
|
|
mg_iobuf_free(&c->rtls);
|
|
mg_bzero((unsigned char *) c, sizeof(*c));
|
|
free(c);
|
|
}
|
|
|
|
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = NULL;
|
|
if (url == NULL || url[0] == '\0') {
|
|
MG_ERROR(("null url"));
|
|
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
|
|
MG_ERROR(("OOM"));
|
|
} else {
|
|
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
|
|
c->is_udp = (strncmp(url, "udp:", 4) == 0);
|
|
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
|
|
c->fn = fn;
|
|
c->is_client = true;
|
|
c->fn_data = fn_data;
|
|
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
|
|
mg_call(c, MG_EV_OPEN, (void *) url);
|
|
mg_resolve(c, url);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = NULL;
|
|
if ((c = mg_alloc_conn(mgr)) == NULL) {
|
|
MG_ERROR(("OOM %s", url));
|
|
} else if (!mg_open_listener(c, url)) {
|
|
MG_ERROR(("Failed: %s, errno %d", url, errno));
|
|
MG_PROF_FREE(c);
|
|
free(c);
|
|
c = NULL;
|
|
} else {
|
|
c->is_listening = 1;
|
|
c->is_udp = strncmp(url, "udp:", 4) == 0;
|
|
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
|
|
c->fn = fn;
|
|
c->fn_data = fn_data;
|
|
mg_call(c, MG_EV_OPEN, NULL);
|
|
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
|
|
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
|
|
mg_event_handler_t fn, void *fn_data) {
|
|
struct mg_connection *c = mg_alloc_conn(mgr);
|
|
if (c != NULL) {
|
|
c->fd = (void *) (size_t) fd;
|
|
c->fn = fn;
|
|
c->fn_data = fn_data;
|
|
MG_EPOLL_ADD(c);
|
|
mg_call(c, MG_EV_OPEN, NULL);
|
|
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
|
|
unsigned flags, void (*fn)(void *), void *arg) {
|
|
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
|
|
if (t != NULL) {
|
|
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
|
|
t->id = mgr->timerid++;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
long mg_io_recv(struct mg_connection *c, void *buf, size_t len) {
|
|
if (c->rtls.len == 0) return MG_IO_WAIT;
|
|
if (len > c->rtls.len) len = c->rtls.len;
|
|
memcpy(buf, c->rtls.buf, len);
|
|
mg_iobuf_del(&c->rtls, 0, len);
|
|
return (long) len;
|
|
}
|
|
|
|
void mg_mgr_free(struct mg_mgr *mgr) {
|
|
struct mg_connection *c;
|
|
struct mg_timer *tmp, *t = mgr->timers;
|
|
while (t != NULL) tmp = t->next, free(t), t = tmp;
|
|
mgr->timers = NULL; // Important. Next call to poll won't touch timers
|
|
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
|
|
mg_mgr_poll(mgr, 0);
|
|
#if MG_ENABLE_FREERTOS_TCP
|
|
FreeRTOS_DeleteSocketSet(mgr->ss);
|
|
#endif
|
|
MG_DEBUG(("All connections closed"));
|
|
#if MG_ENABLE_EPOLL
|
|
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
|
|
#endif
|
|
mg_tls_ctx_free(mgr);
|
|
}
|
|
|
|
void mg_mgr_init(struct mg_mgr *mgr) {
|
|
memset(mgr, 0, sizeof(*mgr));
|
|
#if MG_ENABLE_EPOLL
|
|
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
|
|
MG_ERROR(("epoll_create1 errno %d", errno));
|
|
#else
|
|
mgr->epoll_fd = -1;
|
|
#endif
|
|
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
|
|
// clang-format off
|
|
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
|
|
// clang-format on
|
|
#elif MG_ENABLE_FREERTOS_TCP
|
|
mgr->ss = FreeRTOS_CreateSocketSet();
|
|
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
|
|
// Ignore SIGPIPE signal, so if client cancels the request, it
|
|
// won't kill the whole process.
|
|
signal(SIGPIPE, SIG_IGN);
|
|
#elif MG_ENABLE_TCPIP_DRIVER_INIT && defined(MG_TCPIP_DRIVER_INIT)
|
|
MG_TCPIP_DRIVER_INIT(mgr);
|
|
#endif
|
|
mgr->pipe = MG_INVALID_SOCKET;
|
|
mgr->dnstimeout = 3000;
|
|
mgr->dns4.url = "udp://8.8.8.8:53";
|
|
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
|
|
mg_tls_ctx_init(mgr);
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/net_builtin.c"
|
|
#endif
|
|
|
|
|
|
#if defined(MG_ENABLE_TCPIP) && MG_ENABLE_TCPIP
|
|
#define MG_EPHEMERAL_PORT_BASE 32768
|
|
#define PDIFF(a, b) ((size_t) (((char *) (b)) - ((char *) (a))))
|
|
|
|
#ifndef MIP_TCP_KEEPALIVE_MS
|
|
#define MIP_TCP_KEEPALIVE_MS 45000 // TCP keep-alive period, ms
|
|
#endif
|
|
|
|
#define MIP_TCP_ACK_MS 150 // Timeout for ACKing
|
|
#define MIP_TCP_ARP_MS 100 // Timeout for ARP response
|
|
#define MIP_TCP_SYN_MS 15000 // Timeout for connection establishment
|
|
#define MIP_TCP_FIN_MS 1000 // Timeout for closing connection
|
|
#define MIP_TCP_WIN 6000 // TCP window size
|
|
|
|
struct connstate {
|
|
uint32_t seq, ack; // TCP seq/ack counters
|
|
uint64_t timer; // TCP keep-alive / ACK timer
|
|
uint32_t acked; // Last ACK-ed number
|
|
size_t unacked; // Not acked bytes
|
|
uint8_t mac[6]; // Peer MAC address
|
|
uint8_t ttype; // Timer type. 0: ack, 1: keep-alive
|
|
#define MIP_TTYPE_KEEPALIVE 0 // Connection is idle for long, send keepalive
|
|
#define MIP_TTYPE_ACK 1 // Peer sent us data, we have to ack it soon
|
|
#define MIP_TTYPE_ARP 2 // ARP resolve sent, waiting for response
|
|
#define MIP_TTYPE_SYN 3 // SYN sent, waiting for response
|
|
#define MIP_TTYPE_FIN 4 // FIN sent, waiting until terminating the connection
|
|
uint8_t tmiss; // Number of keep-alive misses
|
|
struct mg_iobuf raw; // For TLS only. Incoming raw data
|
|
};
|
|
|
|
#pragma pack(push, 1)
|
|
|
|
struct lcp {
|
|
uint8_t addr, ctrl, proto[2], code, id, len[2];
|
|
};
|
|
|
|
struct eth {
|
|
uint8_t dst[6]; // Destination MAC address
|
|
uint8_t src[6]; // Source MAC address
|
|
uint16_t type; // Ethernet type
|
|
};
|
|
|
|
struct ip {
|
|
uint8_t ver; // Version
|
|
uint8_t tos; // Unused
|
|
uint16_t len; // Length
|
|
uint16_t id; // Unused
|
|
uint16_t frag; // Fragmentation
|
|
#define IP_FRAG_OFFSET_MSK 0xFF1F
|
|
#define IP_MORE_FRAGS_MSK 0x20
|
|
uint8_t ttl; // Time to live
|
|
uint8_t proto; // Upper level protocol
|
|
uint16_t csum; // Checksum
|
|
uint32_t src; // Source IP
|
|
uint32_t dst; // Destination IP
|
|
};
|
|
|
|
struct ip6 {
|
|
uint8_t ver; // Version
|
|
uint8_t opts[3]; // Options
|
|
uint16_t len; // Length
|
|
uint8_t proto; // Upper level protocol
|
|
uint8_t ttl; // Time to live
|
|
uint8_t src[16]; // Source IP
|
|
uint8_t dst[16]; // Destination IP
|
|
};
|
|
|
|
struct icmp {
|
|
uint8_t type;
|
|
uint8_t code;
|
|
uint16_t csum;
|
|
};
|
|
|
|
struct arp {
|
|
uint16_t fmt; // Format of hardware address
|
|
uint16_t pro; // Format of protocol address
|
|
uint8_t hlen; // Length of hardware address
|
|
uint8_t plen; // Length of protocol address
|
|
uint16_t op; // Operation
|
|
uint8_t sha[6]; // Sender hardware address
|
|
uint32_t spa; // Sender protocol address
|
|
uint8_t tha[6]; // Target hardware address
|
|
uint32_t tpa; // Target protocol address
|
|
};
|
|
|
|
struct tcp {
|
|
uint16_t sport; // Source port
|
|
uint16_t dport; // Destination port
|
|
uint32_t seq; // Sequence number
|
|
uint32_t ack; // Acknowledgement number
|
|
uint8_t off; // Data offset
|
|
uint8_t flags; // TCP flags
|
|
#define TH_FIN 0x01
|
|
#define TH_SYN 0x02
|
|
#define TH_RST 0x04
|
|
#define TH_PUSH 0x08
|
|
#define TH_ACK 0x10
|
|
#define TH_URG 0x20
|
|
#define TH_ECE 0x40
|
|
#define TH_CWR 0x80
|
|
uint16_t win; // Window
|
|
uint16_t csum; // Checksum
|
|
uint16_t urp; // Urgent pointer
|
|
};
|
|
|
|
struct udp {
|
|
uint16_t sport; // Source port
|
|
uint16_t dport; // Destination port
|
|
uint16_t len; // UDP length
|
|
uint16_t csum; // UDP checksum
|
|
};
|
|
|
|
struct dhcp {
|
|
uint8_t op, htype, hlen, hops;
|
|
uint32_t xid;
|
|
uint16_t secs, flags;
|
|
uint32_t ciaddr, yiaddr, siaddr, giaddr;
|
|
uint8_t hwaddr[208];
|
|
uint32_t magic;
|
|
uint8_t options[32];
|
|
};
|
|
|
|
#pragma pack(pop)
|
|
|
|
struct pkt {
|
|
struct mg_str raw; // Raw packet data
|
|
struct mg_str pay; // Payload data
|
|
struct eth *eth;
|
|
struct llc *llc;
|
|
struct arp *arp;
|
|
struct ip *ip;
|
|
struct ip6 *ip6;
|
|
struct icmp *icmp;
|
|
struct tcp *tcp;
|
|
struct udp *udp;
|
|
struct dhcp *dhcp;
|
|
};
|
|
|
|
static void send_syn(struct mg_connection *c);
|
|
|
|
static void mkpay(struct pkt *pkt, void *p) {
|
|
pkt->pay =
|
|
mg_str_n((char *) p, (size_t) (&pkt->raw.buf[pkt->raw.len] - (char *) p));
|
|
}
|
|
|
|
static uint32_t csumup(uint32_t sum, const void *buf, size_t len) {
|
|
size_t i;
|
|
const uint8_t *p = (const uint8_t *) buf;
|
|
for (i = 0; i < len; i++) sum += i & 1 ? p[i] : (uint32_t) (p[i] << 8);
|
|
return sum;
|
|
}
|
|
|
|
static uint16_t csumfin(uint32_t sum) {
|
|
while (sum >> 16) sum = (sum & 0xffff) + (sum >> 16);
|
|
return mg_htons(~sum & 0xffff);
|
|
}
|
|
|
|
static uint16_t ipcsum(const void *buf, size_t len) {
|
|
uint32_t sum = csumup(0, buf, len);
|
|
return csumfin(sum);
|
|
}
|
|
|
|
static void settmout(struct mg_connection *c, uint8_t type) {
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv;
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
unsigned n = type == MIP_TTYPE_ACK ? MIP_TCP_ACK_MS
|
|
: type == MIP_TTYPE_ARP ? MIP_TCP_ARP_MS
|
|
: type == MIP_TTYPE_SYN ? MIP_TCP_SYN_MS
|
|
: type == MIP_TTYPE_FIN ? MIP_TCP_FIN_MS
|
|
: MIP_TCP_KEEPALIVE_MS;
|
|
s->timer = ifp->now + n;
|
|
s->ttype = type;
|
|
MG_VERBOSE(("%lu %d -> %llx", c->id, type, s->timer));
|
|
}
|
|
|
|
static size_t ether_output(struct mg_tcpip_if *ifp, size_t len) {
|
|
size_t n = ifp->driver->tx(ifp->tx.buf, len, ifp);
|
|
if (n == len) ifp->nsent++;
|
|
return n;
|
|
}
|
|
|
|
static void arp_ask(struct mg_tcpip_if *ifp, uint32_t ip) {
|
|
struct eth *eth = (struct eth *) ifp->tx.buf;
|
|
struct arp *arp = (struct arp *) (eth + 1);
|
|
memset(eth->dst, 255, sizeof(eth->dst));
|
|
memcpy(eth->src, ifp->mac, sizeof(eth->src));
|
|
eth->type = mg_htons(0x806);
|
|
memset(arp, 0, sizeof(*arp));
|
|
arp->fmt = mg_htons(1), arp->pro = mg_htons(0x800), arp->hlen = 6,
|
|
arp->plen = 4;
|
|
arp->op = mg_htons(1), arp->tpa = ip, arp->spa = ifp->ip;
|
|
memcpy(arp->sha, ifp->mac, sizeof(arp->sha));
|
|
ether_output(ifp, PDIFF(eth, arp + 1));
|
|
}
|
|
|
|
static void onstatechange(struct mg_tcpip_if *ifp) {
|
|
if (ifp->state == MG_TCPIP_STATE_READY) {
|
|
MG_INFO(("READY, IP: %M", mg_print_ip4, &ifp->ip));
|
|
MG_INFO((" GW: %M", mg_print_ip4, &ifp->gw));
|
|
MG_INFO((" MAC: %M", mg_print_mac, &ifp->mac));
|
|
arp_ask(ifp, ifp->gw);
|
|
} else if (ifp->state == MG_TCPIP_STATE_UP) {
|
|
MG_ERROR(("Link up"));
|
|
srand((unsigned int) mg_millis());
|
|
} else if (ifp->state == MG_TCPIP_STATE_DOWN) {
|
|
MG_ERROR(("Link down"));
|
|
}
|
|
}
|
|
|
|
static struct ip *tx_ip(struct mg_tcpip_if *ifp, uint8_t *mac_dst,
|
|
uint8_t proto, uint32_t ip_src, uint32_t ip_dst,
|
|
size_t plen) {
|
|
struct eth *eth = (struct eth *) ifp->tx.buf;
|
|
struct ip *ip = (struct ip *) (eth + 1);
|
|
memcpy(eth->dst, mac_dst, sizeof(eth->dst));
|
|
memcpy(eth->src, ifp->mac, sizeof(eth->src)); // Use our MAC
|
|
eth->type = mg_htons(0x800);
|
|
memset(ip, 0, sizeof(*ip));
|
|
ip->ver = 0x45; // Version 4, header length 5 words
|
|
ip->frag = 0x40; // Don't fragment
|
|
ip->len = mg_htons((uint16_t) (sizeof(*ip) + plen));
|
|
ip->ttl = 64;
|
|
ip->proto = proto;
|
|
ip->src = ip_src;
|
|
ip->dst = ip_dst;
|
|
ip->csum = ipcsum(ip, sizeof(*ip));
|
|
return ip;
|
|
}
|
|
|
|
static void tx_udp(struct mg_tcpip_if *ifp, uint8_t *mac_dst, uint32_t ip_src,
|
|
uint16_t sport, uint32_t ip_dst, uint16_t dport,
|
|
const void *buf, size_t len) {
|
|
struct ip *ip =
|
|
tx_ip(ifp, mac_dst, 17, ip_src, ip_dst, len + sizeof(struct udp));
|
|
struct udp *udp = (struct udp *) (ip + 1);
|
|
// MG_DEBUG(("UDP XX LEN %d %d", (int) len, (int) ifp->tx.len));
|
|
udp->sport = sport;
|
|
udp->dport = dport;
|
|
udp->len = mg_htons((uint16_t) (sizeof(*udp) + len));
|
|
udp->csum = 0;
|
|
uint32_t cs = csumup(0, udp, sizeof(*udp));
|
|
cs = csumup(cs, buf, len);
|
|
cs = csumup(cs, &ip->src, sizeof(ip->src));
|
|
cs = csumup(cs, &ip->dst, sizeof(ip->dst));
|
|
cs += (uint32_t) (ip->proto + sizeof(*udp) + len);
|
|
udp->csum = csumfin(cs);
|
|
memmove(udp + 1, buf, len);
|
|
// MG_DEBUG(("UDP LEN %d %d", (int) len, (int) ifp->frame_len));
|
|
ether_output(ifp, sizeof(struct eth) + sizeof(*ip) + sizeof(*udp) + len);
|
|
}
|
|
|
|
static void tx_dhcp(struct mg_tcpip_if *ifp, uint8_t *mac_dst, uint32_t ip_src,
|
|
uint32_t ip_dst, uint8_t *opts, size_t optslen,
|
|
bool ciaddr) {
|
|
// https://datatracker.ietf.org/doc/html/rfc2132#section-9.6
|
|
struct dhcp dhcp = {1, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, {0}, 0, {0}};
|
|
dhcp.magic = mg_htonl(0x63825363);
|
|
memcpy(&dhcp.hwaddr, ifp->mac, sizeof(ifp->mac));
|
|
memcpy(&dhcp.xid, ifp->mac + 2, sizeof(dhcp.xid));
|
|
memcpy(&dhcp.options, opts, optslen);
|
|
if (ciaddr) dhcp.ciaddr = ip_src;
|
|
tx_udp(ifp, mac_dst, ip_src, mg_htons(68), ip_dst, mg_htons(67), &dhcp,
|
|
sizeof(dhcp));
|
|
}
|
|
|
|
static const uint8_t broadcast[] = {255, 255, 255, 255, 255, 255};
|
|
|
|
// RFC-2131 #4.3.6, #4.4.1
|
|
static void tx_dhcp_request_sel(struct mg_tcpip_if *ifp, uint32_t ip_req,
|
|
uint32_t ip_srv) {
|
|
uint8_t opts[] = {
|
|
53, 1, 3, // Type: DHCP request
|
|
55, 2, 1, 3, // GW and mask
|
|
12, 3, 'm', 'i', 'p', // Host name: "mip"
|
|
54, 4, 0, 0, 0, 0, // DHCP server ID
|
|
50, 4, 0, 0, 0, 0, // Requested IP
|
|
255 // End of options
|
|
};
|
|
memcpy(opts + 14, &ip_srv, sizeof(ip_srv));
|
|
memcpy(opts + 20, &ip_req, sizeof(ip_req));
|
|
tx_dhcp(ifp, (uint8_t *) broadcast, 0, 0xffffffff, opts, sizeof(opts), false);
|
|
MG_DEBUG(("DHCP req sent"));
|
|
}
|
|
|
|
// RFC-2131 #4.3.6, #4.4.5 (renewing: unicast, rebinding: bcast)
|
|
static void tx_dhcp_request_re(struct mg_tcpip_if *ifp, uint8_t *mac_dst,
|
|
uint32_t ip_src, uint32_t ip_dst) {
|
|
uint8_t opts[] = {
|
|
53, 1, 3, // Type: DHCP request
|
|
255 // End of options
|
|
};
|
|
tx_dhcp(ifp, mac_dst, ip_src, ip_dst, opts, sizeof(opts), true);
|
|
MG_DEBUG(("DHCP req sent"));
|
|
}
|
|
|
|
static void tx_dhcp_discover(struct mg_tcpip_if *ifp) {
|
|
uint8_t opts[] = {
|
|
53, 1, 1, // Type: DHCP discover
|
|
55, 2, 1, 3, // Parameters: ip, mask
|
|
255 // End of options
|
|
};
|
|
tx_dhcp(ifp, (uint8_t *) broadcast, 0, 0xffffffff, opts, sizeof(opts), false);
|
|
MG_DEBUG(("DHCP discover sent. Our MAC: %M", mg_print_mac, ifp->mac));
|
|
}
|
|
|
|
static struct mg_connection *getpeer(struct mg_mgr *mgr, struct pkt *pkt,
|
|
bool lsn) {
|
|
struct mg_connection *c = NULL;
|
|
for (c = mgr->conns; c != NULL; c = c->next) {
|
|
if (c->is_arplooking && pkt->arp &&
|
|
memcmp(&pkt->arp->spa, c->rem.ip, sizeof(pkt->arp->spa)) == 0)
|
|
break;
|
|
if (c->is_udp && pkt->udp && c->loc.port == pkt->udp->dport) break;
|
|
if (!c->is_udp && pkt->tcp && c->loc.port == pkt->tcp->dport &&
|
|
lsn == c->is_listening && (lsn || c->rem.port == pkt->tcp->sport))
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static void rx_arp(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
if (pkt->arp->op == mg_htons(1) && pkt->arp->tpa == ifp->ip) {
|
|
// ARP request. Make a response, then send
|
|
// MG_DEBUG(("ARP op %d %M: %M", mg_ntohs(pkt->arp->op), mg_print_ip4,
|
|
// &pkt->arp->spa, mg_print_ip4, &pkt->arp->tpa));
|
|
struct eth *eth = (struct eth *) ifp->tx.buf;
|
|
struct arp *arp = (struct arp *) (eth + 1);
|
|
memcpy(eth->dst, pkt->eth->src, sizeof(eth->dst));
|
|
memcpy(eth->src, ifp->mac, sizeof(eth->src));
|
|
eth->type = mg_htons(0x806);
|
|
*arp = *pkt->arp;
|
|
arp->op = mg_htons(2);
|
|
memcpy(arp->tha, pkt->arp->sha, sizeof(pkt->arp->tha));
|
|
memcpy(arp->sha, ifp->mac, sizeof(pkt->arp->sha));
|
|
arp->tpa = pkt->arp->spa;
|
|
arp->spa = ifp->ip;
|
|
MG_DEBUG(("ARP: tell %M we're %M", mg_print_ip4, &arp->tpa, mg_print_mac,
|
|
&ifp->mac));
|
|
ether_output(ifp, PDIFF(eth, arp + 1));
|
|
} else if (pkt->arp->op == mg_htons(2)) {
|
|
if (memcmp(pkt->arp->tha, ifp->mac, sizeof(pkt->arp->tha)) != 0) return;
|
|
if (pkt->arp->spa == ifp->gw) {
|
|
// Got response for the GW ARP request. Set ifp->gwmac
|
|
memcpy(ifp->gwmac, pkt->arp->sha, sizeof(ifp->gwmac));
|
|
} else {
|
|
struct mg_connection *c = getpeer(ifp->mgr, pkt, false);
|
|
if (c != NULL && c->is_arplooking) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
memcpy(s->mac, pkt->arp->sha, sizeof(s->mac));
|
|
MG_DEBUG(("%lu ARP resolved %M -> %M", c->id, mg_print_ip4, c->rem.ip,
|
|
mg_print_mac, s->mac));
|
|
c->is_arplooking = 0;
|
|
send_syn(c);
|
|
settmout(c, MIP_TTYPE_SYN);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rx_icmp(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
// MG_DEBUG(("ICMP %d", (int) len));
|
|
if (pkt->icmp->type == 8 && pkt->ip != NULL && pkt->ip->dst == ifp->ip) {
|
|
size_t hlen = sizeof(struct eth) + sizeof(struct ip) + sizeof(struct icmp);
|
|
size_t space = ifp->tx.len - hlen, plen = pkt->pay.len;
|
|
if (plen > space) plen = space;
|
|
struct ip *ip = tx_ip(ifp, pkt->eth->src, 1, ifp->ip, pkt->ip->src,
|
|
sizeof(struct icmp) + plen);
|
|
struct icmp *icmp = (struct icmp *) (ip + 1);
|
|
memset(icmp, 0, sizeof(*icmp)); // Set csum to 0
|
|
memcpy(icmp + 1, pkt->pay.buf, plen); // Copy RX payload to TX
|
|
icmp->csum = ipcsum(icmp, sizeof(*icmp) + plen);
|
|
ether_output(ifp, hlen + plen);
|
|
}
|
|
}
|
|
|
|
static void rx_dhcp_client(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
uint32_t ip = 0, gw = 0, mask = 0, lease = 0;
|
|
uint8_t msgtype = 0, state = ifp->state;
|
|
// perform size check first, then access fields
|
|
uint8_t *p = pkt->dhcp->options,
|
|
*end = (uint8_t *) &pkt->raw.buf[pkt->raw.len];
|
|
if (end < (uint8_t *) (pkt->dhcp + 1)) return;
|
|
if (memcmp(&pkt->dhcp->xid, ifp->mac + 2, sizeof(pkt->dhcp->xid))) return;
|
|
while (p + 1 < end && p[0] != 255) { // Parse options RFC-1533 #9
|
|
if (p[0] == 1 && p[1] == sizeof(ifp->mask) && p + 6 < end) { // Mask
|
|
memcpy(&mask, p + 2, sizeof(mask));
|
|
} else if (p[0] == 3 && p[1] == sizeof(ifp->gw) && p + 6 < end) { // GW
|
|
memcpy(&gw, p + 2, sizeof(gw));
|
|
ip = pkt->dhcp->yiaddr;
|
|
} else if (p[0] == 51 && p[1] == 4 && p + 6 < end) { // Lease
|
|
memcpy(&lease, p + 2, sizeof(lease));
|
|
lease = mg_ntohl(lease);
|
|
} else if (p[0] == 53 && p[1] == 1 && p + 6 < end) { // Msg Type
|
|
msgtype = p[2];
|
|
}
|
|
p += p[1] + 2;
|
|
}
|
|
// Process message type, RFC-1533 (9.4); RFC-2131 (3.1, 4)
|
|
if (msgtype == 6 && ifp->ip == ip) { // DHCPNACK, release IP
|
|
ifp->state = MG_TCPIP_STATE_UP, ifp->ip = 0;
|
|
} else if (msgtype == 2 && ifp->state == MG_TCPIP_STATE_UP && ip && gw &&
|
|
lease) { // DHCPOFFER
|
|
// select IP, (4.4.1) (fallback to IP source addr on foul play)
|
|
tx_dhcp_request_sel(ifp, ip,
|
|
pkt->dhcp->siaddr ? pkt->dhcp->siaddr : pkt->ip->src);
|
|
ifp->state = MG_TCPIP_STATE_REQ; // REQUESTING state
|
|
} else if (msgtype == 5) { // DHCPACK
|
|
if (ifp->state == MG_TCPIP_STATE_REQ && ip && gw && lease) { // got an IP
|
|
ifp->lease_expire = ifp->now + lease * 1000;
|
|
MG_INFO(("Lease: %u sec (%lld)", lease, ifp->lease_expire / 1000));
|
|
// assume DHCP server = router until ARP resolves
|
|
memcpy(ifp->gwmac, pkt->eth->src, sizeof(ifp->gwmac));
|
|
ifp->ip = ip, ifp->gw = gw, ifp->mask = mask;
|
|
ifp->state = MG_TCPIP_STATE_READY; // BOUND state
|
|
uint64_t rand;
|
|
mg_random(&rand, sizeof(rand));
|
|
srand((unsigned int) (rand + mg_millis()));
|
|
} else if (ifp->state == MG_TCPIP_STATE_READY && ifp->ip == ip) { // renew
|
|
ifp->lease_expire = ifp->now + lease * 1000;
|
|
MG_INFO(("Lease: %u sec (%lld)", lease, ifp->lease_expire / 1000));
|
|
} // TODO(): accept provided T1/T2 and store server IP for renewal (4.4)
|
|
}
|
|
if (ifp->state != state) onstatechange(ifp);
|
|
}
|
|
|
|
// Simple DHCP server that assigns a next IP address: ifp->ip + 1
|
|
static void rx_dhcp_server(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
uint8_t op = 0, *p = pkt->dhcp->options,
|
|
*end = (uint8_t *) &pkt->raw.buf[pkt->raw.len];
|
|
if (end < (uint8_t *) (pkt->dhcp + 1)) return;
|
|
// struct dhcp *req = pkt->dhcp;
|
|
struct dhcp res = {2, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, {0}, 0, {0}};
|
|
res.yiaddr = ifp->ip;
|
|
((uint8_t *) (&res.yiaddr))[3]++; // Offer our IP + 1
|
|
while (p + 1 < end && p[0] != 255) { // Parse options
|
|
if (p[0] == 53 && p[1] == 1 && p + 2 < end) { // Message type
|
|
op = p[2];
|
|
}
|
|
p += p[1] + 2;
|
|
}
|
|
if (op == 1 || op == 3) { // DHCP Discover or DHCP Request
|
|
uint8_t msg = op == 1 ? 2 : 5; // Message type: DHCP OFFER or DHCP ACK
|
|
uint8_t opts[] = {
|
|
53, 1, msg, // Message type
|
|
1, 4, 0, 0, 0, 0, // Subnet mask
|
|
54, 4, 0, 0, 0, 0, // Server ID
|
|
12, 3, 'm', 'i', 'p', // Host name: "mip"
|
|
51, 4, 255, 255, 255, 255, // Lease time
|
|
255 // End of options
|
|
};
|
|
memcpy(&res.hwaddr, pkt->dhcp->hwaddr, 6);
|
|
memcpy(opts + 5, &ifp->mask, sizeof(ifp->mask));
|
|
memcpy(opts + 11, &ifp->ip, sizeof(ifp->ip));
|
|
memcpy(&res.options, opts, sizeof(opts));
|
|
res.magic = pkt->dhcp->magic;
|
|
res.xid = pkt->dhcp->xid;
|
|
if (ifp->enable_get_gateway) {
|
|
ifp->gw = res.yiaddr;
|
|
memcpy(ifp->gwmac, pkt->eth->src, sizeof(ifp->gwmac));
|
|
}
|
|
tx_udp(ifp, pkt->eth->src, ifp->ip, mg_htons(67),
|
|
op == 1 ? ~0U : res.yiaddr, mg_htons(68), &res, sizeof(res));
|
|
}
|
|
}
|
|
|
|
static void rx_udp(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
struct mg_connection *c = getpeer(ifp->mgr, pkt, true);
|
|
if (c == NULL) {
|
|
// No UDP listener on this port. Should send ICMP, but keep silent.
|
|
} else {
|
|
c->rem.port = pkt->udp->sport;
|
|
memcpy(c->rem.ip, &pkt->ip->src, sizeof(uint32_t));
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
memcpy(s->mac, pkt->eth->src, sizeof(s->mac));
|
|
if (c->recv.len >= MG_MAX_RECV_SIZE) {
|
|
mg_error(c, "max_recv_buf_size reached");
|
|
} else if (c->recv.size - c->recv.len < pkt->pay.len &&
|
|
!mg_iobuf_resize(&c->recv, c->recv.len + pkt->pay.len)) {
|
|
mg_error(c, "oom");
|
|
} else {
|
|
memcpy(&c->recv.buf[c->recv.len], pkt->pay.buf, pkt->pay.len);
|
|
c->recv.len += pkt->pay.len;
|
|
mg_call(c, MG_EV_READ, &pkt->pay.len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static size_t tx_tcp(struct mg_tcpip_if *ifp, uint8_t *dst_mac, uint32_t dst_ip,
|
|
uint8_t flags, uint16_t sport, uint16_t dport,
|
|
uint32_t seq, uint32_t ack, const void *buf, size_t len) {
|
|
#if 0
|
|
uint8_t opts[] = {2, 4, 5, 0xb4, 4, 2, 0, 0}; // MSS = 1460, SACK permitted
|
|
if (flags & TH_SYN) {
|
|
// Handshake? Set MSS
|
|
buf = opts;
|
|
len = sizeof(opts);
|
|
}
|
|
#endif
|
|
struct ip *ip =
|
|
tx_ip(ifp, dst_mac, 6, ifp->ip, dst_ip, sizeof(struct tcp) + len);
|
|
struct tcp *tcp = (struct tcp *) (ip + 1);
|
|
memset(tcp, 0, sizeof(*tcp));
|
|
if (buf != NULL && len) memmove(tcp + 1, buf, len);
|
|
tcp->sport = sport;
|
|
tcp->dport = dport;
|
|
tcp->seq = seq;
|
|
tcp->ack = ack;
|
|
tcp->flags = flags;
|
|
tcp->win = mg_htons(MIP_TCP_WIN);
|
|
tcp->off = (uint8_t) (sizeof(*tcp) / 4 << 4);
|
|
// if (flags & TH_SYN) tcp->off = 0x70; // Handshake? header size 28 bytes
|
|
|
|
uint32_t cs = 0;
|
|
uint16_t n = (uint16_t) (sizeof(*tcp) + len);
|
|
uint8_t pseudo[] = {0, ip->proto, (uint8_t) (n >> 8), (uint8_t) (n & 255)};
|
|
cs = csumup(cs, tcp, n);
|
|
cs = csumup(cs, &ip->src, sizeof(ip->src));
|
|
cs = csumup(cs, &ip->dst, sizeof(ip->dst));
|
|
cs = csumup(cs, pseudo, sizeof(pseudo));
|
|
tcp->csum = csumfin(cs);
|
|
MG_VERBOSE(("TCP %M:%hu -> %M:%hu fl %x len %u", mg_print_ip4, &ip->src,
|
|
mg_ntohs(tcp->sport), mg_print_ip4, &ip->dst,
|
|
mg_ntohs(tcp->dport), tcp->flags, len));
|
|
// mg_hexdump(ifp->tx.buf, PDIFF(ifp->tx.buf, tcp + 1) + len);
|
|
return ether_output(ifp, PDIFF(ifp->tx.buf, tcp + 1) + len);
|
|
}
|
|
|
|
static size_t tx_tcp_pkt(struct mg_tcpip_if *ifp, struct pkt *pkt,
|
|
uint8_t flags, uint32_t seq, const void *buf,
|
|
size_t len) {
|
|
uint32_t delta = (pkt->tcp->flags & (TH_SYN | TH_FIN)) ? 1 : 0;
|
|
return tx_tcp(ifp, pkt->eth->src, pkt->ip->src, flags, pkt->tcp->dport,
|
|
pkt->tcp->sport, seq, mg_htonl(mg_ntohl(pkt->tcp->seq) + delta),
|
|
buf, len);
|
|
}
|
|
|
|
static struct mg_connection *accept_conn(struct mg_connection *lsn,
|
|
struct pkt *pkt) {
|
|
struct mg_connection *c = mg_alloc_conn(lsn->mgr);
|
|
if (c == NULL) {
|
|
MG_ERROR(("OOM"));
|
|
return NULL;
|
|
}
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
s->seq = mg_ntohl(pkt->tcp->ack), s->ack = mg_ntohl(pkt->tcp->seq);
|
|
memcpy(s->mac, pkt->eth->src, sizeof(s->mac));
|
|
settmout(c, MIP_TTYPE_KEEPALIVE);
|
|
memcpy(c->rem.ip, &pkt->ip->src, sizeof(uint32_t));
|
|
c->rem.port = pkt->tcp->sport;
|
|
MG_DEBUG(("%lu accepted %M", c->id, mg_print_ip_port, &c->rem));
|
|
LIST_ADD_HEAD(struct mg_connection, &lsn->mgr->conns, c);
|
|
c->is_accepted = 1;
|
|
c->is_hexdumping = lsn->is_hexdumping;
|
|
c->pfn = lsn->pfn;
|
|
c->loc = lsn->loc;
|
|
c->pfn_data = lsn->pfn_data;
|
|
c->fn = lsn->fn;
|
|
c->fn_data = lsn->fn_data;
|
|
mg_call(c, MG_EV_OPEN, NULL);
|
|
mg_call(c, MG_EV_ACCEPT, NULL);
|
|
return c;
|
|
}
|
|
|
|
static size_t trim_len(struct mg_connection *c, size_t len) {
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv;
|
|
size_t eth_h_len = 14, ip_max_h_len = 24, tcp_max_h_len = 60, udp_h_len = 8;
|
|
size_t max_headers_len =
|
|
eth_h_len + ip_max_h_len + (c->is_udp ? udp_h_len : tcp_max_h_len);
|
|
size_t min_mtu = c->is_udp ? 68 /* RFC-791 */ : max_headers_len - eth_h_len;
|
|
|
|
// If the frame exceeds the available buffer, trim the length
|
|
if (len + max_headers_len > ifp->tx.len) {
|
|
len = ifp->tx.len - max_headers_len;
|
|
}
|
|
// Ensure the MTU isn't lower than the minimum allowed value
|
|
if (ifp->mtu < min_mtu) {
|
|
MG_ERROR(("MTU is lower than minimum, capping to %lu", min_mtu));
|
|
ifp->mtu = (uint16_t) min_mtu;
|
|
}
|
|
// If the total packet size exceeds the MTU, trim the length
|
|
if (len + max_headers_len - eth_h_len > ifp->mtu) {
|
|
len = ifp->mtu - max_headers_len + eth_h_len;
|
|
if (c->is_udp) {
|
|
MG_ERROR(("UDP datagram exceeds MTU. Truncating it."));
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
long mg_io_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv;
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
uint32_t dst_ip = *(uint32_t *) c->rem.ip;
|
|
len = trim_len(c, len);
|
|
if (c->is_udp) {
|
|
tx_udp(ifp, s->mac, ifp->ip, c->loc.port, dst_ip, c->rem.port, buf, len);
|
|
} else {
|
|
size_t sent =
|
|
tx_tcp(ifp, s->mac, dst_ip, TH_PUSH | TH_ACK, c->loc.port, c->rem.port,
|
|
mg_htonl(s->seq), mg_htonl(s->ack), buf, len);
|
|
if (sent == 0) {
|
|
return MG_IO_WAIT;
|
|
} else if (sent == (size_t) -1) {
|
|
return MG_IO_ERR;
|
|
} else {
|
|
s->seq += (uint32_t) len;
|
|
if (s->ttype == MIP_TTYPE_ACK) settmout(c, MIP_TTYPE_KEEPALIVE);
|
|
}
|
|
}
|
|
return (long) len;
|
|
}
|
|
|
|
static void handle_tls_recv(struct mg_connection *c, struct mg_iobuf *io) {
|
|
long n = mg_tls_recv(c, &io->buf[io->len], io->size - io->len);
|
|
if (n == MG_IO_ERR) {
|
|
mg_error(c, "TLS recv error");
|
|
} else if (n > 0) {
|
|
// Decrypted successfully - trigger MG_EV_READ
|
|
io->len += (size_t) n;
|
|
mg_call(c, MG_EV_READ, &n);
|
|
}
|
|
}
|
|
|
|
static void read_conn(struct mg_connection *c, struct pkt *pkt) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
struct mg_iobuf *io = c->is_tls ? &c->rtls : &c->recv;
|
|
uint32_t seq = mg_ntohl(pkt->tcp->seq);
|
|
uint32_t rem_ip;
|
|
memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t));
|
|
if (pkt->tcp->flags & TH_FIN) {
|
|
// If we initiated the closure, we reply with ACK upon receiving FIN
|
|
// If we didn't initiate it, we reply with FIN as part of the normal TCP
|
|
// closure process
|
|
uint8_t flags = TH_ACK;
|
|
s->ack = (uint32_t) (mg_htonl(pkt->tcp->seq) + pkt->pay.len + 1);
|
|
if (c->is_draining && s->ttype == MIP_TTYPE_FIN) {
|
|
if (s->seq == mg_htonl(pkt->tcp->ack)) { // Simultaneous closure ?
|
|
s->seq++; // Yes. Increment our SEQ
|
|
} else { // Otherwise,
|
|
s->seq = mg_htonl(pkt->tcp->ack); // Set to peer's ACK
|
|
}
|
|
} else {
|
|
flags |= TH_FIN;
|
|
c->is_draining = 1;
|
|
settmout(c, MIP_TTYPE_FIN);
|
|
}
|
|
tx_tcp((struct mg_tcpip_if *) c->mgr->priv, s->mac, rem_ip, flags,
|
|
c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), "", 0);
|
|
} else if (pkt->pay.len == 0) {
|
|
// TODO(cpq): handle this peer's ACK
|
|
} else if (seq != s->ack) {
|
|
uint32_t ack = (uint32_t) (mg_htonl(pkt->tcp->seq) + pkt->pay.len);
|
|
if (s->ack == ack) {
|
|
MG_VERBOSE(("ignoring duplicate pkt"));
|
|
} else {
|
|
MG_VERBOSE(("SEQ != ACK: %x %x %x", seq, s->ack, ack));
|
|
tx_tcp((struct mg_tcpip_if *) c->mgr->priv, s->mac, rem_ip, TH_ACK,
|
|
c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), "",
|
|
0);
|
|
}
|
|
} else if (io->size - io->len < pkt->pay.len &&
|
|
!mg_iobuf_resize(io, io->len + pkt->pay.len)) {
|
|
mg_error(c, "oom");
|
|
} else {
|
|
// Copy TCP payload into the IO buffer. If the connection is plain text,
|
|
// we copy to c->recv. If the connection is TLS, this data is encrypted,
|
|
// therefore we copy that encrypted data to the c->rtls iobuffer instead,
|
|
// and then call mg_tls_recv() to decrypt it. NOTE: mg_tls_recv() will
|
|
// call back mg_io_recv() which grabs raw data from c->rtls
|
|
memcpy(&io->buf[io->len], pkt->pay.buf, pkt->pay.len);
|
|
io->len += pkt->pay.len;
|
|
|
|
MG_VERBOSE(("%lu SEQ %x -> %x", c->id, mg_htonl(pkt->tcp->seq), s->ack));
|
|
// Advance ACK counter
|
|
s->ack = (uint32_t) (mg_htonl(pkt->tcp->seq) + pkt->pay.len);
|
|
s->unacked += pkt->pay.len;
|
|
// size_t diff = s->acked <= s->ack ? s->ack - s->acked : s->ack;
|
|
if (s->unacked > MIP_TCP_WIN / 2 && s->acked != s->ack) {
|
|
// Send ACK immediately
|
|
MG_VERBOSE(("%lu imm ACK %lu", c->id, s->acked));
|
|
tx_tcp((struct mg_tcpip_if *) c->mgr->priv, s->mac, rem_ip, TH_ACK,
|
|
c->loc.port, c->rem.port, mg_htonl(s->seq), mg_htonl(s->ack), NULL,
|
|
0);
|
|
s->unacked = 0;
|
|
s->acked = s->ack;
|
|
if (s->ttype != MIP_TTYPE_KEEPALIVE) settmout(c, MIP_TTYPE_KEEPALIVE);
|
|
} else {
|
|
// if not already running, setup a timer to send an ACK later
|
|
if (s->ttype != MIP_TTYPE_ACK) settmout(c, MIP_TTYPE_ACK);
|
|
}
|
|
|
|
if (c->is_tls && c->is_tls_hs) {
|
|
mg_tls_handshake(c);
|
|
} else if (c->is_tls) {
|
|
// TLS connection. Make room for decrypted data in c->recv
|
|
io = &c->recv;
|
|
if (io->size - io->len < pkt->pay.len &&
|
|
!mg_iobuf_resize(io, io->len + pkt->pay.len)) {
|
|
mg_error(c, "oom");
|
|
} else {
|
|
// Decrypt data directly into c->recv
|
|
handle_tls_recv(c, io);
|
|
}
|
|
} else {
|
|
// Plain text connection, data is already in c->recv, trigger
|
|
// MG_EV_READ
|
|
mg_call(c, MG_EV_READ, &pkt->pay.len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rx_tcp(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
struct mg_connection *c = getpeer(ifp->mgr, pkt, false);
|
|
struct connstate *s = c == NULL ? NULL : (struct connstate *) (c + 1);
|
|
#if 0
|
|
MG_INFO(("%lu %hhu %d", c ? c->id : 0, pkt->tcp->flags, (int) pkt->pay.len));
|
|
#endif
|
|
if (c != NULL && c->is_connecting && pkt->tcp->flags == (TH_SYN | TH_ACK)) {
|
|
s->seq = mg_ntohl(pkt->tcp->ack), s->ack = mg_ntohl(pkt->tcp->seq) + 1;
|
|
tx_tcp_pkt(ifp, pkt, TH_ACK, pkt->tcp->ack, NULL, 0);
|
|
c->is_connecting = 0; // Client connected
|
|
settmout(c, MIP_TTYPE_KEEPALIVE);
|
|
mg_call(c, MG_EV_CONNECT, NULL); // Let user know
|
|
} else if (c != NULL && c->is_connecting && pkt->tcp->flags != TH_ACK) {
|
|
// mg_hexdump(pkt->raw.buf, pkt->raw.len);
|
|
tx_tcp_pkt(ifp, pkt, TH_RST | TH_ACK, pkt->tcp->ack, NULL, 0);
|
|
} else if (c != NULL && pkt->tcp->flags & TH_RST) {
|
|
mg_error(c, "peer RST"); // RFC-1122 4.2.2.13
|
|
} else if (c != NULL) {
|
|
#if 0
|
|
MG_DEBUG(("%lu %d %M:%hu -> %M:%hu", c->id, (int) pkt->raw.len,
|
|
mg_print_ip4, &pkt->ip->src, mg_ntohs(pkt->tcp->sport),
|
|
mg_print_ip4, &pkt->ip->dst, mg_ntohs(pkt->tcp->dport)));
|
|
mg_hexdump(pkt->pay.buf, pkt->pay.len);
|
|
#endif
|
|
s->tmiss = 0; // Reset missed keep-alive counter
|
|
if (s->ttype == MIP_TTYPE_KEEPALIVE) // Advance keep-alive timer
|
|
settmout(c,
|
|
MIP_TTYPE_KEEPALIVE); // unless a former ACK timeout is pending
|
|
read_conn(c, pkt); // Override timer with ACK timeout if needed
|
|
} else if ((c = getpeer(ifp->mgr, pkt, true)) == NULL) {
|
|
tx_tcp_pkt(ifp, pkt, TH_RST | TH_ACK, pkt->tcp->ack, NULL, 0);
|
|
} else if (pkt->tcp->flags & TH_RST) {
|
|
if (c->is_accepted) mg_error(c, "peer RST"); // RFC-1122 4.2.2.13
|
|
// ignore RST if not connected
|
|
} else if (pkt->tcp->flags & TH_SYN) {
|
|
// Use peer's source port as ISN, in order to recognise the handshake
|
|
uint32_t isn = mg_htonl((uint32_t) mg_ntohs(pkt->tcp->sport));
|
|
tx_tcp_pkt(ifp, pkt, TH_SYN | TH_ACK, isn, NULL, 0);
|
|
} else if (pkt->tcp->flags & TH_FIN) {
|
|
tx_tcp_pkt(ifp, pkt, TH_FIN | TH_ACK, pkt->tcp->ack, NULL, 0);
|
|
} else if (mg_htonl(pkt->tcp->ack) == mg_htons(pkt->tcp->sport) + 1U) {
|
|
accept_conn(c, pkt);
|
|
} else if (!c->is_accepted) { // no peer
|
|
tx_tcp_pkt(ifp, pkt, TH_RST | TH_ACK, pkt->tcp->ack, NULL, 0);
|
|
} else {
|
|
// MG_VERBOSE(("dropped silently.."));
|
|
}
|
|
}
|
|
|
|
static void rx_ip(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
if (pkt->ip->frag & IP_MORE_FRAGS_MSK || pkt->ip->frag & IP_FRAG_OFFSET_MSK) {
|
|
if (pkt->ip->proto == 17) pkt->udp = (struct udp *) (pkt->ip + 1);
|
|
if (pkt->ip->proto == 6) pkt->tcp = (struct tcp *) (pkt->ip + 1);
|
|
struct mg_connection *c = getpeer(ifp->mgr, pkt, false);
|
|
if (c) mg_error(c, "Received fragmented packet");
|
|
} else if (pkt->ip->proto == 1) {
|
|
pkt->icmp = (struct icmp *) (pkt->ip + 1);
|
|
if (pkt->pay.len < sizeof(*pkt->icmp)) return;
|
|
mkpay(pkt, pkt->icmp + 1);
|
|
rx_icmp(ifp, pkt);
|
|
} else if (pkt->ip->proto == 17) {
|
|
pkt->udp = (struct udp *) (pkt->ip + 1);
|
|
if (pkt->pay.len < sizeof(*pkt->udp)) return;
|
|
mkpay(pkt, pkt->udp + 1);
|
|
MG_VERBOSE(("UDP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src,
|
|
mg_ntohs(pkt->udp->sport), mg_print_ip4, &pkt->ip->dst,
|
|
mg_ntohs(pkt->udp->dport), (int) pkt->pay.len));
|
|
if (ifp->enable_dhcp_client && pkt->udp->dport == mg_htons(68)) {
|
|
pkt->dhcp = (struct dhcp *) (pkt->udp + 1);
|
|
mkpay(pkt, pkt->dhcp + 1);
|
|
rx_dhcp_client(ifp, pkt);
|
|
} else if (ifp->enable_dhcp_server && pkt->udp->dport == mg_htons(67)) {
|
|
pkt->dhcp = (struct dhcp *) (pkt->udp + 1);
|
|
mkpay(pkt, pkt->dhcp + 1);
|
|
rx_dhcp_server(ifp, pkt);
|
|
} else {
|
|
rx_udp(ifp, pkt);
|
|
}
|
|
} else if (pkt->ip->proto == 6) {
|
|
pkt->tcp = (struct tcp *) (pkt->ip + 1);
|
|
if (pkt->pay.len < sizeof(*pkt->tcp)) return;
|
|
mkpay(pkt, pkt->tcp + 1);
|
|
uint16_t iplen = mg_ntohs(pkt->ip->len);
|
|
uint16_t off = (uint16_t) (sizeof(*pkt->ip) + ((pkt->tcp->off >> 4) * 4U));
|
|
if (iplen >= off) pkt->pay.len = (size_t) (iplen - off);
|
|
MG_VERBOSE(("TCP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src,
|
|
mg_ntohs(pkt->tcp->sport), mg_print_ip4, &pkt->ip->dst,
|
|
mg_ntohs(pkt->tcp->dport), (int) pkt->pay.len));
|
|
rx_tcp(ifp, pkt);
|
|
}
|
|
}
|
|
|
|
static void rx_ip6(struct mg_tcpip_if *ifp, struct pkt *pkt) {
|
|
// MG_DEBUG(("IP %d", (int) len));
|
|
if (pkt->ip6->proto == 1 || pkt->ip6->proto == 58) {
|
|
pkt->icmp = (struct icmp *) (pkt->ip6 + 1);
|
|
if (pkt->pay.len < sizeof(*pkt->icmp)) return;
|
|
mkpay(pkt, pkt->icmp + 1);
|
|
rx_icmp(ifp, pkt);
|
|
} else if (pkt->ip6->proto == 17) {
|
|
pkt->udp = (struct udp *) (pkt->ip6 + 1);
|
|
if (pkt->pay.len < sizeof(*pkt->udp)) return;
|
|
// MG_DEBUG((" UDP %u %u -> %u", len, mg_htons(udp->sport),
|
|
// mg_htons(udp->dport)));
|
|
mkpay(pkt, pkt->udp + 1);
|
|
}
|
|
}
|
|
|
|
static void mg_tcpip_rx(struct mg_tcpip_if *ifp, void *buf, size_t len) {
|
|
struct pkt pkt;
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.raw.buf = (char *) buf;
|
|
pkt.raw.len = len;
|
|
pkt.eth = (struct eth *) buf;
|
|
// mg_hexdump(buf, len > 16 ? 16: len);
|
|
if (pkt.raw.len < sizeof(*pkt.eth)) return; // Truncated - runt?
|
|
if (ifp->enable_mac_check &&
|
|
memcmp(pkt.eth->dst, ifp->mac, sizeof(pkt.eth->dst)) != 0 &&
|
|
memcmp(pkt.eth->dst, broadcast, sizeof(pkt.eth->dst)) != 0)
|
|
return;
|
|
if (ifp->enable_crc32_check && len > 4) {
|
|
len -= 4; // TODO(scaprile): check on bigendian
|
|
uint32_t crc = mg_crc32(0, (const char *) buf, len);
|
|
if (memcmp((void *) ((size_t) buf + len), &crc, sizeof(crc))) return;
|
|
}
|
|
if (pkt.eth->type == mg_htons(0x806)) {
|
|
pkt.arp = (struct arp *) (pkt.eth + 1);
|
|
if (sizeof(*pkt.eth) + sizeof(*pkt.arp) > pkt.raw.len) return; // Truncated
|
|
rx_arp(ifp, &pkt);
|
|
} else if (pkt.eth->type == mg_htons(0x86dd)) {
|
|
pkt.ip6 = (struct ip6 *) (pkt.eth + 1);
|
|
if (pkt.raw.len < sizeof(*pkt.eth) + sizeof(*pkt.ip6)) return; // Truncated
|
|
if ((pkt.ip6->ver >> 4) != 0x6) return; // Not IP
|
|
mkpay(&pkt, pkt.ip6 + 1);
|
|
rx_ip6(ifp, &pkt);
|
|
} else if (pkt.eth->type == mg_htons(0x800)) {
|
|
pkt.ip = (struct ip *) (pkt.eth + 1);
|
|
if (pkt.raw.len < sizeof(*pkt.eth) + sizeof(*pkt.ip)) return; // Truncated
|
|
// Truncate frame to what IP header tells us
|
|
if ((size_t) mg_ntohs(pkt.ip->len) + sizeof(struct eth) < pkt.raw.len) {
|
|
pkt.raw.len = (size_t) mg_ntohs(pkt.ip->len) + sizeof(struct eth);
|
|
}
|
|
if (pkt.raw.len < sizeof(*pkt.eth) + sizeof(*pkt.ip)) return; // Truncated
|
|
if ((pkt.ip->ver >> 4) != 4) return; // Not IP
|
|
mkpay(&pkt, pkt.ip + 1);
|
|
rx_ip(ifp, &pkt);
|
|
} else {
|
|
MG_DEBUG(("Unknown eth type %x", mg_htons(pkt.eth->type)));
|
|
if (mg_log_level >= MG_LL_VERBOSE) mg_hexdump(buf, len >= 32 ? 32 : len);
|
|
}
|
|
}
|
|
|
|
static void mg_tcpip_poll(struct mg_tcpip_if *ifp, uint64_t now) {
|
|
struct mg_connection *c;
|
|
bool expired_1000ms = mg_timer_expired(&ifp->timer_1000ms, 1000, now);
|
|
ifp->now = now;
|
|
|
|
#if MG_ENABLE_TCPIP_PRINT_DEBUG_STATS
|
|
if (expired_1000ms) {
|
|
const char *names[] = {"down", "up", "req", "ready"};
|
|
MG_INFO(("Status: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
|
|
names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
|
|
ifp->ndrop, ifp->nerr));
|
|
}
|
|
#endif
|
|
// Handle physical interface up/down status
|
|
if (expired_1000ms && ifp->driver->up) {
|
|
bool up = ifp->driver->up(ifp);
|
|
bool current = ifp->state != MG_TCPIP_STATE_DOWN;
|
|
if (up != current) {
|
|
ifp->state = up == false ? MG_TCPIP_STATE_DOWN
|
|
: ifp->enable_dhcp_client ? MG_TCPIP_STATE_UP
|
|
: MG_TCPIP_STATE_READY;
|
|
if (!up && ifp->enable_dhcp_client) ifp->ip = 0;
|
|
onstatechange(ifp);
|
|
}
|
|
if (ifp->state == MG_TCPIP_STATE_DOWN) MG_ERROR(("Network is down"));
|
|
}
|
|
if (ifp->state == MG_TCPIP_STATE_DOWN) return;
|
|
|
|
// DHCP RFC-2131 (4.4)
|
|
if (ifp->state == MG_TCPIP_STATE_UP && expired_1000ms) {
|
|
tx_dhcp_discover(ifp); // INIT (4.4.1)
|
|
} else if (expired_1000ms && ifp->state == MG_TCPIP_STATE_READY &&
|
|
ifp->lease_expire > 0) { // BOUND / RENEWING / REBINDING
|
|
if (ifp->now >= ifp->lease_expire) {
|
|
ifp->state = MG_TCPIP_STATE_UP, ifp->ip = 0; // expired, release IP
|
|
onstatechange(ifp);
|
|
} else if (ifp->now + 30UL * 60UL * 1000UL > ifp->lease_expire &&
|
|
((ifp->now / 1000) % 60) == 0) {
|
|
// hack: 30 min before deadline, try to rebind (4.3.6) every min
|
|
tx_dhcp_request_re(ifp, (uint8_t *) broadcast, ifp->ip, 0xffffffff);
|
|
} // TODO(): Handle T1 (RENEWING) and T2 (REBINDING) (4.4.5)
|
|
}
|
|
|
|
// Read data from the network
|
|
if (ifp->driver->rx != NULL) { // Polling driver. We must call it
|
|
size_t len =
|
|
ifp->driver->rx(ifp->recv_queue.buf, ifp->recv_queue.size, ifp);
|
|
if (len > 0) {
|
|
ifp->nrecv++;
|
|
mg_tcpip_rx(ifp, ifp->recv_queue.buf, len);
|
|
}
|
|
} else { // Interrupt-based driver. Fills recv queue itself
|
|
char *buf;
|
|
size_t len = mg_queue_next(&ifp->recv_queue, &buf);
|
|
if (len > 0) {
|
|
mg_tcpip_rx(ifp, buf, len);
|
|
mg_queue_del(&ifp->recv_queue, len);
|
|
}
|
|
}
|
|
|
|
// Process timeouts
|
|
for (c = ifp->mgr->conns; c != NULL; c = c->next) {
|
|
if (c->is_udp || c->is_listening || c->is_resolving) continue;
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
uint32_t rem_ip;
|
|
memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t));
|
|
if (now > s->timer) {
|
|
if (s->ttype == MIP_TTYPE_ACK && s->acked != s->ack) {
|
|
MG_VERBOSE(("%lu ack %x %x", c->id, s->seq, s->ack));
|
|
tx_tcp(ifp, s->mac, rem_ip, TH_ACK, c->loc.port, c->rem.port,
|
|
mg_htonl(s->seq), mg_htonl(s->ack), NULL, 0);
|
|
s->acked = s->ack;
|
|
} else if (s->ttype == MIP_TTYPE_ARP) {
|
|
mg_error(c, "ARP timeout");
|
|
} else if (s->ttype == MIP_TTYPE_SYN) {
|
|
mg_error(c, "Connection timeout");
|
|
} else if (s->ttype == MIP_TTYPE_FIN) {
|
|
c->is_closing = 1;
|
|
continue;
|
|
} else {
|
|
if (s->tmiss++ > 2) {
|
|
mg_error(c, "keepalive");
|
|
} else {
|
|
MG_VERBOSE(("%lu keepalive", c->id));
|
|
tx_tcp(ifp, s->mac, rem_ip, TH_ACK, c->loc.port, c->rem.port,
|
|
mg_htonl(s->seq - 1), mg_htonl(s->ack), NULL, 0);
|
|
}
|
|
}
|
|
|
|
settmout(c, MIP_TTYPE_KEEPALIVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function executes in interrupt context, thus it should copy data
|
|
// somewhere fast. Note that newlib's malloc is not thread safe, thus use
|
|
// our lock-free queue with preallocated buffer to copy data and return asap
|
|
void mg_tcpip_qwrite(void *buf, size_t len, struct mg_tcpip_if *ifp) {
|
|
char *p;
|
|
if (mg_queue_book(&ifp->recv_queue, &p, len) >= len) {
|
|
memcpy(p, buf, len);
|
|
mg_queue_add(&ifp->recv_queue, len);
|
|
ifp->nrecv++;
|
|
} else {
|
|
ifp->ndrop++;
|
|
}
|
|
}
|
|
|
|
void mg_tcpip_init(struct mg_mgr *mgr, struct mg_tcpip_if *ifp) {
|
|
// If MAC address is not set, make a random one
|
|
if (ifp->mac[0] == 0 && ifp->mac[1] == 0 && ifp->mac[2] == 0 &&
|
|
ifp->mac[3] == 0 && ifp->mac[4] == 0 && ifp->mac[5] == 0) {
|
|
ifp->mac[0] = 0x02; // Locally administered, unicast
|
|
mg_random(&ifp->mac[1], sizeof(ifp->mac) - 1);
|
|
MG_INFO(("MAC not set. Generated random: %M", mg_print_mac, ifp->mac));
|
|
}
|
|
|
|
if (ifp->driver->init && !ifp->driver->init(ifp)) {
|
|
MG_ERROR(("driver init failed"));
|
|
} else {
|
|
size_t framesize = 1540;
|
|
ifp->tx.buf = (char *) calloc(1, framesize), ifp->tx.len = framesize;
|
|
if (ifp->recv_queue.size == 0)
|
|
ifp->recv_queue.size = ifp->driver->rx ? framesize : 8192;
|
|
ifp->recv_queue.buf = (char *) calloc(1, ifp->recv_queue.size);
|
|
ifp->timer_1000ms = mg_millis();
|
|
mgr->priv = ifp;
|
|
ifp->mgr = mgr;
|
|
ifp->mtu = MG_TCPIP_MTU_DEFAULT;
|
|
mgr->extraconnsize = sizeof(struct connstate);
|
|
if (ifp->ip == 0) ifp->enable_dhcp_client = true;
|
|
memset(ifp->gwmac, 255, sizeof(ifp->gwmac)); // Set to broadcast
|
|
mg_random(&ifp->eport, sizeof(ifp->eport)); // Random from 0 to 65535
|
|
ifp->eport |= MG_EPHEMERAL_PORT_BASE; // Random from
|
|
// MG_EPHEMERAL_PORT_BASE to 65535
|
|
if (ifp->tx.buf == NULL || ifp->recv_queue.buf == NULL) MG_ERROR(("OOM"));
|
|
}
|
|
}
|
|
|
|
void mg_tcpip_free(struct mg_tcpip_if *ifp) {
|
|
free(ifp->recv_queue.buf);
|
|
free(ifp->tx.buf);
|
|
}
|
|
|
|
static void send_syn(struct mg_connection *c) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
uint32_t isn = mg_htonl((uint32_t) mg_ntohs(c->loc.port));
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv;
|
|
uint32_t rem_ip;
|
|
memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t));
|
|
tx_tcp(ifp, s->mac, rem_ip, TH_SYN, c->loc.port, c->rem.port, isn, 0, NULL,
|
|
0);
|
|
}
|
|
|
|
void mg_connect_resolved(struct mg_connection *c) {
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv;
|
|
uint32_t rem_ip;
|
|
memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t));
|
|
c->is_resolving = 0;
|
|
if (ifp->eport < MG_EPHEMERAL_PORT_BASE) ifp->eport = MG_EPHEMERAL_PORT_BASE;
|
|
memcpy(c->loc.ip, &ifp->ip, sizeof(uint32_t));
|
|
c->loc.port = mg_htons(ifp->eport++);
|
|
MG_DEBUG(("%lu %M -> %M", c->id, mg_print_ip_port, &c->loc, mg_print_ip_port,
|
|
&c->rem));
|
|
mg_call(c, MG_EV_RESOLVE, NULL);
|
|
if (c->is_udp && (rem_ip == 0xffffffff || rem_ip == (ifp->ip | ~ifp->mask))) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
memset(s->mac, 0xFF, sizeof(s->mac)); // global or local broadcast
|
|
} else if (ifp->ip && ((rem_ip & ifp->mask) == (ifp->ip & ifp->mask))) {
|
|
// If we're in the same LAN, fire an ARP lookup.
|
|
MG_DEBUG(("%lu ARP lookup...", c->id));
|
|
arp_ask(ifp, rem_ip);
|
|
settmout(c, MIP_TTYPE_ARP);
|
|
c->is_arplooking = 1;
|
|
c->is_connecting = 1;
|
|
} else if ((*((uint8_t *) &rem_ip) & 0xE0) == 0xE0) {
|
|
struct connstate *s = (struct connstate *) (c + 1); // 224 to 239, E0 to EF
|
|
uint8_t mcastp[3] = {0x01, 0x00, 0x5E}; // multicast group
|
|
memcpy(s->mac, mcastp, 3);
|
|
memcpy(s->mac + 3, ((uint8_t *) &rem_ip) + 1, 3); // 23 LSb
|
|
s->mac[3] &= 0x7F;
|
|
} else {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
memcpy(s->mac, ifp->gwmac, sizeof(ifp->gwmac));
|
|
if (c->is_udp) {
|
|
mg_call(c, MG_EV_CONNECT, NULL);
|
|
} else {
|
|
send_syn(c);
|
|
settmout(c, MIP_TTYPE_SYN);
|
|
c->is_connecting = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool mg_open_listener(struct mg_connection *c, const char *url) {
|
|
c->loc.port = mg_htons(mg_url_port(url));
|
|
return true;
|
|
}
|
|
|
|
static void write_conn(struct mg_connection *c) {
|
|
long len = c->is_tls ? mg_tls_send(c, c->send.buf, c->send.len)
|
|
: mg_io_send(c, c->send.buf, c->send.len);
|
|
if (len == MG_IO_ERR) {
|
|
mg_error(c, "tx err");
|
|
} else if (len > 0) {
|
|
mg_iobuf_del(&c->send, 0, (size_t) len);
|
|
mg_call(c, MG_EV_WRITE, &len);
|
|
}
|
|
}
|
|
|
|
static void init_closure(struct mg_connection *c) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
if (c->is_udp == false && c->is_listening == false &&
|
|
c->is_connecting == false) { // For TCP conns,
|
|
struct mg_tcpip_if *ifp =
|
|
(struct mg_tcpip_if *) c->mgr->priv; // send TCP FIN
|
|
uint32_t rem_ip;
|
|
memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t));
|
|
tx_tcp(ifp, s->mac, rem_ip, TH_FIN | TH_ACK, c->loc.port, c->rem.port,
|
|
mg_htonl(s->seq), mg_htonl(s->ack), NULL, 0);
|
|
settmout(c, MIP_TTYPE_FIN);
|
|
}
|
|
}
|
|
|
|
static void close_conn(struct mg_connection *c) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
mg_iobuf_free(&s->raw); // For TLS connections, release raw data
|
|
mg_close_conn(c);
|
|
}
|
|
|
|
static bool can_write(struct mg_connection *c) {
|
|
return c->is_connecting == 0 && c->is_resolving == 0 && c->send.len > 0 &&
|
|
c->is_tls_hs == 0 && c->is_arplooking == 0;
|
|
}
|
|
|
|
void mg_mgr_poll(struct mg_mgr *mgr, int ms) {
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) mgr->priv;
|
|
struct mg_connection *c, *tmp;
|
|
uint64_t now = mg_millis();
|
|
mg_timer_poll(&mgr->timers, now);
|
|
if (ifp == NULL || ifp->driver == NULL) return;
|
|
mg_tcpip_poll(ifp, now);
|
|
for (c = mgr->conns; c != NULL; c = tmp) {
|
|
tmp = c->next;
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
mg_call(c, MG_EV_POLL, &now);
|
|
MG_VERBOSE(("%lu .. %c%c%c%c%c", c->id, c->is_tls ? 'T' : 't',
|
|
c->is_connecting ? 'C' : 'c', c->is_tls_hs ? 'H' : 'h',
|
|
c->is_resolving ? 'R' : 'r', c->is_closing ? 'C' : 'c'));
|
|
if (c->is_tls && mg_tls_pending(c) > 0)
|
|
handle_tls_recv(c, (struct mg_iobuf *) &c->rtls);
|
|
if (can_write(c)) write_conn(c);
|
|
if (c->is_draining && c->send.len == 0 && s->ttype != MIP_TTYPE_FIN)
|
|
init_closure(c);
|
|
if (c->is_closing) close_conn(c);
|
|
}
|
|
(void) ms;
|
|
}
|
|
|
|
bool mg_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) c->mgr->priv;
|
|
bool res = false;
|
|
uint32_t rem_ip;
|
|
memcpy(&rem_ip, c->rem.ip, sizeof(uint32_t));
|
|
if (ifp->ip == 0 || ifp->state != MG_TCPIP_STATE_READY) {
|
|
mg_error(c, "net down");
|
|
} else if (c->is_udp) {
|
|
struct connstate *s = (struct connstate *) (c + 1);
|
|
len = trim_len(c, len); // Trimming length if necessary
|
|
tx_udp(ifp, s->mac, ifp->ip, c->loc.port, rem_ip, c->rem.port, buf, len);
|
|
res = true;
|
|
} else {
|
|
res = mg_iobuf_add(&c->send, c->send.len, buf, len);
|
|
}
|
|
return res;
|
|
}
|
|
#endif // MG_ENABLE_TCPIP
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/ota_dummy.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_OTA == MG_OTA_NONE
|
|
bool mg_ota_begin(size_t new_firmware_size) {
|
|
(void) new_firmware_size;
|
|
return true;
|
|
}
|
|
bool mg_ota_write(const void *buf, size_t len) {
|
|
(void) buf, (void) len;
|
|
return true;
|
|
}
|
|
bool mg_ota_end(void) {
|
|
return true;
|
|
}
|
|
bool mg_ota_commit(void) {
|
|
return true;
|
|
}
|
|
bool mg_ota_rollback(void) {
|
|
return true;
|
|
}
|
|
int mg_ota_status(int fw) {
|
|
(void) fw;
|
|
return 0;
|
|
}
|
|
uint32_t mg_ota_crc32(int fw) {
|
|
(void) fw;
|
|
return 0;
|
|
}
|
|
uint32_t mg_ota_timestamp(int fw) {
|
|
(void) fw;
|
|
return 0;
|
|
}
|
|
size_t mg_ota_size(int fw) {
|
|
(void) fw;
|
|
return 0;
|
|
}
|
|
MG_IRAM void mg_ota_boot(void) {
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/ota_esp32.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ARCH == MG_ARCH_ESP32 && MG_OTA == MG_OTA_ESP32
|
|
|
|
static const esp_partition_t *s_ota_update_partition;
|
|
static esp_ota_handle_t s_ota_update_handle;
|
|
static bool s_ota_success;
|
|
|
|
// Those empty macros do nothing, but mark places in the code which could
|
|
// potentially trigger a watchdog reboot due to the log flash erase operation
|
|
#define disable_wdt()
|
|
#define enable_wdt()
|
|
|
|
bool mg_ota_begin(size_t new_firmware_size) {
|
|
if (s_ota_update_partition != NULL) {
|
|
MG_ERROR(("Update in progress. Call mg_ota_end() ?"));
|
|
return false;
|
|
} else {
|
|
s_ota_success = false;
|
|
disable_wdt();
|
|
s_ota_update_partition = esp_ota_get_next_update_partition(NULL);
|
|
esp_err_t err = esp_ota_begin(s_ota_update_partition, new_firmware_size,
|
|
&s_ota_update_handle);
|
|
enable_wdt();
|
|
MG_DEBUG(("esp_ota_begin(): %d", err));
|
|
s_ota_success = (err == ESP_OK);
|
|
}
|
|
return s_ota_success;
|
|
}
|
|
|
|
bool mg_ota_write(const void *buf, size_t len) {
|
|
disable_wdt();
|
|
esp_err_t err = esp_ota_write(s_ota_update_handle, buf, len);
|
|
enable_wdt();
|
|
MG_INFO(("esp_ota_write(): %d", err));
|
|
s_ota_success = err == ESP_OK;
|
|
return s_ota_success;
|
|
}
|
|
|
|
bool mg_ota_end(void) {
|
|
esp_err_t err = esp_ota_end(s_ota_update_handle);
|
|
MG_DEBUG(("esp_ota_end(%p): %d", s_ota_update_handle, err));
|
|
if (s_ota_success && err == ESP_OK) {
|
|
err = esp_ota_set_boot_partition(s_ota_update_partition);
|
|
s_ota_success = (err == ESP_OK);
|
|
}
|
|
MG_DEBUG(("Finished ESP32 OTA, success: %d", s_ota_success));
|
|
s_ota_update_partition = NULL;
|
|
return s_ota_success;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/ota_flash.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// This OTA implementation uses the internal flash API outlined in device.h
|
|
// It splits flash into 2 equal partitions, and stores OTA status in the
|
|
// last sector of the partition.
|
|
|
|
#if MG_OTA == MG_OTA_FLASH
|
|
|
|
#define MG_OTADATA_KEY 0xb07afed0
|
|
|
|
static char *s_addr; // Current address to write to
|
|
static size_t s_size; // Firmware size to flash. In-progress indicator
|
|
static uint32_t s_crc32; // Firmware checksum
|
|
|
|
struct mg_otadata {
|
|
uint32_t crc32, size, timestamp, status;
|
|
};
|
|
|
|
bool mg_ota_begin(size_t new_firmware_size) {
|
|
bool ok = false;
|
|
if (s_size) {
|
|
MG_ERROR(("OTA already in progress. Call mg_ota_end()"));
|
|
} else {
|
|
size_t half = mg_flash_size() / 2, max = half - mg_flash_sector_size();
|
|
s_crc32 = 0;
|
|
s_addr = (char *) mg_flash_start() + half;
|
|
MG_DEBUG(("Firmware %lu bytes, max %lu", new_firmware_size, max));
|
|
if (new_firmware_size < max) {
|
|
ok = true;
|
|
s_size = new_firmware_size;
|
|
MG_INFO(("Starting OTA, firmware size %lu", s_size));
|
|
} else {
|
|
MG_ERROR(("Firmware %lu is too big to fit %lu", new_firmware_size, max));
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool mg_ota_write(const void *buf, size_t len) {
|
|
bool ok = false;
|
|
if (s_size == 0) {
|
|
MG_ERROR(("OTA is not started, call mg_ota_begin()"));
|
|
} else {
|
|
size_t align = mg_flash_write_align();
|
|
size_t len_aligned_down = MG_ROUND_DOWN(len, align);
|
|
if (len_aligned_down) ok = mg_flash_write(s_addr, buf, len_aligned_down);
|
|
if (len_aligned_down < len) {
|
|
size_t left = len - len_aligned_down;
|
|
char tmp[align];
|
|
memset(tmp, 0xff, sizeof(tmp));
|
|
memcpy(tmp, (char *) buf + len_aligned_down, left);
|
|
ok = mg_flash_write(s_addr + len_aligned_down, tmp, sizeof(tmp));
|
|
}
|
|
s_crc32 = mg_crc32(s_crc32, (char *) buf, len); // Update CRC
|
|
MG_DEBUG(("%#x %p %lu -> %d", s_addr - len, buf, len, ok));
|
|
s_addr += len;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
MG_IRAM static uint32_t mg_fwkey(int fw) {
|
|
uint32_t key = MG_OTADATA_KEY + fw;
|
|
int bank = mg_flash_bank();
|
|
if (bank == 2 && fw == MG_FIRMWARE_PREVIOUS) key--;
|
|
if (bank == 2 && fw == MG_FIRMWARE_CURRENT) key++;
|
|
return key;
|
|
}
|
|
|
|
bool mg_ota_end(void) {
|
|
char *base = (char *) mg_flash_start() + mg_flash_size() / 2;
|
|
bool ok = false;
|
|
if (s_size) {
|
|
size_t size = s_addr - base;
|
|
uint32_t crc32 = mg_crc32(0, base, s_size);
|
|
if (size == s_size && crc32 == s_crc32) {
|
|
uint32_t now = (uint32_t) (mg_now() / 1000);
|
|
struct mg_otadata od = {crc32, size, now, MG_OTA_FIRST_BOOT};
|
|
uint32_t key = mg_fwkey(MG_FIRMWARE_PREVIOUS);
|
|
ok = mg_flash_save(NULL, key, &od, sizeof(od));
|
|
}
|
|
MG_DEBUG(("CRC: %x/%x, size: %lu/%lu, status: %s", s_crc32, crc32, s_size,
|
|
size, ok ? "ok" : "fail"));
|
|
s_size = 0;
|
|
if (ok) ok = mg_flash_swap_bank();
|
|
}
|
|
MG_INFO(("Finishing OTA: %s", ok ? "ok" : "fail"));
|
|
return ok;
|
|
}
|
|
|
|
MG_IRAM static struct mg_otadata mg_otadata(int fw) {
|
|
uint32_t key = mg_fwkey(fw);
|
|
struct mg_otadata od = {};
|
|
MG_INFO(("Loading %s OTA data", fw == MG_FIRMWARE_CURRENT ? "curr" : "prev"));
|
|
mg_flash_load(NULL, key, &od, sizeof(od));
|
|
// MG_DEBUG(("Loaded OTA data. fw %d, bank %d, key %p", fw, bank, key));
|
|
// mg_hexdump(&od, sizeof(od));
|
|
return od;
|
|
}
|
|
|
|
int mg_ota_status(int fw) {
|
|
struct mg_otadata od = mg_otadata(fw);
|
|
return od.status;
|
|
}
|
|
uint32_t mg_ota_crc32(int fw) {
|
|
struct mg_otadata od = mg_otadata(fw);
|
|
return od.crc32;
|
|
}
|
|
uint32_t mg_ota_timestamp(int fw) {
|
|
struct mg_otadata od = mg_otadata(fw);
|
|
return od.timestamp;
|
|
}
|
|
size_t mg_ota_size(int fw) {
|
|
struct mg_otadata od = mg_otadata(fw);
|
|
return od.size;
|
|
}
|
|
|
|
MG_IRAM bool mg_ota_commit(void) {
|
|
bool ok = true;
|
|
struct mg_otadata od = mg_otadata(MG_FIRMWARE_CURRENT);
|
|
if (od.status != MG_OTA_COMMITTED) {
|
|
od.status = MG_OTA_COMMITTED;
|
|
MG_INFO(("Committing current firmware, OD size %lu", sizeof(od)));
|
|
ok = mg_flash_save(NULL, mg_fwkey(MG_FIRMWARE_CURRENT), &od, sizeof(od));
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool mg_ota_rollback(void) {
|
|
MG_DEBUG(("Rolling firmware back"));
|
|
if (mg_flash_bank() == 0) {
|
|
// No dual bank support. Mark previous firmware as FIRST_BOOT
|
|
struct mg_otadata prev = mg_otadata(MG_FIRMWARE_PREVIOUS);
|
|
prev.status = MG_OTA_FIRST_BOOT;
|
|
return mg_flash_save(NULL, MG_OTADATA_KEY + MG_FIRMWARE_PREVIOUS, &prev,
|
|
sizeof(prev));
|
|
} else {
|
|
return mg_flash_swap_bank();
|
|
}
|
|
}
|
|
|
|
MG_IRAM void mg_ota_boot(void) {
|
|
MG_INFO(("Booting. Flash bank: %d", mg_flash_bank()));
|
|
struct mg_otadata curr = mg_otadata(MG_FIRMWARE_CURRENT);
|
|
struct mg_otadata prev = mg_otadata(MG_FIRMWARE_PREVIOUS);
|
|
|
|
if (curr.status == MG_OTA_FIRST_BOOT) {
|
|
if (prev.status == MG_OTA_UNAVAILABLE) {
|
|
MG_INFO(("Setting previous firmware state to committed"));
|
|
prev.status = MG_OTA_COMMITTED;
|
|
mg_flash_save(NULL, mg_fwkey(MG_FIRMWARE_PREVIOUS), &prev, sizeof(prev));
|
|
}
|
|
curr.status = MG_OTA_UNCOMMITTED;
|
|
MG_INFO(("First boot, setting status to UNCOMMITTED"));
|
|
mg_flash_save(NULL, mg_fwkey(MG_FIRMWARE_CURRENT), &curr, sizeof(curr));
|
|
} else if (prev.status == MG_OTA_FIRST_BOOT && mg_flash_bank() == 0) {
|
|
// Swap paritions. Pray power does not disappear
|
|
size_t fs = mg_flash_size(), ss = mg_flash_sector_size();
|
|
char *partition1 = mg_flash_start();
|
|
char *partition2 = mg_flash_start() + fs / 2;
|
|
size_t ofs, max = fs / 2 - ss; // Set swap size to the whole partition
|
|
|
|
if (curr.status != MG_OTA_UNAVAILABLE &&
|
|
prev.status != MG_OTA_UNAVAILABLE) {
|
|
// We know exact sizes of both firmwares.
|
|
// Shrink swap size to the MAX(firmware1, firmware2)
|
|
size_t sz = curr.size > prev.size ? curr.size : prev.size;
|
|
if (sz > 0 && sz < max) max = sz;
|
|
}
|
|
|
|
// MG_OTA_FIRST_BOOT -> MG_OTA_UNCOMMITTED
|
|
prev.status = MG_OTA_UNCOMMITTED;
|
|
mg_flash_save(NULL, MG_OTADATA_KEY + MG_FIRMWARE_CURRENT, &prev,
|
|
sizeof(prev));
|
|
mg_flash_save(NULL, MG_OTADATA_KEY + MG_FIRMWARE_PREVIOUS, &curr,
|
|
sizeof(curr));
|
|
|
|
MG_INFO(("Swapping partitions, size %u (%u sectors)", max, max / ss));
|
|
MG_INFO(("Do NOT power off..."));
|
|
mg_log_level = MG_LL_NONE;
|
|
|
|
// We use the last sector of partition2 for OTA data/config storage
|
|
// Therefore we can use last sector of partition1 for swapping
|
|
char *tmpsector = partition1 + fs / 2 - ss; // Last sector of partition1
|
|
(void) tmpsector;
|
|
for (ofs = 0; ofs < max; ofs += ss) {
|
|
// mg_flash_erase(tmpsector);
|
|
mg_flash_write(tmpsector, partition1 + ofs, ss);
|
|
// mg_flash_erase(partition1 + ofs);
|
|
mg_flash_write(partition1 + ofs, partition2 + ofs, ss);
|
|
// mg_flash_erase(partition2 + ofs);
|
|
mg_flash_write(partition2 + ofs, tmpsector, ss);
|
|
}
|
|
mg_device_reset();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/printf.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
size_t mg_queue_vprintf(struct mg_queue *q, const char *fmt, va_list *ap) {
|
|
size_t len = mg_snprintf(NULL, 0, fmt, ap);
|
|
char *buf;
|
|
if (len == 0 || mg_queue_book(q, &buf, len + 1) < len + 1) {
|
|
len = 0; // Nah. Not enough space
|
|
} else {
|
|
len = mg_vsnprintf((char *) buf, len + 1, fmt, ap);
|
|
mg_queue_add(q, len);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
size_t mg_queue_printf(struct mg_queue *q, const char *fmt, ...) {
|
|
va_list ap;
|
|
size_t len;
|
|
va_start(ap, fmt);
|
|
len = mg_queue_vprintf(q, fmt, &ap);
|
|
va_end(ap);
|
|
return len;
|
|
}
|
|
|
|
static void mg_pfn_iobuf_private(char ch, void *param, bool expand) {
|
|
struct mg_iobuf *io = (struct mg_iobuf *) param;
|
|
if (expand && io->len + 2 > io->size) mg_iobuf_resize(io, io->len + 2);
|
|
if (io->len + 2 <= io->size) {
|
|
io->buf[io->len++] = (uint8_t) ch;
|
|
io->buf[io->len] = 0;
|
|
} else if (io->len < io->size) {
|
|
io->buf[io->len++] = 0; // Guarantee to 0-terminate
|
|
}
|
|
}
|
|
|
|
static void mg_putchar_iobuf_static(char ch, void *param) {
|
|
mg_pfn_iobuf_private(ch, param, false);
|
|
}
|
|
|
|
void mg_pfn_iobuf(char ch, void *param) {
|
|
mg_pfn_iobuf_private(ch, param, true);
|
|
}
|
|
|
|
size_t mg_vsnprintf(char *buf, size_t len, const char *fmt, va_list *ap) {
|
|
struct mg_iobuf io = {(uint8_t *) buf, len, 0, 0};
|
|
size_t n = mg_vxprintf(mg_putchar_iobuf_static, &io, fmt, ap);
|
|
if (n < len) buf[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
size_t mg_snprintf(char *buf, size_t len, const char *fmt, ...) {
|
|
va_list ap;
|
|
size_t n;
|
|
va_start(ap, fmt);
|
|
n = mg_vsnprintf(buf, len, fmt, &ap);
|
|
va_end(ap);
|
|
return n;
|
|
}
|
|
|
|
char *mg_vmprintf(const char *fmt, va_list *ap) {
|
|
struct mg_iobuf io = {0, 0, 0, 256};
|
|
mg_vxprintf(mg_pfn_iobuf, &io, fmt, ap);
|
|
return (char *) io.buf;
|
|
}
|
|
|
|
char *mg_mprintf(const char *fmt, ...) {
|
|
char *s;
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
s = mg_vmprintf(fmt, &ap);
|
|
va_end(ap);
|
|
return s;
|
|
}
|
|
|
|
void mg_pfn_stdout(char c, void *param) {
|
|
putchar(c);
|
|
(void) param;
|
|
}
|
|
|
|
static size_t print_ip4(void (*out)(char, void *), void *arg, uint8_t *p) {
|
|
return mg_xprintf(out, arg, "%d.%d.%d.%d", p[0], p[1], p[2], p[3]);
|
|
}
|
|
|
|
static size_t print_ip6(void (*out)(char, void *), void *arg, uint16_t *p) {
|
|
return mg_xprintf(out, arg, "[%x:%x:%x:%x:%x:%x:%x:%x]", mg_ntohs(p[0]),
|
|
mg_ntohs(p[1]), mg_ntohs(p[2]), mg_ntohs(p[3]),
|
|
mg_ntohs(p[4]), mg_ntohs(p[5]), mg_ntohs(p[6]),
|
|
mg_ntohs(p[7]));
|
|
}
|
|
|
|
size_t mg_print_ip4(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
uint8_t *p = va_arg(*ap, uint8_t *);
|
|
return print_ip4(out, arg, p);
|
|
}
|
|
|
|
size_t mg_print_ip6(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
uint16_t *p = va_arg(*ap, uint16_t *);
|
|
return print_ip6(out, arg, p);
|
|
}
|
|
|
|
size_t mg_print_ip(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
struct mg_addr *addr = va_arg(*ap, struct mg_addr *);
|
|
if (addr->is_ip6) return print_ip6(out, arg, (uint16_t *) addr->ip);
|
|
return print_ip4(out, arg, (uint8_t *) &addr->ip);
|
|
}
|
|
|
|
size_t mg_print_ip_port(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
struct mg_addr *a = va_arg(*ap, struct mg_addr *);
|
|
return mg_xprintf(out, arg, "%M:%hu", mg_print_ip, a, mg_ntohs(a->port));
|
|
}
|
|
|
|
size_t mg_print_mac(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
uint8_t *p = va_arg(*ap, uint8_t *);
|
|
return mg_xprintf(out, arg, "%02x:%02x:%02x:%02x:%02x:%02x", p[0], p[1], p[2],
|
|
p[3], p[4], p[5]);
|
|
}
|
|
|
|
static char mg_esc(int c, bool esc) {
|
|
const char *p, *esc1 = "\b\f\n\r\t\\\"", *esc2 = "bfnrt\\\"";
|
|
for (p = esc ? esc1 : esc2; *p != '\0'; p++) {
|
|
if (*p == c) return esc ? esc2[p - esc1] : esc1[p - esc2];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static char mg_escape(int c) {
|
|
return mg_esc(c, true);
|
|
}
|
|
|
|
static size_t qcpy(void (*out)(char, void *), void *ptr, char *buf,
|
|
size_t len) {
|
|
size_t i = 0, extra = 0;
|
|
for (i = 0; i < len && buf[i] != '\0'; i++) {
|
|
char c = mg_escape(buf[i]);
|
|
if (c) {
|
|
out('\\', ptr), out(c, ptr), extra++;
|
|
} else {
|
|
out(buf[i], ptr);
|
|
}
|
|
}
|
|
return i + extra;
|
|
}
|
|
|
|
static size_t bcpy(void (*out)(char, void *), void *arg, uint8_t *buf,
|
|
size_t len) {
|
|
size_t i, j, n = 0;
|
|
const char *t =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
for (i = 0; i < len; i += 3) {
|
|
uint8_t c1 = buf[i], c2 = i + 1 < len ? buf[i + 1] : 0,
|
|
c3 = i + 2 < len ? buf[i + 2] : 0;
|
|
char tmp[4] = {t[c1 >> 2], t[(c1 & 3) << 4 | (c2 >> 4)], '=', '='};
|
|
if (i + 1 < len) tmp[2] = t[(c2 & 15) << 2 | (c3 >> 6)];
|
|
if (i + 2 < len) tmp[3] = t[c3 & 63];
|
|
for (j = 0; j < sizeof(tmp) && tmp[j] != '\0'; j++) out(tmp[j], arg);
|
|
n += j;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
size_t mg_print_hex(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
size_t bl = (size_t) va_arg(*ap, int);
|
|
uint8_t *p = va_arg(*ap, uint8_t *);
|
|
const char *hex = "0123456789abcdef";
|
|
size_t j;
|
|
for (j = 0; j < bl; j++) {
|
|
out(hex[(p[j] >> 4) & 0x0F], arg);
|
|
out(hex[p[j] & 0x0F], arg);
|
|
}
|
|
return 2 * bl;
|
|
}
|
|
size_t mg_print_base64(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
size_t len = (size_t) va_arg(*ap, int);
|
|
uint8_t *buf = va_arg(*ap, uint8_t *);
|
|
return bcpy(out, arg, buf, len);
|
|
}
|
|
|
|
size_t mg_print_esc(void (*out)(char, void *), void *arg, va_list *ap) {
|
|
size_t len = (size_t) va_arg(*ap, int);
|
|
char *p = va_arg(*ap, char *);
|
|
if (len == 0) len = p == NULL ? 0 : strlen(p);
|
|
return qcpy(out, arg, p, len);
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/queue.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined(__GNUC__) && (__GNUC__ > 4) || \
|
|
(defined(__GNUC_MINOR__) && __GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
|
|
defined(__clang__)
|
|
#define MG_MEMORY_BARRIER() __sync_synchronize()
|
|
#elif defined(_MSC_VER) && _MSC_VER >= 1700
|
|
#define MG_MEMORY_BARRIER() MemoryBarrier()
|
|
#elif !defined(MG_MEMORY_BARRIER)
|
|
#define MG_MEMORY_BARRIER()
|
|
#endif
|
|
|
|
// Every message in a queue is prepended by a 32-bit message length (ML).
|
|
// If ML is 0, then it is the end, and reader must wrap to the beginning.
|
|
//
|
|
// Queue when q->tail <= q->head:
|
|
// |----- free -----| ML | message1 | ML | message2 | ----- free ------|
|
|
// ^ ^ ^ ^
|
|
// buf tail head len
|
|
//
|
|
// Queue when q->tail > q->head:
|
|
// | ML | message2 |----- free ------| ML | message1 | 0 |---- free ----|
|
|
// ^ ^ ^ ^
|
|
// buf head tail len
|
|
|
|
void mg_queue_init(struct mg_queue *q, char *buf, size_t size) {
|
|
q->size = size;
|
|
q->buf = buf;
|
|
q->head = q->tail = 0;
|
|
}
|
|
|
|
static size_t mg_queue_read_len(struct mg_queue *q) {
|
|
uint32_t n = 0;
|
|
MG_MEMORY_BARRIER();
|
|
memcpy(&n, q->buf + q->tail, sizeof(n));
|
|
assert(q->tail + n + sizeof(n) <= q->size);
|
|
return n;
|
|
}
|
|
|
|
static void mg_queue_write_len(struct mg_queue *q, size_t len) {
|
|
uint32_t n = (uint32_t) len;
|
|
memcpy(q->buf + q->head, &n, sizeof(n));
|
|
MG_MEMORY_BARRIER();
|
|
}
|
|
|
|
size_t mg_queue_book(struct mg_queue *q, char **buf, size_t len) {
|
|
size_t space = 0, hs = sizeof(uint32_t) * 2; // *2 is for the 0 marker
|
|
if (q->head >= q->tail && q->head + len + hs <= q->size) {
|
|
space = q->size - q->head - hs; // There is enough space
|
|
} else if (q->head >= q->tail && q->tail > hs) {
|
|
mg_queue_write_len(q, 0); // Not enough space ahead
|
|
q->head = 0; // Wrap head to the beginning
|
|
}
|
|
if (q->head + hs + len < q->tail) space = q->tail - q->head - hs;
|
|
if (buf != NULL) *buf = q->buf + q->head + sizeof(uint32_t);
|
|
return space;
|
|
}
|
|
|
|
size_t mg_queue_next(struct mg_queue *q, char **buf) {
|
|
size_t len = 0;
|
|
if (q->tail != q->head) {
|
|
len = mg_queue_read_len(q);
|
|
if (len == 0) { // Zero (head wrapped) ?
|
|
q->tail = 0; // Reset tail to the start
|
|
if (q->head > q->tail) len = mg_queue_read_len(q); // Read again
|
|
}
|
|
}
|
|
if (buf != NULL) *buf = q->buf + q->tail + sizeof(uint32_t);
|
|
assert(q->tail + len <= q->size);
|
|
return len;
|
|
}
|
|
|
|
void mg_queue_add(struct mg_queue *q, size_t len) {
|
|
assert(len > 0);
|
|
mg_queue_write_len(q, len);
|
|
assert(q->head + sizeof(uint32_t) * 2 + len <= q->size);
|
|
q->head += len + sizeof(uint32_t);
|
|
}
|
|
|
|
void mg_queue_del(struct mg_queue *q, size_t len) {
|
|
q->tail += len + sizeof(uint32_t);
|
|
assert(q->tail + sizeof(uint32_t) <= q->size);
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/rpc.c"
|
|
#endif
|
|
|
|
|
|
|
|
void mg_rpc_add(struct mg_rpc **head, struct mg_str method,
|
|
void (*fn)(struct mg_rpc_req *), void *fn_data) {
|
|
struct mg_rpc *rpc = (struct mg_rpc *) calloc(1, sizeof(*rpc));
|
|
if (rpc != NULL) {
|
|
rpc->method.buf = mg_mprintf("%.*s", method.len, method.buf);
|
|
rpc->method.len = method.len;
|
|
rpc->fn = fn;
|
|
rpc->fn_data = fn_data;
|
|
rpc->next = *head, *head = rpc;
|
|
}
|
|
}
|
|
|
|
void mg_rpc_del(struct mg_rpc **head, void (*fn)(struct mg_rpc_req *)) {
|
|
struct mg_rpc *r;
|
|
while ((r = *head) != NULL) {
|
|
if (r->fn == fn || fn == NULL) {
|
|
*head = r->next;
|
|
free((void *) r->method.buf);
|
|
free(r);
|
|
} else {
|
|
head = &(*head)->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mg_rpc_call(struct mg_rpc_req *r, struct mg_str method) {
|
|
struct mg_rpc *h = r->head == NULL ? NULL : *r->head;
|
|
while (h != NULL && !mg_match(method, h->method, NULL)) h = h->next;
|
|
if (h != NULL) {
|
|
r->rpc = h;
|
|
h->fn(r);
|
|
} else {
|
|
mg_rpc_err(r, -32601, "\"%.*s not found\"", (int) method.len, method.buf);
|
|
}
|
|
}
|
|
|
|
void mg_rpc_process(struct mg_rpc_req *r) {
|
|
int len, off = mg_json_get(r->frame, "$.method", &len);
|
|
if (off > 0 && r->frame.buf[off] == '"') {
|
|
struct mg_str method = mg_str_n(&r->frame.buf[off + 1], (size_t) len - 2);
|
|
mg_rpc_call(r, method);
|
|
} else if ((off = mg_json_get(r->frame, "$.result", &len)) > 0 ||
|
|
(off = mg_json_get(r->frame, "$.error", &len)) > 0) {
|
|
mg_rpc_call(r, mg_str("")); // JSON response! call "" method handler
|
|
} else {
|
|
mg_rpc_err(r, -32700, "%m", mg_print_esc, (int) r->frame.len,
|
|
r->frame.buf); // Invalid
|
|
}
|
|
}
|
|
|
|
void mg_rpc_vok(struct mg_rpc_req *r, const char *fmt, va_list *ap) {
|
|
int len, off = mg_json_get(r->frame, "$.id", &len);
|
|
if (off > 0) {
|
|
mg_xprintf(r->pfn, r->pfn_data, "{%m:%.*s,%m:", mg_print_esc, 0, "id", len,
|
|
&r->frame.buf[off], mg_print_esc, 0, "result");
|
|
mg_vxprintf(r->pfn, r->pfn_data, fmt == NULL ? "null" : fmt, ap);
|
|
mg_xprintf(r->pfn, r->pfn_data, "}");
|
|
}
|
|
}
|
|
|
|
void mg_rpc_ok(struct mg_rpc_req *r, const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mg_rpc_vok(r, fmt, &ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
void mg_rpc_verr(struct mg_rpc_req *r, int code, const char *fmt, va_list *ap) {
|
|
int len, off = mg_json_get(r->frame, "$.id", &len);
|
|
mg_xprintf(r->pfn, r->pfn_data, "{");
|
|
if (off > 0) {
|
|
mg_xprintf(r->pfn, r->pfn_data, "%m:%.*s,", mg_print_esc, 0, "id", len,
|
|
&r->frame.buf[off]);
|
|
}
|
|
mg_xprintf(r->pfn, r->pfn_data, "%m:{%m:%d,%m:", mg_print_esc, 0, "error",
|
|
mg_print_esc, 0, "code", code, mg_print_esc, 0, "message");
|
|
mg_vxprintf(r->pfn, r->pfn_data, fmt == NULL ? "null" : fmt, ap);
|
|
mg_xprintf(r->pfn, r->pfn_data, "}}");
|
|
}
|
|
|
|
void mg_rpc_err(struct mg_rpc_req *r, int code, const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mg_rpc_verr(r, code, fmt, &ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
static size_t print_methods(mg_pfn_t pfn, void *pfn_data, va_list *ap) {
|
|
struct mg_rpc *h, **head = (struct mg_rpc **) va_arg(*ap, void **);
|
|
size_t len = 0;
|
|
for (h = *head; h != NULL; h = h->next) {
|
|
if (h->method.len == 0) continue; // Ignore response handler
|
|
len += mg_xprintf(pfn, pfn_data, "%s%m", h == *head ? "" : ",",
|
|
mg_print_esc, (int) h->method.len, h->method.buf);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
void mg_rpc_list(struct mg_rpc_req *r) {
|
|
mg_rpc_ok(r, "[%M]", print_methods, r->head);
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/sha1.c"
|
|
#endif
|
|
/* Copyright(c) By Steve Reid <steve@edmweb.com> */
|
|
/* 100% Public Domain */
|
|
|
|
|
|
|
|
union char64long16 {
|
|
unsigned char c[64];
|
|
uint32_t l[16];
|
|
};
|
|
|
|
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
|
|
|
static uint32_t blk0(union char64long16 *block, int i) {
|
|
if (MG_BIG_ENDIAN) {
|
|
} else {
|
|
block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) |
|
|
(rol(block->l[i], 8) & 0x00FF00FF);
|
|
}
|
|
return block->l[i];
|
|
}
|
|
|
|
/* Avoid redefine warning (ARM /usr/include/sys/ucontext.h define R0~R4) */
|
|
#undef blk
|
|
#undef R0
|
|
#undef R1
|
|
#undef R2
|
|
#undef R3
|
|
#undef R4
|
|
|
|
#define blk(i) \
|
|
(block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ block->l[(i + 8) & 15] ^ \
|
|
block->l[(i + 2) & 15] ^ block->l[i & 15], \
|
|
1))
|
|
#define R0(v, w, x, y, z, i) \
|
|
z += ((w & (x ^ y)) ^ y) + blk0(block, i) + 0x5A827999 + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R1(v, w, x, y, z, i) \
|
|
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R2(v, w, x, y, z, i) \
|
|
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R3(v, w, x, y, z, i) \
|
|
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
#define R4(v, w, x, y, z, i) \
|
|
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
|
|
w = rol(w, 30);
|
|
|
|
static void mg_sha1_transform(uint32_t state[5],
|
|
const unsigned char *buffer) {
|
|
uint32_t a, b, c, d, e;
|
|
union char64long16 block[1];
|
|
|
|
memcpy(block, buffer, 64);
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
e = state[4];
|
|
R0(a, b, c, d, e, 0);
|
|
R0(e, a, b, c, d, 1);
|
|
R0(d, e, a, b, c, 2);
|
|
R0(c, d, e, a, b, 3);
|
|
R0(b, c, d, e, a, 4);
|
|
R0(a, b, c, d, e, 5);
|
|
R0(e, a, b, c, d, 6);
|
|
R0(d, e, a, b, c, 7);
|
|
R0(c, d, e, a, b, 8);
|
|
R0(b, c, d, e, a, 9);
|
|
R0(a, b, c, d, e, 10);
|
|
R0(e, a, b, c, d, 11);
|
|
R0(d, e, a, b, c, 12);
|
|
R0(c, d, e, a, b, 13);
|
|
R0(b, c, d, e, a, 14);
|
|
R0(a, b, c, d, e, 15);
|
|
R1(e, a, b, c, d, 16);
|
|
R1(d, e, a, b, c, 17);
|
|
R1(c, d, e, a, b, 18);
|
|
R1(b, c, d, e, a, 19);
|
|
R2(a, b, c, d, e, 20);
|
|
R2(e, a, b, c, d, 21);
|
|
R2(d, e, a, b, c, 22);
|
|
R2(c, d, e, a, b, 23);
|
|
R2(b, c, d, e, a, 24);
|
|
R2(a, b, c, d, e, 25);
|
|
R2(e, a, b, c, d, 26);
|
|
R2(d, e, a, b, c, 27);
|
|
R2(c, d, e, a, b, 28);
|
|
R2(b, c, d, e, a, 29);
|
|
R2(a, b, c, d, e, 30);
|
|
R2(e, a, b, c, d, 31);
|
|
R2(d, e, a, b, c, 32);
|
|
R2(c, d, e, a, b, 33);
|
|
R2(b, c, d, e, a, 34);
|
|
R2(a, b, c, d, e, 35);
|
|
R2(e, a, b, c, d, 36);
|
|
R2(d, e, a, b, c, 37);
|
|
R2(c, d, e, a, b, 38);
|
|
R2(b, c, d, e, a, 39);
|
|
R3(a, b, c, d, e, 40);
|
|
R3(e, a, b, c, d, 41);
|
|
R3(d, e, a, b, c, 42);
|
|
R3(c, d, e, a, b, 43);
|
|
R3(b, c, d, e, a, 44);
|
|
R3(a, b, c, d, e, 45);
|
|
R3(e, a, b, c, d, 46);
|
|
R3(d, e, a, b, c, 47);
|
|
R3(c, d, e, a, b, 48);
|
|
R3(b, c, d, e, a, 49);
|
|
R3(a, b, c, d, e, 50);
|
|
R3(e, a, b, c, d, 51);
|
|
R3(d, e, a, b, c, 52);
|
|
R3(c, d, e, a, b, 53);
|
|
R3(b, c, d, e, a, 54);
|
|
R3(a, b, c, d, e, 55);
|
|
R3(e, a, b, c, d, 56);
|
|
R3(d, e, a, b, c, 57);
|
|
R3(c, d, e, a, b, 58);
|
|
R3(b, c, d, e, a, 59);
|
|
R4(a, b, c, d, e, 60);
|
|
R4(e, a, b, c, d, 61);
|
|
R4(d, e, a, b, c, 62);
|
|
R4(c, d, e, a, b, 63);
|
|
R4(b, c, d, e, a, 64);
|
|
R4(a, b, c, d, e, 65);
|
|
R4(e, a, b, c, d, 66);
|
|
R4(d, e, a, b, c, 67);
|
|
R4(c, d, e, a, b, 68);
|
|
R4(b, c, d, e, a, 69);
|
|
R4(a, b, c, d, e, 70);
|
|
R4(e, a, b, c, d, 71);
|
|
R4(d, e, a, b, c, 72);
|
|
R4(c, d, e, a, b, 73);
|
|
R4(b, c, d, e, a, 74);
|
|
R4(a, b, c, d, e, 75);
|
|
R4(e, a, b, c, d, 76);
|
|
R4(d, e, a, b, c, 77);
|
|
R4(c, d, e, a, b, 78);
|
|
R4(b, c, d, e, a, 79);
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
state[4] += e;
|
|
/* Erase working structures. The order of operations is important,
|
|
* used to ensure that compiler doesn't optimize those out. */
|
|
memset(block, 0, sizeof(block));
|
|
a = b = c = d = e = 0;
|
|
(void) a;
|
|
(void) b;
|
|
(void) c;
|
|
(void) d;
|
|
(void) e;
|
|
}
|
|
|
|
void mg_sha1_init(mg_sha1_ctx *context) {
|
|
context->state[0] = 0x67452301;
|
|
context->state[1] = 0xEFCDAB89;
|
|
context->state[2] = 0x98BADCFE;
|
|
context->state[3] = 0x10325476;
|
|
context->state[4] = 0xC3D2E1F0;
|
|
context->count[0] = context->count[1] = 0;
|
|
}
|
|
|
|
void mg_sha1_update(mg_sha1_ctx *context, const unsigned char *data,
|
|
size_t len) {
|
|
size_t i, j;
|
|
|
|
j = context->count[0];
|
|
if ((context->count[0] += (uint32_t) len << 3) < j) context->count[1]++;
|
|
context->count[1] += (uint32_t) (len >> 29);
|
|
j = (j >> 3) & 63;
|
|
if ((j + len) > 63) {
|
|
memcpy(&context->buffer[j], data, (i = 64 - j));
|
|
mg_sha1_transform(context->state, context->buffer);
|
|
for (; i + 63 < len; i += 64) {
|
|
mg_sha1_transform(context->state, &data[i]);
|
|
}
|
|
j = 0;
|
|
} else
|
|
i = 0;
|
|
memcpy(&context->buffer[j], &data[i], len - i);
|
|
}
|
|
|
|
void mg_sha1_final(unsigned char digest[20], mg_sha1_ctx *context) {
|
|
unsigned i;
|
|
unsigned char finalcount[8], c;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
finalcount[i] = (unsigned char) ((context->count[(i >= 4 ? 0 : 1)] >>
|
|
((3 - (i & 3)) * 8)) &
|
|
255);
|
|
}
|
|
c = 0200;
|
|
mg_sha1_update(context, &c, 1);
|
|
while ((context->count[0] & 504) != 448) {
|
|
c = 0000;
|
|
mg_sha1_update(context, &c, 1);
|
|
}
|
|
mg_sha1_update(context, finalcount, 8);
|
|
for (i = 0; i < 20; i++) {
|
|
digest[i] =
|
|
(unsigned char) ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
|
|
}
|
|
memset(context, '\0', sizeof(*context));
|
|
memset(&finalcount, '\0', sizeof(finalcount));
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/sha256.c"
|
|
#endif
|
|
// https://github.com/B-Con/crypto-algorithms
|
|
// Author: Brad Conte (brad AT bradconte.com)
|
|
// Disclaimer: This code is presented "as is" without any guarantees.
|
|
// Details: Defines the API for the corresponding SHA1 implementation.
|
|
// Copyright: public domain
|
|
|
|
|
|
|
|
#define ror(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
#define ch(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
|
|
#define maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
#define ep0(x) (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22))
|
|
#define ep1(x) (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25))
|
|
#define sig0(x) (ror(x, 7) ^ ror(x, 18) ^ ((x) >> 3))
|
|
#define sig1(x) (ror(x, 17) ^ ror(x, 19) ^ ((x) >> 10))
|
|
|
|
static const uint32_t mg_sha256_k[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
|
|
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
|
|
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
|
|
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
|
|
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
|
|
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
|
|
|
|
void mg_sha256_init(mg_sha256_ctx *ctx) {
|
|
ctx->len = 0;
|
|
ctx->bits = 0;
|
|
ctx->state[0] = 0x6a09e667;
|
|
ctx->state[1] = 0xbb67ae85;
|
|
ctx->state[2] = 0x3c6ef372;
|
|
ctx->state[3] = 0xa54ff53a;
|
|
ctx->state[4] = 0x510e527f;
|
|
ctx->state[5] = 0x9b05688c;
|
|
ctx->state[6] = 0x1f83d9ab;
|
|
ctx->state[7] = 0x5be0cd19;
|
|
}
|
|
|
|
static void mg_sha256_chunk(mg_sha256_ctx *ctx) {
|
|
int i, j;
|
|
uint32_t a, b, c, d, e, f, g, h;
|
|
uint32_t m[64];
|
|
for (i = 0, j = 0; i < 16; ++i, j += 4)
|
|
m[i] = (uint32_t) (((uint32_t) ctx->buffer[j] << 24) |
|
|
((uint32_t) ctx->buffer[j + 1] << 16) |
|
|
((uint32_t) ctx->buffer[j + 2] << 8) |
|
|
((uint32_t) ctx->buffer[j + 3]));
|
|
for (; i < 64; ++i)
|
|
m[i] = sig1(m[i - 2]) + m[i - 7] + sig0(m[i - 15]) + m[i - 16];
|
|
|
|
a = ctx->state[0];
|
|
b = ctx->state[1];
|
|
c = ctx->state[2];
|
|
d = ctx->state[3];
|
|
e = ctx->state[4];
|
|
f = ctx->state[5];
|
|
g = ctx->state[6];
|
|
h = ctx->state[7];
|
|
|
|
for (i = 0; i < 64; ++i) {
|
|
uint32_t t1 = h + ep1(e) + ch(e, f, g) + mg_sha256_k[i] + m[i];
|
|
uint32_t t2 = ep0(a) + maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + t1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = t1 + t2;
|
|
}
|
|
|
|
ctx->state[0] += a;
|
|
ctx->state[1] += b;
|
|
ctx->state[2] += c;
|
|
ctx->state[3] += d;
|
|
ctx->state[4] += e;
|
|
ctx->state[5] += f;
|
|
ctx->state[6] += g;
|
|
ctx->state[7] += h;
|
|
}
|
|
|
|
void mg_sha256_update(mg_sha256_ctx *ctx, const unsigned char *data,
|
|
size_t len) {
|
|
size_t i;
|
|
for (i = 0; i < len; i++) {
|
|
ctx->buffer[ctx->len] = data[i];
|
|
if ((++ctx->len) == 64) {
|
|
mg_sha256_chunk(ctx);
|
|
ctx->bits += 512;
|
|
ctx->len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: make final reusable (remove side effects)
|
|
void mg_sha256_final(unsigned char digest[32], mg_sha256_ctx *ctx) {
|
|
uint32_t i = ctx->len;
|
|
if (i < 56) {
|
|
ctx->buffer[i++] = 0x80;
|
|
while (i < 56) {
|
|
ctx->buffer[i++] = 0x00;
|
|
}
|
|
} else {
|
|
ctx->buffer[i++] = 0x80;
|
|
while (i < 64) {
|
|
ctx->buffer[i++] = 0x00;
|
|
}
|
|
mg_sha256_chunk(ctx);
|
|
memset(ctx->buffer, 0, 56);
|
|
}
|
|
|
|
ctx->bits += ctx->len * 8;
|
|
ctx->buffer[63] = (uint8_t) ((ctx->bits) & 0xff);
|
|
ctx->buffer[62] = (uint8_t) ((ctx->bits >> 8) & 0xff);
|
|
ctx->buffer[61] = (uint8_t) ((ctx->bits >> 16) & 0xff);
|
|
ctx->buffer[60] = (uint8_t) ((ctx->bits >> 24) & 0xff);
|
|
ctx->buffer[59] = (uint8_t) ((ctx->bits >> 32) & 0xff);
|
|
ctx->buffer[58] = (uint8_t) ((ctx->bits >> 40) & 0xff);
|
|
ctx->buffer[57] = (uint8_t) ((ctx->bits >> 48) & 0xff);
|
|
ctx->buffer[56] = (uint8_t) ((ctx->bits >> 56) & 0xff);
|
|
mg_sha256_chunk(ctx);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
digest[i] = (uint8_t) ((ctx->state[0] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 4] = (uint8_t) ((ctx->state[1] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 8] = (uint8_t) ((ctx->state[2] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 12] = (uint8_t) ((ctx->state[3] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 16] = (uint8_t) ((ctx->state[4] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 20] = (uint8_t) ((ctx->state[5] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 24] = (uint8_t) ((ctx->state[6] >> (24 - i * 8)) & 0xff);
|
|
digest[i + 28] = (uint8_t) ((ctx->state[7] >> (24 - i * 8)) & 0xff);
|
|
}
|
|
}
|
|
|
|
void mg_hmac_sha256(uint8_t dst[32], uint8_t *key, size_t keysz, uint8_t *data,
|
|
size_t datasz) {
|
|
mg_sha256_ctx ctx;
|
|
uint8_t k[64] = {0};
|
|
uint8_t o_pad[64], i_pad[64];
|
|
unsigned int i;
|
|
memset(i_pad, 0x36, sizeof(i_pad));
|
|
memset(o_pad, 0x5c, sizeof(o_pad));
|
|
if (keysz < 64) {
|
|
if (keysz > 0) memmove(k, key, keysz);
|
|
} else {
|
|
mg_sha256_init(&ctx);
|
|
mg_sha256_update(&ctx, key, keysz);
|
|
mg_sha256_final(k, &ctx);
|
|
}
|
|
for (i = 0; i < sizeof(k); i++) {
|
|
i_pad[i] ^= k[i];
|
|
o_pad[i] ^= k[i];
|
|
}
|
|
mg_sha256_init(&ctx);
|
|
mg_sha256_update(&ctx, i_pad, sizeof(i_pad));
|
|
mg_sha256_update(&ctx, data, datasz);
|
|
mg_sha256_final(dst, &ctx);
|
|
mg_sha256_init(&ctx);
|
|
mg_sha256_update(&ctx, o_pad, sizeof(o_pad));
|
|
mg_sha256_update(&ctx, dst, 32);
|
|
mg_sha256_final(dst, &ctx);
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/sntp.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define SNTP_TIME_OFFSET 2208988800U // (1970 - 1900) in seconds
|
|
#define SNTP_MAX_FRAC 4294967295.0 // 2 ** 32 - 1
|
|
|
|
static int64_t gettimestamp(const uint32_t *data) {
|
|
uint32_t sec = mg_ntohl(data[0]), frac = mg_ntohl(data[1]);
|
|
if (sec) sec -= SNTP_TIME_OFFSET;
|
|
return ((int64_t) sec) * 1000 + (int64_t) (frac / SNTP_MAX_FRAC * 1000.0);
|
|
}
|
|
|
|
int64_t mg_sntp_parse(const unsigned char *buf, size_t len) {
|
|
int64_t res = -1;
|
|
int mode = len > 0 ? buf[0] & 7 : 0;
|
|
int version = len > 0 ? (buf[0] >> 3) & 7 : 0;
|
|
if (len < 48) {
|
|
MG_ERROR(("%s", "corrupt packet"));
|
|
} else if (mode != 4 && mode != 5) {
|
|
MG_ERROR(("%s", "not a server reply"));
|
|
} else if (buf[1] == 0) {
|
|
MG_ERROR(("%s", "server sent a kiss of death"));
|
|
} else if (version == 4 || version == 3) {
|
|
// int64_t ref = gettimestamp((uint32_t *) &buf[16]);
|
|
int64_t t0 = gettimestamp((uint32_t *) &buf[24]);
|
|
int64_t t1 = gettimestamp((uint32_t *) &buf[32]);
|
|
int64_t t2 = gettimestamp((uint32_t *) &buf[40]);
|
|
int64_t t3 = (int64_t) mg_millis();
|
|
int64_t delta = (t3 - t0) - (t2 - t1);
|
|
MG_VERBOSE(("%lld %lld %lld %lld delta:%lld", t0, t1, t2, t3, delta));
|
|
res = t2 + delta / 2;
|
|
} else {
|
|
MG_ERROR(("unexpected version: %d", version));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void sntp_cb(struct mg_connection *c, int ev, void *ev_data) {
|
|
if (ev == MG_EV_READ) {
|
|
int64_t milliseconds = mg_sntp_parse(c->recv.buf, c->recv.len);
|
|
if (milliseconds > 0) {
|
|
MG_DEBUG(("%lu got time: %lld ms from epoch", c->id, milliseconds));
|
|
mg_call(c, MG_EV_SNTP_TIME, (uint64_t *) &milliseconds);
|
|
MG_VERBOSE(("%u.%u", (unsigned) (milliseconds / 1000),
|
|
(unsigned) (milliseconds % 1000)));
|
|
}
|
|
mg_iobuf_del(&c->recv, 0, c->recv.len); // Free receive buffer
|
|
} else if (ev == MG_EV_CONNECT) {
|
|
mg_sntp_request(c);
|
|
} else if (ev == MG_EV_CLOSE) {
|
|
}
|
|
(void) ev_data;
|
|
}
|
|
|
|
void mg_sntp_request(struct mg_connection *c) {
|
|
if (c->is_resolving) {
|
|
MG_ERROR(("%lu wait until resolved", c->id));
|
|
} else {
|
|
int64_t now = (int64_t) mg_millis(); // Use int64_t, for vc98
|
|
uint8_t buf[48] = {0};
|
|
uint32_t *t = (uint32_t *) &buf[40];
|
|
double frac = ((double) (now % 1000)) / 1000.0 * SNTP_MAX_FRAC;
|
|
buf[0] = (0 << 6) | (4 << 3) | 3;
|
|
t[0] = mg_htonl((uint32_t) (now / 1000) + SNTP_TIME_OFFSET);
|
|
t[1] = mg_htonl((uint32_t) frac);
|
|
mg_send(c, buf, sizeof(buf));
|
|
}
|
|
}
|
|
|
|
struct mg_connection *mg_sntp_connect(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fnd) {
|
|
struct mg_connection *c = NULL;
|
|
if (url == NULL) url = "udp://time.google.com:123";
|
|
if ((c = mg_connect(mgr, url, fn, fnd)) != NULL) c->pfn = sntp_cb;
|
|
return c;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/sock.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if MG_ENABLE_SOCKET
|
|
|
|
#ifndef closesocket
|
|
#define closesocket(x) close(x)
|
|
#endif
|
|
|
|
#define FD(c_) ((MG_SOCKET_TYPE) (size_t) (c_)->fd)
|
|
#define S2PTR(s_) ((void *) (size_t) (s_))
|
|
|
|
#ifndef MSG_NONBLOCKING
|
|
#define MSG_NONBLOCKING 0
|
|
#endif
|
|
|
|
#ifndef AF_INET6
|
|
#define AF_INET6 10
|
|
#endif
|
|
|
|
#ifndef MG_SOCK_ERR
|
|
#define MG_SOCK_ERR(errcode) ((errcode) < 0 ? errno : 0)
|
|
#endif
|
|
|
|
#ifndef MG_SOCK_INTR
|
|
#define MG_SOCK_INTR(fd) (fd == MG_INVALID_SOCKET && MG_SOCK_ERR(-1) == EINTR)
|
|
#endif
|
|
|
|
#ifndef MG_SOCK_PENDING
|
|
#define MG_SOCK_PENDING(errcode) \
|
|
(((errcode) < 0) && (errno == EINPROGRESS || errno == EWOULDBLOCK))
|
|
#endif
|
|
|
|
#ifndef MG_SOCK_RESET
|
|
#define MG_SOCK_RESET(errcode) \
|
|
(((errcode) < 0) && (errno == EPIPE || errno == ECONNRESET))
|
|
#endif
|
|
|
|
union usa {
|
|
struct sockaddr sa;
|
|
struct sockaddr_in sin;
|
|
#if MG_ENABLE_IPV6
|
|
struct sockaddr_in6 sin6;
|
|
#endif
|
|
};
|
|
|
|
static socklen_t tousa(struct mg_addr *a, union usa *usa) {
|
|
socklen_t len = sizeof(usa->sin);
|
|
memset(usa, 0, sizeof(*usa));
|
|
usa->sin.sin_family = AF_INET;
|
|
usa->sin.sin_port = a->port;
|
|
memcpy(&usa->sin.sin_addr, a->ip, sizeof(uint32_t));
|
|
#if MG_ENABLE_IPV6
|
|
if (a->is_ip6) {
|
|
usa->sin.sin_family = AF_INET6;
|
|
usa->sin6.sin6_port = a->port;
|
|
usa->sin6.sin6_scope_id = a->scope_id;
|
|
memcpy(&usa->sin6.sin6_addr, a->ip, sizeof(a->ip));
|
|
len = sizeof(usa->sin6);
|
|
}
|
|
#endif
|
|
return len;
|
|
}
|
|
|
|
static void tomgaddr(union usa *usa, struct mg_addr *a, bool is_ip6) {
|
|
a->is_ip6 = is_ip6;
|
|
a->port = usa->sin.sin_port;
|
|
memcpy(&a->ip, &usa->sin.sin_addr, sizeof(uint32_t));
|
|
#if MG_ENABLE_IPV6
|
|
if (is_ip6) {
|
|
memcpy(a->ip, &usa->sin6.sin6_addr, sizeof(a->ip));
|
|
a->port = usa->sin6.sin6_port;
|
|
a->scope_id = (uint8_t) usa->sin6.sin6_scope_id;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void setlocaddr(MG_SOCKET_TYPE fd, struct mg_addr *addr) {
|
|
union usa usa;
|
|
socklen_t n = sizeof(usa);
|
|
if (getsockname(fd, &usa.sa, &n) == 0) {
|
|
tomgaddr(&usa, addr, n != sizeof(usa.sin));
|
|
}
|
|
}
|
|
|
|
static void iolog(struct mg_connection *c, char *buf, long n, bool r) {
|
|
if (n == MG_IO_WAIT) {
|
|
// Do nothing
|
|
} else if (n <= 0) {
|
|
c->is_closing = 1; // Termination. Don't call mg_error(): #1529
|
|
} else if (n > 0) {
|
|
if (c->is_hexdumping) {
|
|
MG_INFO(("\n-- %lu %M %s %M %ld", c->id, mg_print_ip_port, &c->loc,
|
|
r ? "<-" : "->", mg_print_ip_port, &c->rem, n));
|
|
mg_hexdump(buf, (size_t) n);
|
|
}
|
|
if (r) {
|
|
c->recv.len += (size_t) n;
|
|
mg_call(c, MG_EV_READ, &n);
|
|
} else {
|
|
mg_iobuf_del(&c->send, 0, (size_t) n);
|
|
// if (c->send.len == 0) mg_iobuf_resize(&c->send, 0);
|
|
if (c->send.len == 0) {
|
|
MG_EPOLL_MOD(c, 0);
|
|
}
|
|
mg_call(c, MG_EV_WRITE, &n);
|
|
}
|
|
}
|
|
}
|
|
|
|
long mg_io_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
long n;
|
|
if (c->is_udp) {
|
|
union usa usa;
|
|
socklen_t slen = tousa(&c->rem, &usa);
|
|
n = sendto(FD(c), (char *) buf, len, 0, &usa.sa, slen);
|
|
if (n > 0) setlocaddr(FD(c), &c->loc);
|
|
} else {
|
|
n = send(FD(c), (char *) buf, len, MSG_NONBLOCKING);
|
|
}
|
|
MG_VERBOSE(("%lu %ld %d", c->id, n, MG_SOCK_ERR(n)));
|
|
if (MG_SOCK_PENDING(n)) return MG_IO_WAIT;
|
|
if (MG_SOCK_RESET(n)) return MG_IO_RESET;
|
|
if (n <= 0) return MG_IO_ERR;
|
|
return n;
|
|
}
|
|
|
|
bool mg_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
if (c->is_udp) {
|
|
long n = mg_io_send(c, buf, len);
|
|
MG_DEBUG(("%lu %ld %lu:%lu:%lu %ld err %d", c->id, c->fd, c->send.len,
|
|
c->recv.len, c->rtls.len, n, MG_SOCK_ERR(n)));
|
|
iolog(c, (char *) buf, n, false);
|
|
return n > 0;
|
|
} else {
|
|
return mg_iobuf_add(&c->send, c->send.len, buf, len);
|
|
}
|
|
}
|
|
|
|
static void mg_set_non_blocking_mode(MG_SOCKET_TYPE fd) {
|
|
#if defined(MG_CUSTOM_NONBLOCK)
|
|
MG_CUSTOM_NONBLOCK(fd);
|
|
#elif MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
|
|
unsigned long on = 1;
|
|
ioctlsocket(fd, FIONBIO, &on);
|
|
#elif MG_ENABLE_RL
|
|
unsigned long on = 1;
|
|
ioctlsocket(fd, FIONBIO, &on);
|
|
#elif MG_ENABLE_FREERTOS_TCP
|
|
const BaseType_t off = 0;
|
|
if (setsockopt(fd, 0, FREERTOS_SO_RCVTIMEO, &off, sizeof(off)) != 0) (void) 0;
|
|
if (setsockopt(fd, 0, FREERTOS_SO_SNDTIMEO, &off, sizeof(off)) != 0) (void) 0;
|
|
#elif MG_ENABLE_LWIP
|
|
lwip_fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
#elif MG_ARCH == MG_ARCH_AZURERTOS
|
|
fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
#elif MG_ARCH == MG_ARCH_TIRTOS
|
|
int val = 0;
|
|
setsockopt(fd, SOL_SOCKET, SO_BLOCKING, &val, sizeof(val));
|
|
// SPRU524J section 3.3.3 page 63, SO_SNDLOWAT
|
|
int sz = sizeof(val);
|
|
getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &val, &sz);
|
|
val /= 2; // set send low-water mark at half send buffer size
|
|
setsockopt(fd, SOL_SOCKET, SO_SNDLOWAT, &val, sizeof(val));
|
|
#else
|
|
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK); // Non-blocking mode
|
|
fcntl(fd, F_SETFD, FD_CLOEXEC); // Set close-on-exec
|
|
#endif
|
|
}
|
|
|
|
bool mg_open_listener(struct mg_connection *c, const char *url) {
|
|
MG_SOCKET_TYPE fd = MG_INVALID_SOCKET;
|
|
bool success = false;
|
|
c->loc.port = mg_htons(mg_url_port(url));
|
|
if (!mg_aton(mg_url_host(url), &c->loc)) {
|
|
MG_ERROR(("invalid listening URL: %s", url));
|
|
} else {
|
|
union usa usa;
|
|
socklen_t slen = tousa(&c->loc, &usa);
|
|
int rc, on = 1, af = c->loc.is_ip6 ? AF_INET6 : AF_INET;
|
|
int type = strncmp(url, "udp:", 4) == 0 ? SOCK_DGRAM : SOCK_STREAM;
|
|
int proto = type == SOCK_DGRAM ? IPPROTO_UDP : IPPROTO_TCP;
|
|
(void) on;
|
|
|
|
if ((fd = socket(af, type, proto)) == MG_INVALID_SOCKET) {
|
|
MG_ERROR(("socket: %d", MG_SOCK_ERR(-1)));
|
|
#if defined(SO_EXCLUSIVEADDRUSE)
|
|
} else if ((rc = setsockopt(fd, SOL_SOCKET, SO_EXCLUSIVEADDRUSE,
|
|
(char *) &on, sizeof(on))) != 0) {
|
|
// "Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE"
|
|
MG_ERROR(("setsockopt(SO_EXCLUSIVEADDRUSE): %d %d", on, MG_SOCK_ERR(rc)));
|
|
#elif defined(SO_REUSEADDR) && (!defined(LWIP_SOCKET) || SO_REUSE)
|
|
} else if ((rc = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &on,
|
|
sizeof(on))) != 0) {
|
|
// 1. SO_REUSEADDR semantics on UNIX and Windows is different. On
|
|
// Windows, SO_REUSEADDR allows to bind a socket to a port without error
|
|
// even if the port is already open by another program. This is not the
|
|
// behavior SO_REUSEADDR was designed for, and leads to hard-to-track
|
|
// failure scenarios.
|
|
//
|
|
// 2. For LWIP, SO_REUSEADDR should be explicitly enabled by defining
|
|
// SO_REUSE = 1 in lwipopts.h, otherwise the code below will compile but
|
|
// won't work! (setsockopt will return EINVAL)
|
|
MG_ERROR(("setsockopt(SO_REUSEADDR): %d", MG_SOCK_ERR(rc)));
|
|
#endif
|
|
#if MG_IPV6_V6ONLY
|
|
// Bind only to the V6 address, not V4 address on this port
|
|
} else if (c->loc.is_ip6 &&
|
|
(rc = setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &on,
|
|
sizeof(on))) != 0) {
|
|
// See #2089. Allow to bind v4 and v6 sockets on the same port
|
|
MG_ERROR(("setsockopt(IPV6_V6ONLY): %d", MG_SOCK_ERR(rc)));
|
|
#endif
|
|
} else if ((rc = bind(fd, &usa.sa, slen)) != 0) {
|
|
MG_ERROR(("bind: %d", MG_SOCK_ERR(rc)));
|
|
} else if ((type == SOCK_STREAM &&
|
|
(rc = listen(fd, MG_SOCK_LISTEN_BACKLOG_SIZE)) != 0)) {
|
|
// NOTE(lsm): FreeRTOS uses backlog value as a connection limit
|
|
// In case port was set to 0, get the real port number
|
|
MG_ERROR(("listen: %d", MG_SOCK_ERR(rc)));
|
|
} else {
|
|
setlocaddr(fd, &c->loc);
|
|
mg_set_non_blocking_mode(fd);
|
|
c->fd = S2PTR(fd);
|
|
MG_EPOLL_ADD(c);
|
|
success = true;
|
|
}
|
|
}
|
|
if (success == false && fd != MG_INVALID_SOCKET) closesocket(fd);
|
|
return success;
|
|
}
|
|
|
|
static long recv_raw(struct mg_connection *c, void *buf, size_t len) {
|
|
long n = 0;
|
|
if (c->is_udp) {
|
|
union usa usa;
|
|
socklen_t slen = tousa(&c->rem, &usa);
|
|
n = recvfrom(FD(c), (char *) buf, len, 0, &usa.sa, &slen);
|
|
if (n > 0) tomgaddr(&usa, &c->rem, slen != sizeof(usa.sin));
|
|
} else {
|
|
n = recv(FD(c), (char *) buf, len, MSG_NONBLOCKING);
|
|
}
|
|
MG_VERBOSE(("%lu %ld %d", c->id, n, MG_SOCK_ERR(n)));
|
|
if (MG_SOCK_PENDING(n)) return MG_IO_WAIT;
|
|
if (MG_SOCK_RESET(n)) return MG_IO_RESET;
|
|
if (n <= 0) return MG_IO_ERR;
|
|
return n;
|
|
}
|
|
|
|
static bool ioalloc(struct mg_connection *c, struct mg_iobuf *io) {
|
|
bool res = false;
|
|
if (io->len >= MG_MAX_RECV_SIZE) {
|
|
mg_error(c, "MG_MAX_RECV_SIZE");
|
|
} else if (io->size <= io->len &&
|
|
!mg_iobuf_resize(io, io->size + MG_IO_SIZE)) {
|
|
mg_error(c, "OOM");
|
|
} else {
|
|
res = true;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NOTE(lsm): do only one iteration of reads, cause some systems
|
|
// (e.g. FreeRTOS stack) return 0 instead of -1/EWOULDBLOCK when no data
|
|
static void read_conn(struct mg_connection *c) {
|
|
if (ioalloc(c, &c->recv)) {
|
|
char *buf = (char *) &c->recv.buf[c->recv.len];
|
|
size_t len = c->recv.size - c->recv.len;
|
|
long n = -1;
|
|
if (c->is_tls) {
|
|
if (!ioalloc(c, &c->rtls)) return;
|
|
n = recv_raw(c, (char *) &c->rtls.buf[c->rtls.len],
|
|
c->rtls.size - c->rtls.len);
|
|
if (n == MG_IO_ERR && c->rtls.len == 0) {
|
|
// Close only if we have fully drained both raw (rtls) and TLS buffers
|
|
c->is_closing = 1;
|
|
} else {
|
|
if (n > 0) c->rtls.len += (size_t) n;
|
|
if (c->is_tls_hs) mg_tls_handshake(c);
|
|
if (c->is_tls_hs) return;
|
|
n = mg_tls_recv(c, buf, len);
|
|
}
|
|
} else {
|
|
n = recv_raw(c, buf, len);
|
|
}
|
|
MG_DEBUG(("%lu %ld %lu:%lu:%lu %ld err %d", c->id, c->fd, c->send.len,
|
|
c->recv.len, c->rtls.len, n, MG_SOCK_ERR(n)));
|
|
iolog(c, buf, n, true);
|
|
}
|
|
}
|
|
|
|
static void write_conn(struct mg_connection *c) {
|
|
char *buf = (char *) c->send.buf;
|
|
size_t len = c->send.len;
|
|
long n = c->is_tls ? mg_tls_send(c, buf, len) : mg_io_send(c, buf, len);
|
|
MG_DEBUG(("%lu %ld snd %ld/%ld rcv %ld/%ld n=%ld err=%d", c->id, c->fd,
|
|
(long) c->send.len, (long) c->send.size, (long) c->recv.len,
|
|
(long) c->recv.size, n, MG_SOCK_ERR(n)));
|
|
iolog(c, buf, n, false);
|
|
}
|
|
|
|
static void close_conn(struct mg_connection *c) {
|
|
if (FD(c) != MG_INVALID_SOCKET) {
|
|
#if MG_ENABLE_EPOLL
|
|
epoll_ctl(c->mgr->epoll_fd, EPOLL_CTL_DEL, FD(c), NULL);
|
|
#endif
|
|
closesocket(FD(c));
|
|
#if MG_ENABLE_FREERTOS_TCP
|
|
FreeRTOS_FD_CLR(c->fd, c->mgr->ss, eSELECT_ALL);
|
|
#endif
|
|
}
|
|
mg_close_conn(c);
|
|
}
|
|
|
|
static void connect_conn(struct mg_connection *c) {
|
|
union usa usa;
|
|
socklen_t n = sizeof(usa);
|
|
// Use getpeername() to test whether we have connected
|
|
if (getpeername(FD(c), &usa.sa, &n) == 0) {
|
|
c->is_connecting = 0;
|
|
setlocaddr(FD(c), &c->loc);
|
|
mg_call(c, MG_EV_CONNECT, NULL);
|
|
MG_EPOLL_MOD(c, 0);
|
|
if (c->is_tls_hs) mg_tls_handshake(c);
|
|
} else {
|
|
mg_error(c, "socket error");
|
|
}
|
|
}
|
|
|
|
static void setsockopts(struct mg_connection *c) {
|
|
#if MG_ENABLE_FREERTOS_TCP || MG_ARCH == MG_ARCH_AZURERTOS || \
|
|
MG_ARCH == MG_ARCH_TIRTOS
|
|
(void) c;
|
|
#else
|
|
int on = 1;
|
|
#if !defined(SOL_TCP)
|
|
#define SOL_TCP IPPROTO_TCP
|
|
#endif
|
|
if (setsockopt(FD(c), SOL_TCP, TCP_NODELAY, (char *) &on, sizeof(on)) != 0)
|
|
(void) 0;
|
|
if (setsockopt(FD(c), SOL_SOCKET, SO_KEEPALIVE, (char *) &on, sizeof(on)) !=
|
|
0)
|
|
(void) 0;
|
|
#endif
|
|
}
|
|
|
|
void mg_connect_resolved(struct mg_connection *c) {
|
|
int type = c->is_udp ? SOCK_DGRAM : SOCK_STREAM;
|
|
int rc, af = c->rem.is_ip6 ? AF_INET6 : AF_INET; // c->rem has resolved IP
|
|
c->fd = S2PTR(socket(af, type, 0)); // Create outbound socket
|
|
c->is_resolving = 0; // Clear resolving flag
|
|
if (FD(c) == MG_INVALID_SOCKET) {
|
|
mg_error(c, "socket(): %d", MG_SOCK_ERR(-1));
|
|
} else if (c->is_udp) {
|
|
MG_EPOLL_ADD(c);
|
|
#if MG_ARCH == MG_ARCH_TIRTOS
|
|
union usa usa; // TI-RTOS NDK requires binding to receive on UDP sockets
|
|
socklen_t slen = tousa(&c->loc, &usa);
|
|
if ((rc = bind(c->fd, &usa.sa, slen)) != 0)
|
|
MG_ERROR(("bind: %d", MG_SOCK_ERR(rc)));
|
|
#endif
|
|
setlocaddr(FD(c), &c->loc);
|
|
mg_call(c, MG_EV_RESOLVE, NULL);
|
|
mg_call(c, MG_EV_CONNECT, NULL);
|
|
} else {
|
|
union usa usa;
|
|
socklen_t slen = tousa(&c->rem, &usa);
|
|
mg_set_non_blocking_mode(FD(c));
|
|
setsockopts(c);
|
|
MG_EPOLL_ADD(c);
|
|
mg_call(c, MG_EV_RESOLVE, NULL);
|
|
rc = connect(FD(c), &usa.sa, slen); // Attempt to connect
|
|
if (rc == 0) { // Success
|
|
setlocaddr(FD(c), &c->loc);
|
|
mg_call(c, MG_EV_CONNECT, NULL); // Send MG_EV_CONNECT to the user
|
|
} else if (MG_SOCK_PENDING(rc)) { // Need to wait for TCP handshake
|
|
MG_DEBUG(("%lu %ld -> %M pend", c->id, c->fd, mg_print_ip_port, &c->rem));
|
|
c->is_connecting = 1;
|
|
} else {
|
|
mg_error(c, "connect: %d", MG_SOCK_ERR(rc));
|
|
}
|
|
}
|
|
}
|
|
|
|
static MG_SOCKET_TYPE raccept(MG_SOCKET_TYPE sock, union usa *usa,
|
|
socklen_t *len) {
|
|
MG_SOCKET_TYPE fd = MG_INVALID_SOCKET;
|
|
do {
|
|
memset(usa, 0, sizeof(*usa));
|
|
fd = accept(sock, &usa->sa, len);
|
|
} while (MG_SOCK_INTR(fd));
|
|
return fd;
|
|
}
|
|
|
|
static void accept_conn(struct mg_mgr *mgr, struct mg_connection *lsn) {
|
|
struct mg_connection *c = NULL;
|
|
union usa usa;
|
|
socklen_t sa_len = sizeof(usa);
|
|
MG_SOCKET_TYPE fd = raccept(FD(lsn), &usa, &sa_len);
|
|
if (fd == MG_INVALID_SOCKET) {
|
|
#if MG_ARCH == MG_ARCH_AZURERTOS || defined(__ECOS)
|
|
// AzureRTOS, in non-block socket mode can mark listening socket readable
|
|
// even it is not. See comment for 'select' func implementation in
|
|
// nx_bsd.c That's not an error, just should try later
|
|
if (errno != EAGAIN)
|
|
#endif
|
|
MG_ERROR(("%lu accept failed, errno %d", lsn->id, MG_SOCK_ERR(-1)));
|
|
#if (MG_ARCH != MG_ARCH_WIN32) && !MG_ENABLE_FREERTOS_TCP && \
|
|
(MG_ARCH != MG_ARCH_TIRTOS) && !MG_ENABLE_POLL && !MG_ENABLE_EPOLL
|
|
} else if ((long) fd >= FD_SETSIZE) {
|
|
MG_ERROR(("%ld > %ld", (long) fd, (long) FD_SETSIZE));
|
|
closesocket(fd);
|
|
#endif
|
|
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
|
|
MG_ERROR(("%lu OOM", lsn->id));
|
|
closesocket(fd);
|
|
} else {
|
|
tomgaddr(&usa, &c->rem, sa_len != sizeof(usa.sin));
|
|
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
|
|
c->fd = S2PTR(fd);
|
|
MG_EPOLL_ADD(c);
|
|
mg_set_non_blocking_mode(FD(c));
|
|
setsockopts(c);
|
|
c->is_accepted = 1;
|
|
c->is_hexdumping = lsn->is_hexdumping;
|
|
c->loc = lsn->loc;
|
|
c->pfn = lsn->pfn;
|
|
c->pfn_data = lsn->pfn_data;
|
|
c->fn = lsn->fn;
|
|
c->fn_data = lsn->fn_data;
|
|
MG_DEBUG(("%lu %ld accepted %M -> %M", c->id, c->fd, mg_print_ip_port,
|
|
&c->rem, mg_print_ip_port, &c->loc));
|
|
mg_call(c, MG_EV_OPEN, NULL);
|
|
mg_call(c, MG_EV_ACCEPT, NULL);
|
|
}
|
|
}
|
|
|
|
static bool can_read(const struct mg_connection *c) {
|
|
return c->is_full == false;
|
|
}
|
|
|
|
static bool can_write(const struct mg_connection *c) {
|
|
return c->is_connecting || (c->send.len > 0 && c->is_tls_hs == 0);
|
|
}
|
|
|
|
static bool skip_iotest(const struct mg_connection *c) {
|
|
return (c->is_closing || c->is_resolving || FD(c) == MG_INVALID_SOCKET) ||
|
|
(can_read(c) == false && can_write(c) == false);
|
|
}
|
|
|
|
static void mg_iotest(struct mg_mgr *mgr, int ms) {
|
|
#if MG_ENABLE_FREERTOS_TCP
|
|
struct mg_connection *c;
|
|
for (c = mgr->conns; c != NULL; c = c->next) {
|
|
c->is_readable = c->is_writable = 0;
|
|
if (skip_iotest(c)) continue;
|
|
if (can_read(c))
|
|
FreeRTOS_FD_SET(c->fd, mgr->ss, eSELECT_READ | eSELECT_EXCEPT);
|
|
if (can_write(c)) FreeRTOS_FD_SET(c->fd, mgr->ss, eSELECT_WRITE);
|
|
if (c->is_closing) ms = 1;
|
|
}
|
|
FreeRTOS_select(mgr->ss, pdMS_TO_TICKS(ms));
|
|
for (c = mgr->conns; c != NULL; c = c->next) {
|
|
EventBits_t bits = FreeRTOS_FD_ISSET(c->fd, mgr->ss);
|
|
c->is_readable = bits & (eSELECT_READ | eSELECT_EXCEPT) ? 1U : 0;
|
|
c->is_writable = bits & eSELECT_WRITE ? 1U : 0;
|
|
if (c->fd != MG_INVALID_SOCKET)
|
|
FreeRTOS_FD_CLR(c->fd, mgr->ss,
|
|
eSELECT_READ | eSELECT_EXCEPT | eSELECT_WRITE);
|
|
}
|
|
#elif MG_ENABLE_EPOLL
|
|
size_t max = 1;
|
|
for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) {
|
|
c->is_readable = c->is_writable = 0;
|
|
if (c->rtls.len > 0 || mg_tls_pending(c) > 0) ms = 1, c->is_readable = 1;
|
|
if (can_write(c)) MG_EPOLL_MOD(c, 1);
|
|
if (c->is_closing) ms = 1;
|
|
max++;
|
|
}
|
|
struct epoll_event *evs = (struct epoll_event *) alloca(max * sizeof(evs[0]));
|
|
int n = epoll_wait(mgr->epoll_fd, evs, (int) max, ms);
|
|
for (int i = 0; i < n; i++) {
|
|
struct mg_connection *c = (struct mg_connection *) evs[i].data.ptr;
|
|
if (evs[i].events & EPOLLERR) {
|
|
mg_error(c, "socket error");
|
|
} else if (c->is_readable == 0) {
|
|
bool rd = evs[i].events & (EPOLLIN | EPOLLHUP);
|
|
bool wr = evs[i].events & EPOLLOUT;
|
|
c->is_readable = can_read(c) && rd ? 1U : 0;
|
|
c->is_writable = can_write(c) && wr ? 1U : 0;
|
|
if (c->rtls.len > 0 || mg_tls_pending(c) > 0) c->is_readable = 1;
|
|
}
|
|
}
|
|
(void) skip_iotest;
|
|
#elif MG_ENABLE_POLL
|
|
nfds_t n = 0;
|
|
for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) n++;
|
|
struct pollfd *fds = (struct pollfd *) alloca(n * sizeof(fds[0]));
|
|
memset(fds, 0, n * sizeof(fds[0]));
|
|
n = 0;
|
|
for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) {
|
|
c->is_readable = c->is_writable = 0;
|
|
if (skip_iotest(c)) {
|
|
// Socket not valid, ignore
|
|
} else if (c->rtls.len > 0 || mg_tls_pending(c) > 0) {
|
|
ms = 1; // Don't wait if TLS is ready
|
|
} else {
|
|
fds[n].fd = FD(c);
|
|
if (can_read(c)) fds[n].events |= POLLIN;
|
|
if (can_write(c)) fds[n].events |= POLLOUT;
|
|
if (c->is_closing) ms = 1;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
// MG_INFO(("poll n=%d ms=%d", (int) n, ms));
|
|
if (poll(fds, n, ms) < 0) {
|
|
#if MG_ARCH == MG_ARCH_WIN32
|
|
if (n == 0) Sleep(ms); // On Windows, poll fails if no sockets
|
|
#endif
|
|
memset(fds, 0, n * sizeof(fds[0]));
|
|
}
|
|
n = 0;
|
|
for (struct mg_connection *c = mgr->conns; c != NULL; c = c->next) {
|
|
if (skip_iotest(c)) {
|
|
// Socket not valid, ignore
|
|
} else if (c->rtls.len > 0 || mg_tls_pending(c) > 0) {
|
|
c->is_readable = 1;
|
|
} else {
|
|
if (fds[n].revents & POLLERR) {
|
|
mg_error(c, "socket error");
|
|
} else {
|
|
c->is_readable =
|
|
(unsigned) (fds[n].revents & (POLLIN | POLLHUP) ? 1 : 0);
|
|
c->is_writable = (unsigned) (fds[n].revents & POLLOUT ? 1 : 0);
|
|
if (c->rtls.len > 0 || mg_tls_pending(c) > 0) c->is_readable = 1;
|
|
}
|
|
n++;
|
|
}
|
|
}
|
|
#else
|
|
struct timeval tv = {ms / 1000, (ms % 1000) * 1000}, tv_zero = {0, 0}, *tvp;
|
|
struct mg_connection *c;
|
|
fd_set rset, wset, eset;
|
|
MG_SOCKET_TYPE maxfd = 0;
|
|
int rc;
|
|
|
|
FD_ZERO(&rset);
|
|
FD_ZERO(&wset);
|
|
FD_ZERO(&eset);
|
|
tvp = ms < 0 ? NULL : &tv;
|
|
for (c = mgr->conns; c != NULL; c = c->next) {
|
|
c->is_readable = c->is_writable = 0;
|
|
if (skip_iotest(c)) continue;
|
|
FD_SET(FD(c), &eset);
|
|
if (can_read(c)) FD_SET(FD(c), &rset);
|
|
if (can_write(c)) FD_SET(FD(c), &wset);
|
|
if (c->rtls.len > 0 || mg_tls_pending(c) > 0) tvp = &tv_zero;
|
|
if (FD(c) > maxfd) maxfd = FD(c);
|
|
if (c->is_closing) ms = 1;
|
|
}
|
|
|
|
if ((rc = select((int) maxfd + 1, &rset, &wset, &eset, tvp)) < 0) {
|
|
#if MG_ARCH == MG_ARCH_WIN32
|
|
if (maxfd == 0) Sleep(ms); // On Windows, select fails if no sockets
|
|
#else
|
|
MG_ERROR(("select: %d %d", rc, MG_SOCK_ERR(rc)));
|
|
#endif
|
|
FD_ZERO(&rset);
|
|
FD_ZERO(&wset);
|
|
FD_ZERO(&eset);
|
|
}
|
|
|
|
for (c = mgr->conns; c != NULL; c = c->next) {
|
|
if (FD(c) != MG_INVALID_SOCKET && FD_ISSET(FD(c), &eset)) {
|
|
mg_error(c, "socket error");
|
|
} else {
|
|
c->is_readable = FD(c) != MG_INVALID_SOCKET && FD_ISSET(FD(c), &rset);
|
|
c->is_writable = FD(c) != MG_INVALID_SOCKET && FD_ISSET(FD(c), &wset);
|
|
if (c->rtls.len > 0 || mg_tls_pending(c) > 0) c->is_readable = 1;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static bool mg_socketpair(MG_SOCKET_TYPE sp[2], union usa usa[2]) {
|
|
socklen_t n = sizeof(usa[0].sin);
|
|
bool success = false;
|
|
|
|
sp[0] = sp[1] = MG_INVALID_SOCKET;
|
|
(void) memset(&usa[0], 0, sizeof(usa[0]));
|
|
usa[0].sin.sin_family = AF_INET;
|
|
*(uint32_t *) &usa->sin.sin_addr = mg_htonl(0x7f000001U); // 127.0.0.1
|
|
usa[1] = usa[0];
|
|
|
|
if ((sp[0] = socket(AF_INET, SOCK_DGRAM, 0)) != MG_INVALID_SOCKET &&
|
|
(sp[1] = socket(AF_INET, SOCK_DGRAM, 0)) != MG_INVALID_SOCKET &&
|
|
bind(sp[0], &usa[0].sa, n) == 0 && //
|
|
bind(sp[1], &usa[1].sa, n) == 0 && //
|
|
getsockname(sp[0], &usa[0].sa, &n) == 0 && //
|
|
getsockname(sp[1], &usa[1].sa, &n) == 0 && //
|
|
connect(sp[0], &usa[1].sa, n) == 0 && //
|
|
connect(sp[1], &usa[0].sa, n) == 0) { //
|
|
success = true;
|
|
}
|
|
if (!success) {
|
|
if (sp[0] != MG_INVALID_SOCKET) closesocket(sp[0]);
|
|
if (sp[1] != MG_INVALID_SOCKET) closesocket(sp[1]);
|
|
sp[0] = sp[1] = MG_INVALID_SOCKET;
|
|
}
|
|
return success;
|
|
}
|
|
|
|
// mg_wakeup() event handler
|
|
static void wufn(struct mg_connection *c, int ev, void *ev_data) {
|
|
if (ev == MG_EV_READ) {
|
|
unsigned long *id = (unsigned long *) c->recv.buf;
|
|
// MG_INFO(("Got data"));
|
|
// mg_hexdump(c->recv.buf, c->recv.len);
|
|
if (c->recv.len >= sizeof(*id)) {
|
|
struct mg_connection *t;
|
|
for (t = c->mgr->conns; t != NULL; t = t->next) {
|
|
if (t->id == *id) {
|
|
struct mg_str data = mg_str_n((char *) c->recv.buf + sizeof(*id),
|
|
c->recv.len - sizeof(*id));
|
|
mg_call(t, MG_EV_WAKEUP, &data);
|
|
}
|
|
}
|
|
}
|
|
c->recv.len = 0; // Consume received data
|
|
} else if (ev == MG_EV_CLOSE) {
|
|
closesocket(c->mgr->pipe); // When we're closing, close the other
|
|
c->mgr->pipe = MG_INVALID_SOCKET; // side of the socketpair, too
|
|
}
|
|
(void) ev_data;
|
|
}
|
|
|
|
bool mg_wakeup_init(struct mg_mgr *mgr) {
|
|
bool ok = false;
|
|
if (mgr->pipe == MG_INVALID_SOCKET) {
|
|
union usa usa[2];
|
|
MG_SOCKET_TYPE sp[2] = {MG_INVALID_SOCKET, MG_INVALID_SOCKET};
|
|
struct mg_connection *c = NULL;
|
|
if (!mg_socketpair(sp, usa)) {
|
|
MG_ERROR(("Cannot create socket pair"));
|
|
} else if ((c = mg_wrapfd(mgr, (int) sp[1], wufn, NULL)) == NULL) {
|
|
closesocket(sp[0]);
|
|
closesocket(sp[1]);
|
|
sp[0] = sp[1] = MG_INVALID_SOCKET;
|
|
} else {
|
|
tomgaddr(&usa[0], &c->rem, false);
|
|
MG_DEBUG(("%lu %p pipe %lu", c->id, c->fd, (unsigned long) sp[0]));
|
|
mgr->pipe = sp[0];
|
|
ok = true;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool mg_wakeup(struct mg_mgr *mgr, unsigned long conn_id, const void *buf,
|
|
size_t len) {
|
|
if (mgr->pipe != MG_INVALID_SOCKET && conn_id > 0) {
|
|
char *extended_buf = (char *) alloca(len + sizeof(conn_id));
|
|
memcpy(extended_buf, &conn_id, sizeof(conn_id));
|
|
memcpy(extended_buf + sizeof(conn_id), buf, len);
|
|
send(mgr->pipe, extended_buf, len + sizeof(conn_id), MSG_NONBLOCKING);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void mg_mgr_poll(struct mg_mgr *mgr, int ms) {
|
|
struct mg_connection *c, *tmp;
|
|
uint64_t now;
|
|
|
|
mg_iotest(mgr, ms);
|
|
now = mg_millis();
|
|
mg_timer_poll(&mgr->timers, now);
|
|
|
|
for (c = mgr->conns; c != NULL; c = tmp) {
|
|
bool is_resp = c->is_resp;
|
|
tmp = c->next;
|
|
mg_call(c, MG_EV_POLL, &now);
|
|
if (is_resp && !c->is_resp) {
|
|
long n = 0;
|
|
mg_call(c, MG_EV_READ, &n);
|
|
}
|
|
MG_VERBOSE(("%lu %c%c %c%c%c%c%c %lu %lu", c->id,
|
|
c->is_readable ? 'r' : '-', c->is_writable ? 'w' : '-',
|
|
c->is_tls ? 'T' : 't', c->is_connecting ? 'C' : 'c',
|
|
c->is_tls_hs ? 'H' : 'h', c->is_resolving ? 'R' : 'r',
|
|
c->is_closing ? 'C' : 'c', mg_tls_pending(c), c->rtls.len));
|
|
if (c->is_resolving || c->is_closing) {
|
|
// Do nothing
|
|
} else if (c->is_listening && c->is_udp == 0) {
|
|
if (c->is_readable) accept_conn(mgr, c);
|
|
} else if (c->is_connecting) {
|
|
if (c->is_readable || c->is_writable) connect_conn(c);
|
|
//} else if (c->is_tls_hs) {
|
|
// if ((c->is_readable || c->is_writable)) mg_tls_handshake(c);
|
|
} else {
|
|
if (c->is_readable) read_conn(c);
|
|
if (c->is_writable) write_conn(c);
|
|
}
|
|
|
|
if (c->is_draining && c->send.len == 0) c->is_closing = 1;
|
|
if (c->is_closing) close_conn(c);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/ssi.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef MG_MAX_SSI_DEPTH
|
|
#define MG_MAX_SSI_DEPTH 5
|
|
#endif
|
|
|
|
#ifndef MG_SSI_BUFSIZ
|
|
#define MG_SSI_BUFSIZ 1024
|
|
#endif
|
|
|
|
#if MG_ENABLE_SSI
|
|
static char *mg_ssi(const char *path, const char *root, int depth) {
|
|
struct mg_iobuf b = {NULL, 0, 0, MG_IO_SIZE};
|
|
FILE *fp = fopen(path, "rb");
|
|
if (fp != NULL) {
|
|
char buf[MG_SSI_BUFSIZ], arg[sizeof(buf)];
|
|
int ch, intag = 0;
|
|
size_t len = 0;
|
|
buf[0] = arg[0] = '\0';
|
|
while ((ch = fgetc(fp)) != EOF) {
|
|
if (intag && ch == '>' && buf[len - 1] == '-' && buf[len - 2] == '-') {
|
|
buf[len++] = (char) (ch & 0xff);
|
|
buf[len] = '\0';
|
|
if (sscanf(buf, "<!--#include file=\"%[^\"]", arg)) {
|
|
char tmp[MG_PATH_MAX + MG_SSI_BUFSIZ + 10],
|
|
*p = (char *) path + strlen(path), *data;
|
|
while (p > path && p[-1] != MG_DIRSEP && p[-1] != '/') p--;
|
|
mg_snprintf(tmp, sizeof(tmp), "%.*s%s", (int) (p - path), path, arg);
|
|
if (depth < MG_MAX_SSI_DEPTH &&
|
|
(data = mg_ssi(tmp, root, depth + 1)) != NULL) {
|
|
mg_iobuf_add(&b, b.len, data, strlen(data));
|
|
free(data);
|
|
} else {
|
|
MG_ERROR(("%s: file=%s error or too deep", path, arg));
|
|
}
|
|
} else if (sscanf(buf, "<!--#include virtual=\"%[^\"]", arg)) {
|
|
char tmp[MG_PATH_MAX + MG_SSI_BUFSIZ + 10], *data;
|
|
mg_snprintf(tmp, sizeof(tmp), "%s%s", root, arg);
|
|
if (depth < MG_MAX_SSI_DEPTH &&
|
|
(data = mg_ssi(tmp, root, depth + 1)) != NULL) {
|
|
mg_iobuf_add(&b, b.len, data, strlen(data));
|
|
free(data);
|
|
} else {
|
|
MG_ERROR(("%s: virtual=%s error or too deep", path, arg));
|
|
}
|
|
} else {
|
|
// Unknown SSI tag
|
|
MG_ERROR(("Unknown SSI tag: %.*s", (int) len, buf));
|
|
mg_iobuf_add(&b, b.len, buf, len);
|
|
}
|
|
intag = 0;
|
|
len = 0;
|
|
} else if (ch == '<') {
|
|
intag = 1;
|
|
if (len > 0) mg_iobuf_add(&b, b.len, buf, len);
|
|
len = 0;
|
|
buf[len++] = (char) (ch & 0xff);
|
|
} else if (intag) {
|
|
if (len == 5 && strncmp(buf, "<!--#", 5) != 0) {
|
|
intag = 0;
|
|
} else if (len >= sizeof(buf) - 2) {
|
|
MG_ERROR(("%s: SSI tag is too large", path));
|
|
len = 0;
|
|
}
|
|
buf[len++] = (char) (ch & 0xff);
|
|
} else {
|
|
buf[len++] = (char) (ch & 0xff);
|
|
if (len >= sizeof(buf)) {
|
|
mg_iobuf_add(&b, b.len, buf, len);
|
|
len = 0;
|
|
}
|
|
}
|
|
}
|
|
if (len > 0) mg_iobuf_add(&b, b.len, buf, len);
|
|
if (b.len > 0) mg_iobuf_add(&b, b.len, "", 1); // nul-terminate
|
|
fclose(fp);
|
|
}
|
|
(void) depth;
|
|
(void) root;
|
|
return (char *) b.buf;
|
|
}
|
|
|
|
void mg_http_serve_ssi(struct mg_connection *c, const char *root,
|
|
const char *fullpath) {
|
|
const char *headers = "Content-Type: text/html; charset=utf-8\r\n";
|
|
char *data = mg_ssi(fullpath, root, 0);
|
|
mg_http_reply(c, 200, headers, "%s", data == NULL ? "" : data);
|
|
free(data);
|
|
}
|
|
#else
|
|
void mg_http_serve_ssi(struct mg_connection *c, const char *root,
|
|
const char *fullpath) {
|
|
mg_http_reply(c, 501, NULL, "SSI not enabled");
|
|
(void) root, (void) fullpath;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/str.c"
|
|
#endif
|
|
|
|
|
|
struct mg_str mg_str_s(const char *s) {
|
|
struct mg_str str = {(char *) s, s == NULL ? 0 : strlen(s)};
|
|
return str;
|
|
}
|
|
|
|
struct mg_str mg_str_n(const char *s, size_t n) {
|
|
struct mg_str str = {(char *) s, n};
|
|
return str;
|
|
}
|
|
|
|
static char tolc(char c) {
|
|
return (c >= 'A' && c <= 'Z') ? c + 'a' - 'A' : c;
|
|
}
|
|
|
|
int mg_casecmp(const char *s1, const char *s2) {
|
|
int diff = 0;
|
|
do {
|
|
char c = tolc(*s1++), d = tolc(*s2++);
|
|
diff = c - d;
|
|
} while (diff == 0 && s1[-1] != '\0');
|
|
return diff;
|
|
}
|
|
|
|
int mg_strcmp(const struct mg_str str1, const struct mg_str str2) {
|
|
size_t i = 0;
|
|
while (i < str1.len && i < str2.len) {
|
|
char c1 = str1.buf[i];
|
|
char c2 = str2.buf[i];
|
|
if (c1 < c2) return -1;
|
|
if (c1 > c2) return 1;
|
|
i++;
|
|
}
|
|
if (i < str1.len) return 1;
|
|
if (i < str2.len) return -1;
|
|
return 0;
|
|
}
|
|
|
|
int mg_strcasecmp(const struct mg_str str1, const struct mg_str str2) {
|
|
size_t i = 0;
|
|
while (i < str1.len && i < str2.len) {
|
|
char c1 = tolc(str1.buf[i]);
|
|
char c2 = tolc(str2.buf[i]);
|
|
if (c1 < c2) return -1;
|
|
if (c1 > c2) return 1;
|
|
i++;
|
|
}
|
|
if (i < str1.len) return 1;
|
|
if (i < str2.len) return -1;
|
|
return 0;
|
|
}
|
|
|
|
bool mg_match(struct mg_str s, struct mg_str p, struct mg_str *caps) {
|
|
size_t i = 0, j = 0, ni = 0, nj = 0;
|
|
if (caps) caps->buf = NULL, caps->len = 0;
|
|
while (i < p.len || j < s.len) {
|
|
if (i < p.len && j < s.len && (p.buf[i] == '?' || s.buf[j] == p.buf[i])) {
|
|
if (caps == NULL) {
|
|
} else if (p.buf[i] == '?') {
|
|
caps->buf = &s.buf[j], caps->len = 1; // Finalize `?` cap
|
|
caps++, caps->buf = NULL, caps->len = 0; // Init next cap
|
|
} else if (caps->buf != NULL && caps->len == 0) {
|
|
caps->len = (size_t) (&s.buf[j] - caps->buf); // Finalize current cap
|
|
caps++, caps->len = 0, caps->buf = NULL; // Init next cap
|
|
}
|
|
i++, j++;
|
|
} else if (i < p.len && (p.buf[i] == '*' || p.buf[i] == '#')) {
|
|
if (caps && !caps->buf) caps->len = 0, caps->buf = &s.buf[j]; // Init cap
|
|
ni = i++, nj = j + 1;
|
|
} else if (nj > 0 && nj <= s.len && (p.buf[ni] == '#' || s.buf[j] != '/')) {
|
|
i = ni, j = nj;
|
|
if (caps && caps->buf == NULL && caps->len == 0) {
|
|
caps--, caps->len = 0; // Restart previous cap
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
if (caps && caps->buf && caps->len == 0) {
|
|
caps->len = (size_t) (&s.buf[j] - caps->buf);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool mg_span(struct mg_str s, struct mg_str *a, struct mg_str *b, char sep) {
|
|
if (s.len == 0 || s.buf == NULL) {
|
|
return false; // Empty string, nothing to span - fail
|
|
} else {
|
|
size_t len = 0;
|
|
while (len < s.len && s.buf[len] != sep) len++; // Find separator
|
|
if (a) *a = mg_str_n(s.buf, len); // Init a
|
|
if (b) *b = mg_str_n(s.buf + len, s.len - len); // Init b
|
|
if (b && len < s.len) b->buf++, b->len--; // Skip separator
|
|
return true;
|
|
}
|
|
}
|
|
|
|
uint8_t mg_toi(char c, int base) {
|
|
return (c >= '0' && c <= '9') ? (uint8_t) (c - '0')
|
|
: base == 16 ? (c >= 'A' && c <= 'F') ? (uint8_t) (c - '7')
|
|
: (c >= 'a' && c <= 'f') ? (uint8_t) (c - 'W')
|
|
: (uint8_t) ~0
|
|
: (uint8_t) ~0;
|
|
}
|
|
|
|
unsigned long mg_unhexn(const char *s, size_t len) {
|
|
unsigned long i = 0, v = 0;
|
|
for (i = 0; i < len; i++) v <<= 4, v |= mg_toi(((char *) s)[i], 16);
|
|
return v;
|
|
}
|
|
|
|
void mg_unhex(const char *buf, size_t len, unsigned char *to) {
|
|
size_t i;
|
|
for (i = 0; i < len; i += 2) {
|
|
to[i >> 1] = (unsigned char) mg_unhexn(&buf[i], 2);
|
|
}
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/timer.c"
|
|
#endif
|
|
|
|
|
|
|
|
#define MG_TIMER_CALLED 4
|
|
|
|
void mg_timer_init(struct mg_timer **head, struct mg_timer *t, uint64_t ms,
|
|
unsigned flags, void (*fn)(void *), void *arg) {
|
|
t->id = 0, t->period_ms = ms, t->expire = 0;
|
|
t->flags = flags, t->fn = fn, t->arg = arg, t->next = *head;
|
|
*head = t;
|
|
}
|
|
|
|
void mg_timer_free(struct mg_timer **head, struct mg_timer *t) {
|
|
while (*head && *head != t) head = &(*head)->next;
|
|
if (*head) *head = t->next;
|
|
}
|
|
|
|
// t: expiration time, prd: period, now: current time. Return true if expired
|
|
bool mg_timer_expired(uint64_t *t, uint64_t prd, uint64_t now) {
|
|
if (now + prd < *t) *t = 0; // Time wrapped? Reset timer
|
|
if (*t == 0) *t = now + prd; // Firt poll? Set expiration
|
|
if (*t > now) return false; // Not expired yet, return
|
|
*t = (now - *t) > prd ? now + prd : *t + prd; // Next expiration time
|
|
return true; // Expired, return true
|
|
}
|
|
|
|
void mg_timer_poll(struct mg_timer **head, uint64_t now_ms) {
|
|
struct mg_timer *t, *tmp;
|
|
for (t = *head; t != NULL; t = tmp) {
|
|
bool once = t->expire == 0 && (t->flags & MG_TIMER_RUN_NOW) &&
|
|
!(t->flags & MG_TIMER_CALLED); // Handle MG_TIMER_NOW only once
|
|
bool expired = mg_timer_expired(&t->expire, t->period_ms, now_ms);
|
|
tmp = t->next;
|
|
if (!once && !expired) continue;
|
|
if ((t->flags & MG_TIMER_REPEAT) || !(t->flags & MG_TIMER_CALLED)) {
|
|
t->fn(t->arg);
|
|
}
|
|
t->flags |= MG_TIMER_CALLED;
|
|
}
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_aes128.c"
|
|
#endif
|
|
/******************************************************************************
|
|
*
|
|
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
|
*
|
|
* This is a simple and straightforward implementation of the AES Rijndael
|
|
* 128-bit block cipher designed by Vincent Rijmen and Joan Daemen. The focus
|
|
* of this work was correctness & accuracy. It is written in 'C' without any
|
|
* particular focus upon optimization or speed. It should be endian (memory
|
|
* byte order) neutral since the few places that care are handled explicitly.
|
|
*
|
|
* This implementation of Rijndael was created by Steven M. Gibson of GRC.com.
|
|
*
|
|
* It is intended for general purpose use, but was written in support of GRC's
|
|
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
|
*
|
|
* See: http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html
|
|
*
|
|
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
|
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
|
*
|
|
*******************************************************************************/
|
|
|
|
/******************************************************************************/
|
|
#define AES_DECRYPTION 1 // whether AES decryption is supported
|
|
/******************************************************************************/
|
|
|
|
#define MG_ENCRYPT 1 // specify whether we're encrypting
|
|
#define MG_DECRYPT 0 // or decrypting
|
|
|
|
|
|
|
|
|
|
|
|
#if MG_TLS == MG_TLS_BUILTIN
|
|
/******************************************************************************
|
|
* AES_INIT_KEYGEN_TABLES : MUST be called once before any AES use
|
|
******************************************************************************/
|
|
static void aes_init_keygen_tables(void);
|
|
|
|
/******************************************************************************
|
|
* AES_SETKEY : called to expand the key for encryption or decryption
|
|
******************************************************************************/
|
|
static int aes_setkey(aes_context *ctx, // pointer to context
|
|
int mode, // 1 or 0 for Encrypt/Decrypt
|
|
const uchar *key, // AES input key
|
|
uint keysize); // size in bytes (must be 16, 24, 32 for
|
|
// 128, 192 or 256-bit keys respectively)
|
|
// returns 0 for success
|
|
|
|
/******************************************************************************
|
|
* AES_CIPHER : called to encrypt or decrypt ONE 128-bit block of data
|
|
******************************************************************************/
|
|
static int aes_cipher(aes_context *ctx, // pointer to context
|
|
const uchar input[16], // 128-bit block to en/decipher
|
|
uchar output[16]); // 128-bit output result block
|
|
// returns 0 for success
|
|
|
|
/******************************************************************************
|
|
* GCM_CONTEXT : GCM context / holds keytables, instance data, and AES ctx
|
|
******************************************************************************/
|
|
typedef struct {
|
|
int mode; // cipher direction: encrypt/decrypt
|
|
uint64_t len; // cipher data length processed so far
|
|
uint64_t add_len; // total add data length
|
|
uint64_t HL[16]; // precalculated lo-half HTable
|
|
uint64_t HH[16]; // precalculated hi-half HTable
|
|
uchar base_ectr[16]; // first counter-mode cipher output for tag
|
|
uchar y[16]; // the current cipher-input IV|Counter value
|
|
uchar buf[16]; // buf working value
|
|
aes_context aes_ctx; // cipher context used
|
|
} gcm_context;
|
|
|
|
/******************************************************************************
|
|
* GCM_SETKEY : sets the GCM (and AES) keying material for use
|
|
******************************************************************************/
|
|
static int gcm_setkey(
|
|
gcm_context *ctx, // caller-provided context ptr
|
|
const uchar *key, // pointer to cipher key
|
|
const uint keysize // size in bytes (must be 16, 24, 32 for
|
|
// 128, 192 or 256-bit keys respectively)
|
|
); // returns 0 for success
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_CRYPT_AND_TAG
|
|
*
|
|
* This either encrypts or decrypts the user-provided data and, either
|
|
* way, generates an authentication tag of the requested length. It must be
|
|
* called with a GCM context whose key has already been set with GCM_SETKEY.
|
|
*
|
|
* The user would typically call this explicitly to ENCRYPT a buffer of data
|
|
* and optional associated data, and produce its an authentication tag.
|
|
*
|
|
* To reverse the process the user would typically call the companion
|
|
* GCM_AUTH_DECRYPT function to decrypt data and verify a user-provided
|
|
* authentication tag. The GCM_AUTH_DECRYPT function calls this function
|
|
* to perform its decryption and tag generation, which it then compares.
|
|
*
|
|
******************************************************************************/
|
|
static int gcm_crypt_and_tag(
|
|
gcm_context *ctx, // gcm context with key already setup
|
|
int mode, // cipher direction: MG_ENCRYPT (1) or MG_DECRYPT (0)
|
|
const uchar *iv, // pointer to the 12-byte initialization vector
|
|
size_t iv_len, // byte length if the IV. should always be 12
|
|
const uchar *add, // pointer to the non-ciphered additional data
|
|
size_t add_len, // byte length of the additional AEAD data
|
|
const uchar *input, // pointer to the cipher data source
|
|
uchar *output, // pointer to the cipher data destination
|
|
size_t length, // byte length of the cipher data
|
|
uchar *tag, // pointer to the tag to be generated
|
|
size_t tag_len); // byte length of the tag to be generated
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_START
|
|
*
|
|
* Given a user-provided GCM context, this initializes it, sets the encryption
|
|
* mode, and preprocesses the initialization vector and additional AEAD data.
|
|
*
|
|
******************************************************************************/
|
|
static int gcm_start(
|
|
gcm_context *ctx, // pointer to user-provided GCM context
|
|
int mode, // MG_ENCRYPT (1) or MG_DECRYPT (0)
|
|
const uchar *iv, // pointer to initialization vector
|
|
size_t iv_len, // IV length in bytes (should == 12)
|
|
const uchar *add, // pointer to additional AEAD data (NULL if none)
|
|
size_t add_len); // length of additional AEAD data (bytes)
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_UPDATE
|
|
*
|
|
* This is called once or more to process bulk plaintext or ciphertext data.
|
|
* We give this some number of bytes of input and it returns the same number
|
|
* of output bytes. If called multiple times (which is fine) all but the final
|
|
* invocation MUST be called with length mod 16 == 0. (Only the final call can
|
|
* have a partial block length of < 128 bits.)
|
|
*
|
|
******************************************************************************/
|
|
static int gcm_update(gcm_context *ctx, // pointer to user-provided GCM context
|
|
size_t length, // length, in bytes, of data to process
|
|
const uchar *input, // pointer to source data
|
|
uchar *output); // pointer to destination data
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_FINISH
|
|
*
|
|
* This is called once after all calls to GCM_UPDATE to finalize the GCM.
|
|
* It performs the final GHASH to produce the resulting authentication TAG.
|
|
*
|
|
******************************************************************************/
|
|
static int gcm_finish(
|
|
gcm_context *ctx, // pointer to user-provided GCM context
|
|
uchar *tag, // ptr to tag buffer - NULL if tag_len = 0
|
|
size_t tag_len); // length, in bytes, of the tag-receiving buf
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_ZERO_CTX
|
|
*
|
|
* The GCM context contains both the GCM context and the AES context.
|
|
* This includes keying and key-related material which is security-
|
|
* sensitive, so it MUST be zeroed after use. This function does that.
|
|
*
|
|
******************************************************************************/
|
|
static void gcm_zero_ctx(gcm_context *ctx);
|
|
|
|
/******************************************************************************
|
|
*
|
|
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
|
*
|
|
* This is a simple and straightforward implementation of the AES Rijndael
|
|
* 128-bit block cipher designed by Vincent Rijmen and Joan Daemen. The focus
|
|
* of this work was correctness & accuracy. It is written in 'C' without any
|
|
* particular focus upon optimization or speed. It should be endian (memory
|
|
* byte order) neutral since the few places that care are handled explicitly.
|
|
*
|
|
* This implementation of Rijndael was created by Steven M. Gibson of GRC.com.
|
|
*
|
|
* It is intended for general purpose use, but was written in support of GRC's
|
|
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
|
*
|
|
* See: http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html
|
|
*
|
|
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
|
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
|
*
|
|
*******************************************************************************/
|
|
|
|
|
|
|
|
|
|
static int aes_tables_inited = 0; // run-once flag for performing key
|
|
// expasion table generation (see below)
|
|
/*
|
|
* The following static local tables must be filled-in before the first use of
|
|
* the GCM or AES ciphers. They are used for the AES key expansion/scheduling
|
|
* and once built are read-only and thread safe. The "gcm_initialize" function
|
|
* must be called once during system initialization to populate these arrays
|
|
* for subsequent use by the AES key scheduler. If they have not been built
|
|
* before attempted use, an error will be returned to the caller.
|
|
*
|
|
* NOTE: GCM Encryption/Decryption does NOT REQUIRE AES decryption. Since
|
|
* GCM uses AES in counter-mode, where the AES cipher output is XORed with
|
|
* the GCM input, we ONLY NEED AES encryption. Thus, to save space AES
|
|
* decryption is typically disabled by setting AES_DECRYPTION to 0 in aes.h.
|
|
*/
|
|
// We always need our forward tables
|
|
static uchar FSb[256]; // Forward substitution box (FSb)
|
|
static uint32_t FT0[256]; // Forward key schedule assembly tables
|
|
static uint32_t FT1[256];
|
|
static uint32_t FT2[256];
|
|
static uint32_t FT3[256];
|
|
|
|
#if AES_DECRYPTION // We ONLY need reverse for decryption
|
|
static uchar RSb[256]; // Reverse substitution box (RSb)
|
|
static uint32_t RT0[256]; // Reverse key schedule assembly tables
|
|
static uint32_t RT1[256];
|
|
static uint32_t RT2[256];
|
|
static uint32_t RT3[256];
|
|
#endif /* AES_DECRYPTION */
|
|
|
|
static uint32_t RCON[10]; // AES round constants
|
|
|
|
/*
|
|
* Platform Endianness Neutralizing Load and Store Macro definitions
|
|
* AES wants platform-neutral Little Endian (LE) byte ordering
|
|
*/
|
|
#define GET_UINT32_LE(n, b, i) \
|
|
{ \
|
|
(n) = ((uint32_t) (b)[(i)]) | ((uint32_t) (b)[(i) + 1] << 8) | \
|
|
((uint32_t) (b)[(i) + 2] << 16) | ((uint32_t) (b)[(i) + 3] << 24); \
|
|
}
|
|
|
|
#define PUT_UINT32_LE(n, b, i) \
|
|
{ \
|
|
(b)[(i)] = (uchar) ((n)); \
|
|
(b)[(i) + 1] = (uchar) ((n) >> 8); \
|
|
(b)[(i) + 2] = (uchar) ((n) >> 16); \
|
|
(b)[(i) + 3] = (uchar) ((n) >> 24); \
|
|
}
|
|
|
|
/*
|
|
* AES forward and reverse encryption round processing macros
|
|
*/
|
|
#define AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \
|
|
{ \
|
|
X0 = *RK++ ^ FT0[(Y0) & 0xFF] ^ FT1[(Y1 >> 8) & 0xFF] ^ \
|
|
FT2[(Y2 >> 16) & 0xFF] ^ FT3[(Y3 >> 24) & 0xFF]; \
|
|
\
|
|
X1 = *RK++ ^ FT0[(Y1) & 0xFF] ^ FT1[(Y2 >> 8) & 0xFF] ^ \
|
|
FT2[(Y3 >> 16) & 0xFF] ^ FT3[(Y0 >> 24) & 0xFF]; \
|
|
\
|
|
X2 = *RK++ ^ FT0[(Y2) & 0xFF] ^ FT1[(Y3 >> 8) & 0xFF] ^ \
|
|
FT2[(Y0 >> 16) & 0xFF] ^ FT3[(Y1 >> 24) & 0xFF]; \
|
|
\
|
|
X3 = *RK++ ^ FT0[(Y3) & 0xFF] ^ FT1[(Y0 >> 8) & 0xFF] ^ \
|
|
FT2[(Y1 >> 16) & 0xFF] ^ FT3[(Y2 >> 24) & 0xFF]; \
|
|
}
|
|
|
|
#define AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \
|
|
{ \
|
|
X0 = *RK++ ^ RT0[(Y0) & 0xFF] ^ RT1[(Y3 >> 8) & 0xFF] ^ \
|
|
RT2[(Y2 >> 16) & 0xFF] ^ RT3[(Y1 >> 24) & 0xFF]; \
|
|
\
|
|
X1 = *RK++ ^ RT0[(Y1) & 0xFF] ^ RT1[(Y0 >> 8) & 0xFF] ^ \
|
|
RT2[(Y3 >> 16) & 0xFF] ^ RT3[(Y2 >> 24) & 0xFF]; \
|
|
\
|
|
X2 = *RK++ ^ RT0[(Y2) & 0xFF] ^ RT1[(Y1 >> 8) & 0xFF] ^ \
|
|
RT2[(Y0 >> 16) & 0xFF] ^ RT3[(Y3 >> 24) & 0xFF]; \
|
|
\
|
|
X3 = *RK++ ^ RT0[(Y3) & 0xFF] ^ RT1[(Y2 >> 8) & 0xFF] ^ \
|
|
RT2[(Y1 >> 16) & 0xFF] ^ RT3[(Y0 >> 24) & 0xFF]; \
|
|
}
|
|
|
|
/*
|
|
* These macros improve the readability of the key
|
|
* generation initialization code by collapsing
|
|
* repetitive common operations into logical pieces.
|
|
*/
|
|
#define ROTL8(x) ((x << 8) & 0xFFFFFFFF) | (x >> 24)
|
|
#define XTIME(x) ((x << 1) ^ ((x & 0x80) ? 0x1B : 0x00))
|
|
#define MUL(x, y) ((x && y) ? pow[(log[x] + log[y]) % 255] : 0)
|
|
#define MIX(x, y) \
|
|
{ \
|
|
y = ((y << 1) | (y >> 7)) & 0xFF; \
|
|
x ^= y; \
|
|
}
|
|
#define CPY128 \
|
|
{ \
|
|
*RK++ = *SK++; \
|
|
*RK++ = *SK++; \
|
|
*RK++ = *SK++; \
|
|
*RK++ = *SK++; \
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* AES_INIT_KEYGEN_TABLES
|
|
*
|
|
* Fills the AES key expansion tables allocated above with their static
|
|
* data. This is not "per key" data, but static system-wide read-only
|
|
* table data. THIS FUNCTION IS NOT THREAD SAFE. It must be called once
|
|
* at system initialization to setup the tables for all subsequent use.
|
|
*
|
|
******************************************************************************/
|
|
void aes_init_keygen_tables(void) {
|
|
int i, x, y, z; // general purpose iteration and computation locals
|
|
int pow[256];
|
|
int log[256];
|
|
|
|
if (aes_tables_inited) return;
|
|
|
|
// fill the 'pow' and 'log' tables over GF(2^8)
|
|
for (i = 0, x = 1; i < 256; i++) {
|
|
pow[i] = x;
|
|
log[x] = i;
|
|
x = (x ^ XTIME(x)) & 0xFF;
|
|
}
|
|
// compute the round constants
|
|
for (i = 0, x = 1; i < 10; i++) {
|
|
RCON[i] = (uint32_t) x;
|
|
x = XTIME(x) & 0xFF;
|
|
}
|
|
// fill the forward and reverse substitution boxes
|
|
FSb[0x00] = 0x63;
|
|
#if AES_DECRYPTION // whether AES decryption is supported
|
|
RSb[0x63] = 0x00;
|
|
#endif /* AES_DECRYPTION */
|
|
|
|
for (i = 1; i < 256; i++) {
|
|
x = y = pow[255 - log[i]];
|
|
MIX(x, y);
|
|
MIX(x, y);
|
|
MIX(x, y);
|
|
MIX(x, y);
|
|
FSb[i] = (uchar) (x ^= 0x63);
|
|
#if AES_DECRYPTION // whether AES decryption is supported
|
|
RSb[x] = (uchar) i;
|
|
#endif /* AES_DECRYPTION */
|
|
}
|
|
// generate the forward and reverse key expansion tables
|
|
for (i = 0; i < 256; i++) {
|
|
x = FSb[i];
|
|
y = XTIME(x) & 0xFF;
|
|
z = (y ^ x) & 0xFF;
|
|
|
|
FT0[i] = ((uint32_t) y) ^ ((uint32_t) x << 8) ^ ((uint32_t) x << 16) ^
|
|
((uint32_t) z << 24);
|
|
|
|
FT1[i] = ROTL8(FT0[i]);
|
|
FT2[i] = ROTL8(FT1[i]);
|
|
FT3[i] = ROTL8(FT2[i]);
|
|
|
|
#if AES_DECRYPTION // whether AES decryption is supported
|
|
x = RSb[i];
|
|
|
|
RT0[i] = ((uint32_t) MUL(0x0E, x)) ^ ((uint32_t) MUL(0x09, x) << 8) ^
|
|
((uint32_t) MUL(0x0D, x) << 16) ^ ((uint32_t) MUL(0x0B, x) << 24);
|
|
|
|
RT1[i] = ROTL8(RT0[i]);
|
|
RT2[i] = ROTL8(RT1[i]);
|
|
RT3[i] = ROTL8(RT2[i]);
|
|
#endif /* AES_DECRYPTION */
|
|
}
|
|
aes_tables_inited = 1; // flag that the tables have been generated
|
|
} // to permit subsequent use of the AES cipher
|
|
|
|
/******************************************************************************
|
|
*
|
|
* AES_SET_ENCRYPTION_KEY
|
|
*
|
|
* This is called by 'aes_setkey' when we're establishing a key for
|
|
* subsequent encryption. We give it a pointer to the encryption
|
|
* context, a pointer to the key, and the key's length in bytes.
|
|
* Valid lengths are: 16, 24 or 32 bytes (128, 192, 256 bits).
|
|
*
|
|
******************************************************************************/
|
|
static int aes_set_encryption_key(aes_context *ctx, const uchar *key,
|
|
uint keysize) {
|
|
uint i; // general purpose iteration local
|
|
uint32_t *RK = ctx->rk; // initialize our RoundKey buffer pointer
|
|
|
|
for (i = 0; i < (keysize >> 2); i++) {
|
|
GET_UINT32_LE(RK[i], key, i << 2);
|
|
}
|
|
|
|
switch (ctx->rounds) {
|
|
case 10:
|
|
for (i = 0; i < 10; i++, RK += 4) {
|
|
RK[4] = RK[0] ^ RCON[i] ^ ((uint32_t) FSb[(RK[3] >> 8) & 0xFF]) ^
|
|
((uint32_t) FSb[(RK[3] >> 16) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(RK[3] >> 24) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(RK[3]) & 0xFF] << 24);
|
|
|
|
RK[5] = RK[1] ^ RK[4];
|
|
RK[6] = RK[2] ^ RK[5];
|
|
RK[7] = RK[3] ^ RK[6];
|
|
}
|
|
break;
|
|
|
|
case 12:
|
|
for (i = 0; i < 8; i++, RK += 6) {
|
|
RK[6] = RK[0] ^ RCON[i] ^ ((uint32_t) FSb[(RK[5] >> 8) & 0xFF]) ^
|
|
((uint32_t) FSb[(RK[5] >> 16) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(RK[5] >> 24) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(RK[5]) & 0xFF] << 24);
|
|
|
|
RK[7] = RK[1] ^ RK[6];
|
|
RK[8] = RK[2] ^ RK[7];
|
|
RK[9] = RK[3] ^ RK[8];
|
|
RK[10] = RK[4] ^ RK[9];
|
|
RK[11] = RK[5] ^ RK[10];
|
|
}
|
|
break;
|
|
|
|
case 14:
|
|
for (i = 0; i < 7; i++, RK += 8) {
|
|
RK[8] = RK[0] ^ RCON[i] ^ ((uint32_t) FSb[(RK[7] >> 8) & 0xFF]) ^
|
|
((uint32_t) FSb[(RK[7] >> 16) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(RK[7] >> 24) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(RK[7]) & 0xFF] << 24);
|
|
|
|
RK[9] = RK[1] ^ RK[8];
|
|
RK[10] = RK[2] ^ RK[9];
|
|
RK[11] = RK[3] ^ RK[10];
|
|
|
|
RK[12] = RK[4] ^ ((uint32_t) FSb[(RK[11]) & 0xFF]) ^
|
|
((uint32_t) FSb[(RK[11] >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(RK[11] >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(RK[11] >> 24) & 0xFF] << 24);
|
|
|
|
RK[13] = RK[5] ^ RK[12];
|
|
RK[14] = RK[6] ^ RK[13];
|
|
RK[15] = RK[7] ^ RK[14];
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#if AES_DECRYPTION // whether AES decryption is supported
|
|
|
|
/******************************************************************************
|
|
*
|
|
* AES_SET_DECRYPTION_KEY
|
|
*
|
|
* This is called by 'aes_setkey' when we're establishing a
|
|
* key for subsequent decryption. We give it a pointer to
|
|
* the encryption context, a pointer to the key, and the key's
|
|
* length in bits. Valid lengths are: 128, 192, or 256 bits.
|
|
*
|
|
******************************************************************************/
|
|
static int aes_set_decryption_key(aes_context *ctx, const uchar *key,
|
|
uint keysize) {
|
|
int i, j;
|
|
aes_context cty; // a calling aes context for set_encryption_key
|
|
uint32_t *RK = ctx->rk; // initialize our RoundKey buffer pointer
|
|
uint32_t *SK;
|
|
int ret;
|
|
|
|
cty.rounds = ctx->rounds; // initialize our local aes context
|
|
cty.rk = cty.buf; // round count and key buf pointer
|
|
|
|
if ((ret = aes_set_encryption_key(&cty, key, keysize)) != 0) return (ret);
|
|
|
|
SK = cty.rk + cty.rounds * 4;
|
|
|
|
CPY128 // copy a 128-bit block from *SK to *RK
|
|
|
|
for (i = ctx->rounds - 1, SK -= 8; i > 0; i--, SK -= 8) {
|
|
for (j = 0; j < 4; j++, SK++) {
|
|
*RK++ = RT0[FSb[(*SK) & 0xFF]] ^ RT1[FSb[(*SK >> 8) & 0xFF]] ^
|
|
RT2[FSb[(*SK >> 16) & 0xFF]] ^ RT3[FSb[(*SK >> 24) & 0xFF]];
|
|
}
|
|
}
|
|
CPY128 // copy a 128-bit block from *SK to *RK
|
|
memset(&cty, 0, sizeof(aes_context)); // clear local aes context
|
|
return (0);
|
|
}
|
|
|
|
#endif /* AES_DECRYPTION */
|
|
|
|
/******************************************************************************
|
|
*
|
|
* AES_SETKEY
|
|
*
|
|
* Invoked to establish the key schedule for subsequent encryption/decryption
|
|
*
|
|
******************************************************************************/
|
|
static int aes_setkey(aes_context *ctx, // AES context provided by our caller
|
|
int mode, // ENCRYPT or DECRYPT flag
|
|
const uchar *key, // pointer to the key
|
|
uint keysize) // key length in bytes
|
|
{
|
|
// since table initialization is not thread safe, we could either add
|
|
// system-specific mutexes and init the AES key generation tables on
|
|
// demand, or ask the developer to simply call "gcm_initialize" once during
|
|
// application startup before threading begins. That's what we choose.
|
|
if (!aes_tables_inited) return (-1); // fail the call when not inited.
|
|
|
|
ctx->mode = mode; // capture the key type we're creating
|
|
ctx->rk = ctx->buf; // initialize our round key pointer
|
|
|
|
switch (keysize) // set the rounds count based upon the keysize
|
|
{
|
|
case 16:
|
|
ctx->rounds = 10;
|
|
break; // 16-byte, 128-bit key
|
|
case 24:
|
|
ctx->rounds = 12;
|
|
break; // 24-byte, 192-bit key
|
|
case 32:
|
|
ctx->rounds = 14;
|
|
break; // 32-byte, 256-bit key
|
|
default:
|
|
return (-1);
|
|
}
|
|
|
|
#if AES_DECRYPTION
|
|
if (mode == MG_DECRYPT) // expand our key for encryption or decryption
|
|
return (aes_set_decryption_key(ctx, key, keysize));
|
|
else /* MG_ENCRYPT */
|
|
#endif /* AES_DECRYPTION */
|
|
return (aes_set_encryption_key(ctx, key, keysize));
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* AES_CIPHER
|
|
*
|
|
* Perform AES encryption and decryption.
|
|
* The AES context will have been setup with the encryption mode
|
|
* and all keying information appropriate for the task.
|
|
*
|
|
******************************************************************************/
|
|
static int aes_cipher(aes_context *ctx, const uchar input[16],
|
|
uchar output[16]) {
|
|
int i;
|
|
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; // general purpose locals
|
|
|
|
RK = ctx->rk;
|
|
|
|
GET_UINT32_LE(X0, input, 0);
|
|
X0 ^= *RK++; // load our 128-bit
|
|
GET_UINT32_LE(X1, input, 4);
|
|
X1 ^= *RK++; // input buffer in a storage
|
|
GET_UINT32_LE(X2, input, 8);
|
|
X2 ^= *RK++; // memory endian-neutral way
|
|
GET_UINT32_LE(X3, input, 12);
|
|
X3 ^= *RK++;
|
|
|
|
#if AES_DECRYPTION // whether AES decryption is supported
|
|
|
|
if (ctx->mode == MG_DECRYPT) {
|
|
for (i = (ctx->rounds >> 1) - 1; i > 0; i--) {
|
|
AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
|
AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
|
|
}
|
|
|
|
AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
|
|
|
X0 = *RK++ ^ ((uint32_t) RSb[(Y0) & 0xFF]) ^
|
|
((uint32_t) RSb[(Y3 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) RSb[(Y2 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) RSb[(Y1 >> 24) & 0xFF] << 24);
|
|
|
|
X1 = *RK++ ^ ((uint32_t) RSb[(Y1) & 0xFF]) ^
|
|
((uint32_t) RSb[(Y0 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) RSb[(Y3 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) RSb[(Y2 >> 24) & 0xFF] << 24);
|
|
|
|
X2 = *RK++ ^ ((uint32_t) RSb[(Y2) & 0xFF]) ^
|
|
((uint32_t) RSb[(Y1 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) RSb[(Y0 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) RSb[(Y3 >> 24) & 0xFF] << 24);
|
|
|
|
X3 = *RK++ ^ ((uint32_t) RSb[(Y3) & 0xFF]) ^
|
|
((uint32_t) RSb[(Y2 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) RSb[(Y1 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) RSb[(Y0 >> 24) & 0xFF] << 24);
|
|
} else /* MG_ENCRYPT */
|
|
{
|
|
#endif /* AES_DECRYPTION */
|
|
|
|
for (i = (ctx->rounds >> 1) - 1; i > 0; i--) {
|
|
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
|
AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
|
|
}
|
|
|
|
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
|
|
|
X0 = *RK++ ^ ((uint32_t) FSb[(Y0) & 0xFF]) ^
|
|
((uint32_t) FSb[(Y1 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(Y2 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(Y3 >> 24) & 0xFF] << 24);
|
|
|
|
X1 = *RK++ ^ ((uint32_t) FSb[(Y1) & 0xFF]) ^
|
|
((uint32_t) FSb[(Y2 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(Y3 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(Y0 >> 24) & 0xFF] << 24);
|
|
|
|
X2 = *RK++ ^ ((uint32_t) FSb[(Y2) & 0xFF]) ^
|
|
((uint32_t) FSb[(Y3 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(Y0 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(Y1 >> 24) & 0xFF] << 24);
|
|
|
|
X3 = *RK++ ^ ((uint32_t) FSb[(Y3) & 0xFF]) ^
|
|
((uint32_t) FSb[(Y0 >> 8) & 0xFF] << 8) ^
|
|
((uint32_t) FSb[(Y1 >> 16) & 0xFF] << 16) ^
|
|
((uint32_t) FSb[(Y2 >> 24) & 0xFF] << 24);
|
|
|
|
#if AES_DECRYPTION // whether AES decryption is supported
|
|
}
|
|
#endif /* AES_DECRYPTION */
|
|
|
|
PUT_UINT32_LE(X0, output, 0);
|
|
PUT_UINT32_LE(X1, output, 4);
|
|
PUT_UINT32_LE(X2, output, 8);
|
|
PUT_UINT32_LE(X3, output, 12);
|
|
|
|
return (0);
|
|
}
|
|
/* end of aes.c */
|
|
/******************************************************************************
|
|
*
|
|
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
|
*
|
|
* This is a simple and straightforward implementation of AES-GCM authenticated
|
|
* encryption. The focus of this work was correctness & accuracy. It is written
|
|
* in straight 'C' without any particular focus upon optimization or speed. It
|
|
* should be endian (memory byte order) neutral since the few places that care
|
|
* are handled explicitly.
|
|
*
|
|
* This implementation of AES-GCM was created by Steven M. Gibson of GRC.com.
|
|
*
|
|
* It is intended for general purpose use, but was written in support of GRC's
|
|
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
|
*
|
|
* See: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
|
|
* http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
|
|
* gcm/gcm-revised-spec.pdf
|
|
*
|
|
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
|
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
|
*
|
|
*******************************************************************************/
|
|
|
|
/******************************************************************************
|
|
* ==== IMPLEMENTATION WARNING ====
|
|
*
|
|
* This code was developed for use within SQRL's fixed environmnent. Thus, it
|
|
* is somewhat less "general purpose" than it would be if it were designed as
|
|
* a general purpose AES-GCM library. Specifically, it bothers with almost NO
|
|
* error checking on parameter limits, buffer bounds, etc. It assumes that it
|
|
* is being invoked by its author or by someone who understands the values it
|
|
* expects to receive. Its behavior will be undefined otherwise.
|
|
*
|
|
* All functions that might fail are defined to return 'ints' to indicate a
|
|
* problem. Most do not do so now. But this allows for error propagation out
|
|
* of internal functions if robust error checking should ever be desired.
|
|
*
|
|
******************************************************************************/
|
|
|
|
/* Calculating the "GHASH"
|
|
*
|
|
* There are many ways of calculating the so-called GHASH in software, each with
|
|
* a traditional size vs performance tradeoff. The GHASH (Galois field hash) is
|
|
* an intriguing construction which takes two 128-bit strings (also the cipher's
|
|
* block size and the fundamental operation size for the system) and hashes them
|
|
* into a third 128-bit result.
|
|
*
|
|
* Many implementation solutions have been worked out that use large precomputed
|
|
* table lookups in place of more time consuming bit fiddling, and this approach
|
|
* can be scaled easily upward or downward as needed to change the time/space
|
|
* tradeoff. It's been studied extensively and there's a solid body of theory
|
|
* and practice. For example, without using any lookup tables an implementation
|
|
* might obtain 119 cycles per byte throughput, whereas using a simple, though
|
|
* large, key-specific 64 kbyte 8-bit lookup table the performance jumps to 13
|
|
* cycles per byte.
|
|
*
|
|
* And Intel's processors have, since 2010, included an instruction which does
|
|
* the entire 128x128->128 bit job in just several 64x64->128 bit pieces.
|
|
*
|
|
* Since SQRL is interactive, and only processing a few 128-bit blocks, I've
|
|
* settled upon a relatively slower but appealing small-table compromise which
|
|
* folds a bunch of not only time consuming but also bit twiddling into a simple
|
|
* 16-entry table which is attributed to Victor Shoup's 1996 work while at
|
|
* Bellcore: "On Fast and Provably Secure MessageAuthentication Based on
|
|
* Universal Hashing." See: http://www.shoup.net/papers/macs.pdf
|
|
* See, also section 4.1 of the "gcm-revised-spec" cited above.
|
|
*/
|
|
|
|
/*
|
|
* This 16-entry table of pre-computed constants is used by the
|
|
* GHASH multiplier to improve over a strictly table-free but
|
|
* significantly slower 128x128 bit multiple within GF(2^128).
|
|
*/
|
|
static const uint64_t last4[16] = {
|
|
0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
|
|
0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0};
|
|
|
|
/*
|
|
* Platform Endianness Neutralizing Load and Store Macro definitions
|
|
* GCM wants platform-neutral Big Endian (BE) byte ordering
|
|
*/
|
|
#define GET_UINT32_BE(n, b, i) \
|
|
{ \
|
|
(n) = ((uint32_t) (b)[(i)] << 24) | ((uint32_t) (b)[(i) + 1] << 16) | \
|
|
((uint32_t) (b)[(i) + 2] << 8) | ((uint32_t) (b)[(i) + 3]); \
|
|
}
|
|
|
|
#define PUT_UINT32_BE(n, b, i) \
|
|
{ \
|
|
(b)[(i)] = (uchar) ((n) >> 24); \
|
|
(b)[(i) + 1] = (uchar) ((n) >> 16); \
|
|
(b)[(i) + 2] = (uchar) ((n) >> 8); \
|
|
(b)[(i) + 3] = (uchar) ((n)); \
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_INITIALIZE
|
|
*
|
|
* Must be called once to initialize the GCM library.
|
|
*
|
|
* At present, this only calls the AES keygen table generator, which expands
|
|
* the AES keying tables for use. This is NOT A THREAD-SAFE function, so it
|
|
* MUST be called during system initialization before a multi-threading
|
|
* environment is running.
|
|
*
|
|
******************************************************************************/
|
|
int mg_gcm_initialize(void) {
|
|
aes_init_keygen_tables();
|
|
return (0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_MULT
|
|
*
|
|
* Performs a GHASH operation on the 128-bit input vector 'x', setting
|
|
* the 128-bit output vector to 'x' times H using our precomputed tables.
|
|
* 'x' and 'output' are seen as elements of GCM's GF(2^128) Galois field.
|
|
*
|
|
******************************************************************************/
|
|
static void gcm_mult(gcm_context *ctx, // pointer to established context
|
|
const uchar x[16], // pointer to 128-bit input vector
|
|
uchar output[16]) // pointer to 128-bit output vector
|
|
{
|
|
int i;
|
|
uchar lo, hi, rem;
|
|
uint64_t zh, zl;
|
|
|
|
lo = (uchar) (x[15] & 0x0f);
|
|
hi = (uchar) (x[15] >> 4);
|
|
zh = ctx->HH[lo];
|
|
zl = ctx->HL[lo];
|
|
|
|
for (i = 15; i >= 0; i--) {
|
|
lo = (uchar) (x[i] & 0x0f);
|
|
hi = (uchar) (x[i] >> 4);
|
|
|
|
if (i != 15) {
|
|
rem = (uchar) (zl & 0x0f);
|
|
zl = (zh << 60) | (zl >> 4);
|
|
zh = (zh >> 4);
|
|
zh ^= (uint64_t) last4[rem] << 48;
|
|
zh ^= ctx->HH[lo];
|
|
zl ^= ctx->HL[lo];
|
|
}
|
|
rem = (uchar) (zl & 0x0f);
|
|
zl = (zh << 60) | (zl >> 4);
|
|
zh = (zh >> 4);
|
|
zh ^= (uint64_t) last4[rem] << 48;
|
|
zh ^= ctx->HH[hi];
|
|
zl ^= ctx->HL[hi];
|
|
}
|
|
PUT_UINT32_BE(zh >> 32, output, 0);
|
|
PUT_UINT32_BE(zh, output, 4);
|
|
PUT_UINT32_BE(zl >> 32, output, 8);
|
|
PUT_UINT32_BE(zl, output, 12);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_SETKEY
|
|
*
|
|
* This is called to set the AES-GCM key. It initializes the AES key
|
|
* and populates the gcm context's pre-calculated HTables.
|
|
*
|
|
******************************************************************************/
|
|
static int gcm_setkey(
|
|
gcm_context *ctx, // pointer to caller-provided gcm context
|
|
const uchar *key, // pointer to the AES encryption key
|
|
const uint keysize) // size in bytes (must be 16, 24, 32 for
|
|
// 128, 192 or 256-bit keys respectively)
|
|
{
|
|
int ret, i, j;
|
|
uint64_t hi, lo;
|
|
uint64_t vl, vh;
|
|
unsigned char h[16];
|
|
|
|
memset(ctx, 0, sizeof(gcm_context)); // zero caller-provided GCM context
|
|
memset(h, 0, 16); // initialize the block to encrypt
|
|
|
|
// encrypt the null 128-bit block to generate a key-based value
|
|
// which is then used to initialize our GHASH lookup tables
|
|
if ((ret = aes_setkey(&ctx->aes_ctx, MG_ENCRYPT, key, keysize)) != 0)
|
|
return (ret);
|
|
if ((ret = aes_cipher(&ctx->aes_ctx, h, h)) != 0) return (ret);
|
|
|
|
GET_UINT32_BE(hi, h, 0); // pack h as two 64-bit ints, big-endian
|
|
GET_UINT32_BE(lo, h, 4);
|
|
vh = (uint64_t) hi << 32 | lo;
|
|
|
|
GET_UINT32_BE(hi, h, 8);
|
|
GET_UINT32_BE(lo, h, 12);
|
|
vl = (uint64_t) hi << 32 | lo;
|
|
|
|
ctx->HL[8] = vl; // 8 = 1000 corresponds to 1 in GF(2^128)
|
|
ctx->HH[8] = vh;
|
|
ctx->HH[0] = 0; // 0 corresponds to 0 in GF(2^128)
|
|
ctx->HL[0] = 0;
|
|
|
|
for (i = 4; i > 0; i >>= 1) {
|
|
uint32_t T = (uint32_t) (vl & 1) * 0xe1000000U;
|
|
vl = (vh << 63) | (vl >> 1);
|
|
vh = (vh >> 1) ^ ((uint64_t) T << 32);
|
|
ctx->HL[i] = vl;
|
|
ctx->HH[i] = vh;
|
|
}
|
|
for (i = 2; i < 16; i <<= 1) {
|
|
uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
|
|
vh = *HiH;
|
|
vl = *HiL;
|
|
for (j = 1; j < i; j++) {
|
|
HiH[j] = vh ^ ctx->HH[j];
|
|
HiL[j] = vl ^ ctx->HL[j];
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM processing occurs four phases: SETKEY, START, UPDATE and FINISH.
|
|
*
|
|
* SETKEY:
|
|
*
|
|
* START: Sets the Encryption/Decryption mode.
|
|
* Accepts the initialization vector and additional data.
|
|
*
|
|
* UPDATE: Encrypts or decrypts the plaintext or ciphertext.
|
|
*
|
|
* FINISH: Performs a final GHASH to generate the authentication tag.
|
|
*
|
|
******************************************************************************
|
|
*
|
|
* GCM_START
|
|
*
|
|
* Given a user-provided GCM context, this initializes it, sets the encryption
|
|
* mode, and preprocesses the initialization vector and additional AEAD data.
|
|
*
|
|
******************************************************************************/
|
|
int gcm_start(gcm_context *ctx, // pointer to user-provided GCM context
|
|
int mode, // GCM_ENCRYPT or GCM_DECRYPT
|
|
const uchar *iv, // pointer to initialization vector
|
|
size_t iv_len, // IV length in bytes (should == 12)
|
|
const uchar *add, // ptr to additional AEAD data (NULL if none)
|
|
size_t add_len) // length of additional AEAD data (bytes)
|
|
{
|
|
int ret; // our error return if the AES encrypt fails
|
|
uchar work_buf[16]; // XOR source built from provided IV if len != 16
|
|
const uchar *p; // general purpose array pointer
|
|
size_t use_len; // byte count to process, up to 16 bytes
|
|
size_t i; // local loop iterator
|
|
|
|
// since the context might be reused under the same key
|
|
// we zero the working buffers for this next new process
|
|
memset(ctx->y, 0x00, sizeof(ctx->y));
|
|
memset(ctx->buf, 0x00, sizeof(ctx->buf));
|
|
ctx->len = 0;
|
|
ctx->add_len = 0;
|
|
|
|
ctx->mode = mode; // set the GCM encryption/decryption mode
|
|
ctx->aes_ctx.mode = MG_ENCRYPT; // GCM *always* runs AES in ENCRYPTION mode
|
|
|
|
if (iv_len == 12) { // GCM natively uses a 12-byte, 96-bit IV
|
|
memcpy(ctx->y, iv, iv_len); // copy the IV to the top of the 'y' buff
|
|
ctx->y[15] = 1; // start "counting" from 1 (not 0)
|
|
} else // if we don't have a 12-byte IV, we GHASH whatever we've been given
|
|
{
|
|
memset(work_buf, 0x00, 16); // clear the working buffer
|
|
PUT_UINT32_BE(iv_len * 8, work_buf, 12); // place the IV into buffer
|
|
|
|
p = iv;
|
|
while (iv_len > 0) {
|
|
use_len = (iv_len < 16) ? iv_len : 16;
|
|
for (i = 0; i < use_len; i++) ctx->y[i] ^= p[i];
|
|
gcm_mult(ctx, ctx->y, ctx->y);
|
|
iv_len -= use_len;
|
|
p += use_len;
|
|
}
|
|
for (i = 0; i < 16; i++) ctx->y[i] ^= work_buf[i];
|
|
gcm_mult(ctx, ctx->y, ctx->y);
|
|
}
|
|
if ((ret = aes_cipher(&ctx->aes_ctx, ctx->y, ctx->base_ectr)) != 0)
|
|
return (ret);
|
|
|
|
ctx->add_len = add_len;
|
|
p = add;
|
|
while (add_len > 0) {
|
|
use_len = (add_len < 16) ? add_len : 16;
|
|
for (i = 0; i < use_len; i++) ctx->buf[i] ^= p[i];
|
|
gcm_mult(ctx, ctx->buf, ctx->buf);
|
|
add_len -= use_len;
|
|
p += use_len;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_UPDATE
|
|
*
|
|
* This is called once or more to process bulk plaintext or ciphertext data.
|
|
* We give this some number of bytes of input and it returns the same number
|
|
* of output bytes. If called multiple times (which is fine) all but the final
|
|
* invocation MUST be called with length mod 16 == 0. (Only the final call can
|
|
* have a partial block length of < 128 bits.)
|
|
*
|
|
******************************************************************************/
|
|
int gcm_update(gcm_context *ctx, // pointer to user-provided GCM context
|
|
size_t length, // length, in bytes, of data to process
|
|
const uchar *input, // pointer to source data
|
|
uchar *output) // pointer to destination data
|
|
{
|
|
int ret; // our error return if the AES encrypt fails
|
|
uchar ectr[16]; // counter-mode cipher output for XORing
|
|
size_t use_len; // byte count to process, up to 16 bytes
|
|
size_t i; // local loop iterator
|
|
|
|
ctx->len += length; // bump the GCM context's running length count
|
|
|
|
while (length > 0) {
|
|
// clamp the length to process at 16 bytes
|
|
use_len = (length < 16) ? length : 16;
|
|
|
|
// increment the context's 128-bit IV||Counter 'y' vector
|
|
for (i = 16; i > 12; i--)
|
|
if (++ctx->y[i - 1] != 0) break;
|
|
|
|
// encrypt the context's 'y' vector under the established key
|
|
if ((ret = aes_cipher(&ctx->aes_ctx, ctx->y, ectr)) != 0) return (ret);
|
|
|
|
// encrypt or decrypt the input to the output
|
|
if (ctx->mode == MG_ENCRYPT) {
|
|
for (i = 0; i < use_len; i++) {
|
|
// XOR the cipher's ouptut vector (ectr) with our input
|
|
output[i] = (uchar) (ectr[i] ^ input[i]);
|
|
// now we mix in our data into the authentication hash.
|
|
// if we're ENcrypting we XOR in the post-XOR (output)
|
|
// results, but if we're DEcrypting we XOR in the input
|
|
// data
|
|
ctx->buf[i] ^= output[i];
|
|
}
|
|
} else {
|
|
for (i = 0; i < use_len; i++) {
|
|
// but if we're DEcrypting we XOR in the input data first,
|
|
// i.e. before saving to ouput data, otherwise if the input
|
|
// and output buffer are the same (inplace decryption) we
|
|
// would not get the correct auth tag
|
|
|
|
ctx->buf[i] ^= input[i];
|
|
|
|
// XOR the cipher's ouptut vector (ectr) with our input
|
|
output[i] = (uchar) (ectr[i] ^ input[i]);
|
|
}
|
|
}
|
|
gcm_mult(ctx, ctx->buf, ctx->buf); // perform a GHASH operation
|
|
|
|
length -= use_len; // drop the remaining byte count to process
|
|
input += use_len; // bump our input pointer forward
|
|
output += use_len; // bump our output pointer forward
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_FINISH
|
|
*
|
|
* This is called once after all calls to GCM_UPDATE to finalize the GCM.
|
|
* It performs the final GHASH to produce the resulting authentication TAG.
|
|
*
|
|
******************************************************************************/
|
|
int gcm_finish(gcm_context *ctx, // pointer to user-provided GCM context
|
|
uchar *tag, // pointer to buffer which receives the tag
|
|
size_t tag_len) // length, in bytes, of the tag-receiving buf
|
|
{
|
|
uchar work_buf[16];
|
|
uint64_t orig_len = ctx->len * 8;
|
|
uint64_t orig_add_len = ctx->add_len * 8;
|
|
size_t i;
|
|
|
|
if (tag_len != 0) memcpy(tag, ctx->base_ectr, tag_len);
|
|
|
|
if (orig_len || orig_add_len) {
|
|
memset(work_buf, 0x00, 16);
|
|
|
|
PUT_UINT32_BE((orig_add_len >> 32), work_buf, 0);
|
|
PUT_UINT32_BE((orig_add_len), work_buf, 4);
|
|
PUT_UINT32_BE((orig_len >> 32), work_buf, 8);
|
|
PUT_UINT32_BE((orig_len), work_buf, 12);
|
|
|
|
for (i = 0; i < 16; i++) ctx->buf[i] ^= work_buf[i];
|
|
gcm_mult(ctx, ctx->buf, ctx->buf);
|
|
for (i = 0; i < tag_len; i++) tag[i] ^= ctx->buf[i];
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_CRYPT_AND_TAG
|
|
*
|
|
* This either encrypts or decrypts the user-provided data and, either
|
|
* way, generates an authentication tag of the requested length. It must be
|
|
* called with a GCM context whose key has already been set with GCM_SETKEY.
|
|
*
|
|
* The user would typically call this explicitly to ENCRYPT a buffer of data
|
|
* and optional associated data, and produce its an authentication tag.
|
|
*
|
|
* To reverse the process the user would typically call the companion
|
|
* GCM_AUTH_DECRYPT function to decrypt data and verify a user-provided
|
|
* authentication tag. The GCM_AUTH_DECRYPT function calls this function
|
|
* to perform its decryption and tag generation, which it then compares.
|
|
*
|
|
******************************************************************************/
|
|
int gcm_crypt_and_tag(
|
|
gcm_context *ctx, // gcm context with key already setup
|
|
int mode, // cipher direction: GCM_ENCRYPT or GCM_DECRYPT
|
|
const uchar *iv, // pointer to the 12-byte initialization vector
|
|
size_t iv_len, // byte length if the IV. should always be 12
|
|
const uchar *add, // pointer to the non-ciphered additional data
|
|
size_t add_len, // byte length of the additional AEAD data
|
|
const uchar *input, // pointer to the cipher data source
|
|
uchar *output, // pointer to the cipher data destination
|
|
size_t length, // byte length of the cipher data
|
|
uchar *tag, // pointer to the tag to be generated
|
|
size_t tag_len) // byte length of the tag to be generated
|
|
{ /*
|
|
assuming that the caller has already invoked gcm_setkey to
|
|
prepare the gcm context with the keying material, we simply
|
|
invoke each of the three GCM sub-functions in turn...
|
|
*/
|
|
gcm_start(ctx, mode, iv, iv_len, add, add_len);
|
|
gcm_update(ctx, length, input, output);
|
|
gcm_finish(ctx, tag, tag_len);
|
|
return (0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* GCM_ZERO_CTX
|
|
*
|
|
* The GCM context contains both the GCM context and the AES context.
|
|
* This includes keying and key-related material which is security-
|
|
* sensitive, so it MUST be zeroed after use. This function does that.
|
|
*
|
|
******************************************************************************/
|
|
void gcm_zero_ctx(gcm_context *ctx) {
|
|
// zero the context originally provided to us
|
|
memset(ctx, 0, sizeof(gcm_context));
|
|
}
|
|
//
|
|
// aes-gcm.c
|
|
// Pods
|
|
//
|
|
// Created by Markus Kosmal on 20/11/14.
|
|
//
|
|
//
|
|
|
|
int mg_aes_gcm_encrypt(unsigned char *output, //
|
|
const unsigned char *input, size_t input_length,
|
|
const unsigned char *key, const size_t key_len,
|
|
const unsigned char *iv, const size_t iv_len,
|
|
unsigned char *aead, size_t aead_len, unsigned char *tag,
|
|
const size_t tag_len) {
|
|
int ret = 0; // our return value
|
|
gcm_context ctx; // includes the AES context structure
|
|
|
|
gcm_setkey(&ctx, key, (uint) key_len);
|
|
|
|
ret = gcm_crypt_and_tag(&ctx, MG_ENCRYPT, iv, iv_len, aead, aead_len, input,
|
|
output, input_length, tag, tag_len);
|
|
|
|
gcm_zero_ctx(&ctx);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int mg_aes_gcm_decrypt(unsigned char *output, const unsigned char *input,
|
|
size_t input_length, const unsigned char *key,
|
|
const size_t key_len, const unsigned char *iv,
|
|
const size_t iv_len) {
|
|
int ret = 0; // our return value
|
|
gcm_context ctx; // includes the AES context structure
|
|
|
|
size_t tag_len = 0;
|
|
unsigned char *tag_buf = NULL;
|
|
|
|
gcm_setkey(&ctx, key, (uint) key_len);
|
|
|
|
ret = gcm_crypt_and_tag(&ctx, MG_DECRYPT, iv, iv_len, NULL, 0, input, output,
|
|
input_length, tag_buf, tag_len);
|
|
|
|
gcm_zero_ctx(&ctx);
|
|
|
|
return (ret);
|
|
}
|
|
#endif
|
|
// End of aes128 PD
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_builtin.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if MG_TLS == MG_TLS_BUILTIN
|
|
|
|
/* TLS 1.3 Record Content Type (RFC8446 B.1) */
|
|
#define MG_TLS_CHANGE_CIPHER 20
|
|
#define MG_TLS_ALERT 21
|
|
#define MG_TLS_HANDSHAKE 22
|
|
#define MG_TLS_APP_DATA 23
|
|
#define MG_TLS_HEARTBEAT 24
|
|
|
|
/* TLS 1.3 Handshake Message Type (RFC8446 B.3) */
|
|
#define MG_TLS_CLIENT_HELLO 1
|
|
#define MG_TLS_SERVER_HELLO 2
|
|
#define MG_TLS_ENCRYPTED_EXTENSIONS 8
|
|
#define MG_TLS_CERTIFICATE 11
|
|
#define MG_TLS_CERTIFICATE_VERIFY 15
|
|
#define MG_TLS_FINISHED 20
|
|
|
|
// handshake is re-entrant, so we need to keep track of its state state names
|
|
// refer to RFC8446#A.1
|
|
enum mg_tls_hs_state {
|
|
// Client state machine:
|
|
MG_TLS_STATE_CLIENT_START, // Send ClientHello
|
|
MG_TLS_STATE_CLIENT_WAIT_SH, // Wait for ServerHello
|
|
MG_TLS_STATE_CLIENT_WAIT_EE, // Wait for EncryptedExtensions
|
|
MG_TLS_STATE_CLIENT_WAIT_CERT, // Wait for Certificate
|
|
MG_TLS_STATE_CLIENT_WAIT_CV, // Wait for CertificateVerify
|
|
MG_TLS_STATE_CLIENT_WAIT_FINISHED, // Wait for Finished
|
|
MG_TLS_STATE_CLIENT_CONNECTED, // Done
|
|
|
|
// Server state machine:
|
|
MG_TLS_STATE_SERVER_START, // Wait for ClientHello
|
|
MG_TLS_STATE_SERVER_NEGOTIATED, // Wait for Finished
|
|
MG_TLS_STATE_SERVER_CONNECTED // Done
|
|
};
|
|
|
|
// per-connection TLS data
|
|
struct tls_data {
|
|
enum mg_tls_hs_state state; // keep track of connection handshake progress
|
|
|
|
struct mg_iobuf send; // For the receive path, we're reusing c->rtls
|
|
struct mg_iobuf recv; // While c->rtls contains full records, recv reuses
|
|
// the same underlying buffer but points at individual
|
|
// decrypted messages
|
|
uint8_t content_type; // Last received record content type
|
|
|
|
mg_sha256_ctx sha256; // incremental SHA-256 hash for TLS handshake
|
|
|
|
uint32_t sseq; // server sequence number, used in encryption
|
|
uint32_t cseq; // client sequence number, used in decryption
|
|
|
|
uint8_t random[32]; // client random from ClientHello
|
|
uint8_t session_id[32]; // client session ID between the handshake states
|
|
uint8_t x25519_cli[32]; // client X25519 key between the handshake states
|
|
uint8_t x25519_sec[32]; // x25519 secret between the handshake states
|
|
|
|
int skip_verification; // perform checks on server certificate?
|
|
struct mg_str server_cert_der; // server certificate in DER format
|
|
uint8_t server_key[32]; // server EC private key
|
|
char hostname[254]; // server hostname (client extension)
|
|
|
|
uint8_t certhash[32]; // certificate message hash
|
|
uint8_t pubkey[64]; // server EC public key to verify cert
|
|
uint8_t sighash[32]; // server EC public key to verify cert
|
|
|
|
// keys for AES encryption
|
|
uint8_t handshake_secret[32];
|
|
uint8_t server_write_key[16];
|
|
uint8_t server_write_iv[12];
|
|
uint8_t server_finished_key[32];
|
|
uint8_t client_write_key[16];
|
|
uint8_t client_write_iv[12];
|
|
uint8_t client_finished_key[32];
|
|
};
|
|
|
|
#define MG_LOAD_BE16(p) ((uint16_t) ((MG_U8P(p)[0] << 8U) | MG_U8P(p)[1]))
|
|
#define MG_LOAD_BE24(p) \
|
|
((uint32_t) ((MG_U8P(p)[0] << 16U) | (MG_U8P(p)[1] << 8U) | MG_U8P(p)[2]))
|
|
#define MG_STORE_BE16(p, n) \
|
|
do { \
|
|
MG_U8P(p)[0] = ((n) >> 8U) & 255; \
|
|
MG_U8P(p)[1] = (n) & 255; \
|
|
} while (0)
|
|
|
|
#define TLS_RECHDR_SIZE 5 // 1 byte type, 2 bytes version, 2 bytes length
|
|
#define TLS_MSGHDR_SIZE 4 // 1 byte type, 3 bytes length
|
|
|
|
#if 1
|
|
static void mg_ssl_key_log(const char *label, uint8_t client_random[32],
|
|
uint8_t *secret, size_t secretsz) {
|
|
(void) label;
|
|
(void) client_random;
|
|
(void) secret;
|
|
(void) secretsz;
|
|
}
|
|
#else
|
|
#include <stdio.h>
|
|
static void mg_ssl_key_log(const char *label, uint8_t client_random[32],
|
|
uint8_t *secret, size_t secretsz) {
|
|
char *keylogfile = getenv("SSLKEYLOGFILE");
|
|
if (keylogfile == NULL) {
|
|
return;
|
|
}
|
|
FILE *f = fopen(keylogfile, "a");
|
|
fprintf(f, "%s ", label);
|
|
for (int i = 0; i < 32; i++) {
|
|
fprintf(f, "%02x", client_random[i]);
|
|
}
|
|
fprintf(f, " ");
|
|
for (unsigned int i = 0; i < secretsz; i++) {
|
|
fprintf(f, "%02x", secret[i]);
|
|
}
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
// for derived tls keys we need SHA256([0]*32)
|
|
static uint8_t zeros[32] = {0};
|
|
static uint8_t zeros_sha256_digest[32] = {
|
|
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
|
|
0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
|
|
0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
|
|
|
|
// helper to hexdump buffers inline
|
|
static void mg_tls_hexdump(const char *msg, uint8_t *buf, size_t bufsz) {
|
|
MG_VERBOSE(("%s: %M", msg, mg_print_hex, bufsz, buf));
|
|
}
|
|
|
|
// helper utilities to parse ASN.1 DER
|
|
struct mg_der_tlv {
|
|
uint8_t type;
|
|
uint32_t len;
|
|
uint8_t *value;
|
|
};
|
|
|
|
// parse DER into a TLV record
|
|
static int mg_der_to_tlv(uint8_t *der, size_t dersz, struct mg_der_tlv *tlv) {
|
|
if (dersz < 2) {
|
|
return -1;
|
|
}
|
|
tlv->type = der[0];
|
|
tlv->len = der[1];
|
|
tlv->value = der + 2;
|
|
if (tlv->len > 0x7f) {
|
|
uint32_t i, n = tlv->len - 0x80;
|
|
tlv->len = 0;
|
|
for (i = 0; i < n; i++) {
|
|
tlv->len = (tlv->len << 8) | (der[2 + i]);
|
|
}
|
|
tlv->value = der + 2 + n;
|
|
}
|
|
if (der + dersz < tlv->value + tlv->len) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mg_der_find(uint8_t *der, size_t dersz, uint8_t *oid, size_t oidsz,
|
|
struct mg_der_tlv *tlv) {
|
|
uint8_t *p, *end;
|
|
struct mg_der_tlv child = {0, 0, NULL};
|
|
if (mg_der_to_tlv(der, dersz, tlv) < 0) {
|
|
return -1; // invalid DER
|
|
} else if (tlv->type == 6) { // found OID, check value
|
|
return (tlv->len == oidsz && memcmp(tlv->value, oid, oidsz) == 0);
|
|
} else if ((tlv->type & 0x20) == 0) {
|
|
return 0; // Primitive, but not OID: not found
|
|
}
|
|
// Constructed object: scan children
|
|
p = tlv->value;
|
|
end = tlv->value + tlv->len;
|
|
while (end > p) {
|
|
int r;
|
|
mg_der_to_tlv(p, (size_t) (end - p), &child);
|
|
r = mg_der_find(p, (size_t) (end - p), oid, oidsz, tlv);
|
|
if (r < 0) return -1; // error
|
|
if (r > 0) return 1; // found OID!
|
|
p = child.value + child.len;
|
|
}
|
|
return 0; // not found
|
|
}
|
|
|
|
// Did we receive a full TLS record in the c->rtls buffer?
|
|
static bool mg_tls_got_record(struct mg_connection *c) {
|
|
return c->rtls.len >= (size_t) TLS_RECHDR_SIZE &&
|
|
c->rtls.len >=
|
|
(size_t) (TLS_RECHDR_SIZE + MG_LOAD_BE16(c->rtls.buf + 3));
|
|
}
|
|
|
|
// Remove a single TLS record from the recv buffer
|
|
static void mg_tls_drop_record(struct mg_connection *c) {
|
|
struct mg_iobuf *rio = &c->rtls;
|
|
uint16_t n = MG_LOAD_BE16(rio->buf + 3) + TLS_RECHDR_SIZE;
|
|
mg_iobuf_del(rio, 0, n);
|
|
}
|
|
|
|
// Remove a single TLS message from decrypted buffer, remove the wrapping
|
|
// record if it was the last message within a record
|
|
static void mg_tls_drop_message(struct mg_connection *c) {
|
|
uint32_t len;
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
if (tls->recv.len == 0) {
|
|
return;
|
|
}
|
|
len = MG_LOAD_BE24(tls->recv.buf + 1);
|
|
mg_sha256_update(&tls->sha256, tls->recv.buf, len + TLS_MSGHDR_SIZE);
|
|
tls->recv.buf += len + TLS_MSGHDR_SIZE;
|
|
tls->recv.len -= len + TLS_MSGHDR_SIZE;
|
|
if (tls->recv.len == 0) {
|
|
mg_tls_drop_record(c);
|
|
}
|
|
}
|
|
|
|
// TLS1.3 secret derivation based on the key label
|
|
static void mg_tls_derive_secret(const char *label, uint8_t *key, size_t keysz,
|
|
uint8_t *data, size_t datasz, uint8_t *hash,
|
|
size_t hashsz) {
|
|
size_t labelsz = strlen(label);
|
|
uint8_t secret[32];
|
|
uint8_t packed[256] = {0, (uint8_t) hashsz, (uint8_t) labelsz};
|
|
// TODO: assert lengths of label, key, data and hash
|
|
if (labelsz > 0) memmove(packed + 3, label, labelsz);
|
|
packed[3 + labelsz] = (uint8_t) datasz;
|
|
if (datasz > 0) memmove(packed + labelsz + 4, data, datasz);
|
|
packed[4 + labelsz + datasz] = 1;
|
|
|
|
mg_hmac_sha256(secret, key, keysz, packed, 5 + labelsz + datasz);
|
|
memmove(hash, secret, hashsz);
|
|
}
|
|
|
|
// at this point we have x25519 shared secret, we can generate a set of derived
|
|
// handshake encryption keys
|
|
static void mg_tls_generate_handshake_keys(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
|
|
mg_sha256_ctx sha256;
|
|
uint8_t early_secret[32];
|
|
uint8_t pre_extract_secret[32];
|
|
uint8_t hello_hash[32];
|
|
uint8_t server_hs_secret[32];
|
|
uint8_t client_hs_secret[32];
|
|
|
|
mg_hmac_sha256(early_secret, NULL, 0, zeros, sizeof(zeros));
|
|
mg_tls_derive_secret("tls13 derived", early_secret, 32, zeros_sha256_digest,
|
|
32, pre_extract_secret, 32);
|
|
mg_hmac_sha256(tls->handshake_secret, pre_extract_secret,
|
|
sizeof(pre_extract_secret), tls->x25519_sec,
|
|
sizeof(tls->x25519_sec));
|
|
mg_tls_hexdump("hs secret", tls->handshake_secret, 32);
|
|
|
|
// mg_sha256_final is not idempotent, need to copy sha256 context to calculate
|
|
// the digest
|
|
memmove(&sha256, &tls->sha256, sizeof(mg_sha256_ctx));
|
|
mg_sha256_final(hello_hash, &sha256);
|
|
|
|
mg_tls_hexdump("hello hash", hello_hash, 32);
|
|
// derive keys needed for the rest of the handshake
|
|
mg_tls_derive_secret("tls13 s hs traffic", tls->handshake_secret, 32,
|
|
hello_hash, 32, server_hs_secret, 32);
|
|
mg_tls_derive_secret("tls13 key", server_hs_secret, 32, NULL, 0,
|
|
tls->server_write_key, 16);
|
|
mg_tls_derive_secret("tls13 iv", server_hs_secret, 32, NULL, 0,
|
|
tls->server_write_iv, 12);
|
|
mg_tls_derive_secret("tls13 finished", server_hs_secret, 32, NULL, 0,
|
|
tls->server_finished_key, 32);
|
|
|
|
mg_tls_derive_secret("tls13 c hs traffic", tls->handshake_secret, 32,
|
|
hello_hash, 32, client_hs_secret, 32);
|
|
mg_tls_derive_secret("tls13 key", client_hs_secret, 32, NULL, 0,
|
|
tls->client_write_key, 16);
|
|
mg_tls_derive_secret("tls13 iv", client_hs_secret, 32, NULL, 0,
|
|
tls->client_write_iv, 12);
|
|
mg_tls_derive_secret("tls13 finished", client_hs_secret, 32, NULL, 0,
|
|
tls->client_finished_key, 32);
|
|
|
|
mg_tls_hexdump("s hs traffic", server_hs_secret, 32);
|
|
mg_tls_hexdump("s key", tls->server_write_key, 16);
|
|
mg_tls_hexdump("s iv", tls->server_write_iv, 12);
|
|
mg_tls_hexdump("s finished", tls->server_finished_key, 32);
|
|
mg_tls_hexdump("c hs traffic", client_hs_secret, 32);
|
|
mg_tls_hexdump("c key", tls->client_write_key, 16);
|
|
mg_tls_hexdump("c iv", tls->client_write_iv, 16);
|
|
mg_tls_hexdump("c finished", tls->client_finished_key, 32);
|
|
|
|
mg_ssl_key_log("SERVER_HANDSHAKE_TRAFFIC_SECRET", tls->random,
|
|
server_hs_secret, 32);
|
|
mg_ssl_key_log("CLIENT_HANDSHAKE_TRAFFIC_SECRET", tls->random,
|
|
client_hs_secret, 32);
|
|
}
|
|
|
|
static void mg_tls_generate_application_keys(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
uint8_t hash[32];
|
|
uint8_t premaster_secret[32];
|
|
uint8_t master_secret[32];
|
|
uint8_t server_secret[32];
|
|
uint8_t client_secret[32];
|
|
|
|
mg_sha256_ctx sha256;
|
|
memmove(&sha256, &tls->sha256, sizeof(mg_sha256_ctx));
|
|
mg_sha256_final(hash, &sha256);
|
|
|
|
mg_tls_derive_secret("tls13 derived", tls->handshake_secret, 32,
|
|
zeros_sha256_digest, 32, premaster_secret, 32);
|
|
mg_hmac_sha256(master_secret, premaster_secret, 32, zeros, 32);
|
|
|
|
mg_tls_derive_secret("tls13 s ap traffic", master_secret, 32, hash, 32,
|
|
server_secret, 32);
|
|
mg_tls_derive_secret("tls13 key", server_secret, 32, NULL, 0,
|
|
tls->server_write_key, 16);
|
|
mg_tls_derive_secret("tls13 iv", server_secret, 32, NULL, 0,
|
|
tls->server_write_iv, 12);
|
|
mg_tls_derive_secret("tls13 c ap traffic", master_secret, 32, hash, 32,
|
|
client_secret, 32);
|
|
mg_tls_derive_secret("tls13 key", client_secret, 32, NULL, 0,
|
|
tls->client_write_key, 16);
|
|
mg_tls_derive_secret("tls13 iv", client_secret, 32, NULL, 0,
|
|
tls->client_write_iv, 12);
|
|
|
|
mg_tls_hexdump("s ap traffic", server_secret, 32);
|
|
mg_tls_hexdump("s key", tls->server_write_key, 16);
|
|
mg_tls_hexdump("s iv", tls->server_write_iv, 12);
|
|
mg_tls_hexdump("s finished", tls->server_finished_key, 32);
|
|
mg_tls_hexdump("c ap traffic", client_secret, 32);
|
|
mg_tls_hexdump("c key", tls->client_write_key, 16);
|
|
mg_tls_hexdump("c iv", tls->client_write_iv, 16);
|
|
mg_tls_hexdump("c finished", tls->client_finished_key, 32);
|
|
tls->sseq = tls->cseq = 0;
|
|
|
|
mg_ssl_key_log("SERVER_TRAFFIC_SECRET_0", tls->random, server_secret, 32);
|
|
mg_ssl_key_log("CLIENT_TRAFFIC_SECRET_0", tls->random, client_secret, 32);
|
|
}
|
|
|
|
// AES GCM encryption of the message + put encoded data into the write buffer
|
|
static void mg_tls_encrypt(struct mg_connection *c, const uint8_t *msg,
|
|
size_t msgsz, uint8_t msgtype) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *wio = &tls->send;
|
|
uint8_t *outmsg;
|
|
uint8_t *tag;
|
|
size_t encsz = msgsz + 16 + 1;
|
|
uint8_t hdr[5] = {MG_TLS_APP_DATA, 0x03, 0x03,
|
|
(uint8_t) ((encsz >> 8) & 0xff), (uint8_t) (encsz & 0xff)};
|
|
uint8_t associated_data[5] = {MG_TLS_APP_DATA, 0x03, 0x03,
|
|
(uint8_t) ((encsz >> 8) & 0xff),
|
|
(uint8_t) (encsz & 0xff)};
|
|
uint8_t nonce[12];
|
|
|
|
mg_gcm_initialize();
|
|
|
|
if (c->is_client) {
|
|
memmove(nonce, tls->client_write_iv, sizeof(tls->client_write_iv));
|
|
nonce[8] ^= (uint8_t) ((tls->cseq >> 24) & 255U);
|
|
nonce[9] ^= (uint8_t) ((tls->cseq >> 16) & 255U);
|
|
nonce[10] ^= (uint8_t) ((tls->cseq >> 8) & 255U);
|
|
nonce[11] ^= (uint8_t) ((tls->cseq) & 255U);
|
|
} else {
|
|
memmove(nonce, tls->server_write_iv, sizeof(tls->server_write_iv));
|
|
nonce[8] ^= (uint8_t) ((tls->sseq >> 24) & 255U);
|
|
nonce[9] ^= (uint8_t) ((tls->sseq >> 16) & 255U);
|
|
nonce[10] ^= (uint8_t) ((tls->sseq >> 8) & 255U);
|
|
nonce[11] ^= (uint8_t) ((tls->sseq) & 255U);
|
|
}
|
|
|
|
mg_iobuf_add(wio, wio->len, hdr, sizeof(hdr));
|
|
mg_iobuf_resize(wio, wio->len + encsz);
|
|
outmsg = wio->buf + wio->len;
|
|
tag = wio->buf + wio->len + msgsz + 1;
|
|
memmove(outmsg, msg, msgsz);
|
|
outmsg[msgsz] = msgtype;
|
|
if (c->is_client) {
|
|
mg_aes_gcm_encrypt(outmsg, outmsg, msgsz + 1, tls->client_write_key,
|
|
sizeof(tls->client_write_key), nonce, sizeof(nonce),
|
|
associated_data, sizeof(associated_data), tag, 16);
|
|
tls->cseq++;
|
|
} else {
|
|
mg_aes_gcm_encrypt(outmsg, outmsg, msgsz + 1, tls->server_write_key,
|
|
sizeof(tls->server_write_key), nonce, sizeof(nonce),
|
|
associated_data, sizeof(associated_data), tag, 16);
|
|
tls->sseq++;
|
|
}
|
|
wio->len += encsz;
|
|
}
|
|
|
|
// read an encrypted record, decrypt it in place
|
|
static int mg_tls_recv_record(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *rio = &c->rtls;
|
|
uint16_t msgsz;
|
|
uint8_t *msg;
|
|
uint8_t nonce[12];
|
|
int r;
|
|
if (tls->recv.len > 0) {
|
|
return 0; /* some data from previous record is still present */
|
|
}
|
|
for (;;) {
|
|
if (!mg_tls_got_record(c)) {
|
|
return MG_IO_WAIT;
|
|
}
|
|
if (rio->buf[0] == MG_TLS_APP_DATA) {
|
|
break;
|
|
} else if (rio->buf[0] ==
|
|
MG_TLS_CHANGE_CIPHER) { // Skip ChangeCipher messages
|
|
mg_tls_drop_record(c);
|
|
} else if (rio->buf[0] == MG_TLS_ALERT) { // Skip Alerts
|
|
MG_INFO(("TLS ALERT packet received"));
|
|
mg_tls_drop_record(c);
|
|
} else {
|
|
mg_error(c, "unexpected packet");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
mg_gcm_initialize();
|
|
msgsz = MG_LOAD_BE16(rio->buf + 3);
|
|
msg = rio->buf + 5;
|
|
if (c->is_client) {
|
|
memmove(nonce, tls->server_write_iv, sizeof(tls->server_write_iv));
|
|
nonce[8] ^= (uint8_t) ((tls->sseq >> 24) & 255U);
|
|
nonce[9] ^= (uint8_t) ((tls->sseq >> 16) & 255U);
|
|
nonce[10] ^= (uint8_t) ((tls->sseq >> 8) & 255U);
|
|
nonce[11] ^= (uint8_t) ((tls->sseq) & 255U);
|
|
mg_aes_gcm_decrypt(msg, msg, msgsz - 16, tls->server_write_key,
|
|
sizeof(tls->server_write_key), nonce, sizeof(nonce));
|
|
tls->sseq++;
|
|
} else {
|
|
memmove(nonce, tls->client_write_iv, sizeof(tls->client_write_iv));
|
|
nonce[8] ^= (uint8_t) ((tls->cseq >> 24) & 255U);
|
|
nonce[9] ^= (uint8_t) ((tls->cseq >> 16) & 255U);
|
|
nonce[10] ^= (uint8_t) ((tls->cseq >> 8) & 255U);
|
|
nonce[11] ^= (uint8_t) ((tls->cseq) & 255U);
|
|
mg_aes_gcm_decrypt(msg, msg, msgsz - 16, tls->client_write_key,
|
|
sizeof(tls->client_write_key), nonce, sizeof(nonce));
|
|
tls->cseq++;
|
|
}
|
|
r = msgsz - 16 - 1;
|
|
tls->content_type = msg[msgsz - 16 - 1];
|
|
tls->recv.buf = msg;
|
|
tls->recv.size = tls->recv.len = msgsz - 16 - 1;
|
|
return r;
|
|
}
|
|
|
|
static void mg_tls_calc_cert_verify_hash(struct mg_connection *c,
|
|
uint8_t hash[32]) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
uint8_t sig_content[130] = {
|
|
" "
|
|
" "
|
|
"TLS 1.3, server CertificateVerify\0"};
|
|
mg_sha256_ctx sha256;
|
|
memmove(&sha256, &tls->sha256, sizeof(mg_sha256_ctx));
|
|
mg_sha256_final(sig_content + 98, &sha256);
|
|
|
|
mg_sha256_init(&sha256);
|
|
mg_sha256_update(&sha256, sig_content, sizeof(sig_content));
|
|
mg_sha256_final(hash, &sha256);
|
|
}
|
|
|
|
// read and parse ClientHello record
|
|
static int mg_tls_server_recv_hello(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *rio = &c->rtls;
|
|
uint8_t session_id_len;
|
|
uint16_t j;
|
|
uint16_t cipher_suites_len;
|
|
uint16_t ext_len;
|
|
uint8_t *ext;
|
|
uint16_t msgsz;
|
|
|
|
if (!mg_tls_got_record(c)) {
|
|
return MG_IO_WAIT;
|
|
}
|
|
if (rio->buf[0] != MG_TLS_HANDSHAKE || rio->buf[5] != MG_TLS_CLIENT_HELLO) {
|
|
mg_error(c, "not a client hello packet");
|
|
return -1;
|
|
}
|
|
msgsz = MG_LOAD_BE16(rio->buf + 3);
|
|
mg_sha256_update(&tls->sha256, rio->buf + 5, msgsz);
|
|
// store client random
|
|
memmove(tls->random, rio->buf + 11, sizeof(tls->random));
|
|
// store session_id
|
|
session_id_len = rio->buf[43];
|
|
if (session_id_len == sizeof(tls->session_id)) {
|
|
memmove(tls->session_id, rio->buf + 44, session_id_len);
|
|
} else if (session_id_len != 0) {
|
|
MG_INFO(("bad session id len"));
|
|
}
|
|
cipher_suites_len = MG_LOAD_BE16(rio->buf + 44 + session_id_len);
|
|
ext_len = MG_LOAD_BE16(rio->buf + 48 + session_id_len + cipher_suites_len);
|
|
ext = rio->buf + 50 + session_id_len + cipher_suites_len;
|
|
for (j = 0; j < ext_len;) {
|
|
uint16_t k;
|
|
uint16_t key_exchange_len;
|
|
uint8_t *key_exchange;
|
|
uint16_t n = MG_LOAD_BE16(ext + j + 2);
|
|
if (ext[j] != 0x00 ||
|
|
ext[j + 1] != 0x33) { // not a key share extension, ignore
|
|
j += (uint16_t) (n + 4);
|
|
continue;
|
|
}
|
|
key_exchange_len = MG_LOAD_BE16(ext + j + 5);
|
|
key_exchange = ext + j + 6;
|
|
for (k = 0; k < key_exchange_len;) {
|
|
uint16_t m = MG_LOAD_BE16(key_exchange + k + 2);
|
|
if (m == 32 && key_exchange[k] == 0x00 && key_exchange[k + 1] == 0x1d) {
|
|
memmove(tls->x25519_cli, key_exchange + k + 4, m);
|
|
mg_tls_drop_record(c);
|
|
return 0;
|
|
}
|
|
k += (uint16_t) (m + 4);
|
|
}
|
|
j += (uint16_t) (n + 4);
|
|
}
|
|
mg_error(c, "bad client hello");
|
|
return -1;
|
|
}
|
|
|
|
#define PLACEHOLDER_8B 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'
|
|
#define PLACEHOLDER_16B PLACEHOLDER_8B, PLACEHOLDER_8B
|
|
#define PLACEHOLDER_32B PLACEHOLDER_16B, PLACEHOLDER_16B
|
|
|
|
// put ServerHello record into wio buffer
|
|
static void mg_tls_server_send_hello(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *wio = &tls->send;
|
|
|
|
uint8_t msg_server_hello[122] = {
|
|
// server hello, tls 1.2
|
|
0x02,
|
|
0x00,
|
|
0x00,
|
|
0x76,
|
|
0x03,
|
|
0x03,
|
|
// random (32 bytes)
|
|
PLACEHOLDER_32B,
|
|
// session ID length + session ID (32 bytes)
|
|
0x20,
|
|
PLACEHOLDER_32B,
|
|
#if defined(CHACHA20) && CHACHA20
|
|
// TLS_CHACHA20_POLY1305_SHA256 + no compression
|
|
0x13,
|
|
0x03,
|
|
0x00,
|
|
#else
|
|
// TLS_AES_128_GCM_SHA256 + no compression
|
|
0x13,
|
|
0x01,
|
|
0x00,
|
|
#endif
|
|
// extensions + keyshare
|
|
0x00,
|
|
0x2e,
|
|
0x00,
|
|
0x33,
|
|
0x00,
|
|
0x24,
|
|
0x00,
|
|
0x1d,
|
|
0x00,
|
|
0x20,
|
|
// x25519 keyshare
|
|
PLACEHOLDER_32B,
|
|
// supported versions (tls1.3 == 0x304)
|
|
0x00,
|
|
0x2b,
|
|
0x00,
|
|
0x02,
|
|
0x03,
|
|
0x04
|
|
};
|
|
|
|
// calculate keyshare
|
|
uint8_t x25519_pub[X25519_BYTES];
|
|
uint8_t x25519_prv[X25519_BYTES];
|
|
mg_random(x25519_prv, sizeof(x25519_prv));
|
|
mg_tls_x25519(x25519_pub, x25519_prv, X25519_BASE_POINT, 1);
|
|
mg_tls_x25519(tls->x25519_sec, x25519_prv, tls->x25519_cli, 1);
|
|
mg_tls_hexdump("s x25519 sec", tls->x25519_sec, sizeof(tls->x25519_sec));
|
|
|
|
// fill in the gaps: random + session ID + keyshare
|
|
memmove(msg_server_hello + 6, tls->random, sizeof(tls->random));
|
|
memmove(msg_server_hello + 39, tls->session_id, sizeof(tls->session_id));
|
|
memmove(msg_server_hello + 84, x25519_pub, sizeof(x25519_pub));
|
|
|
|
// server hello message
|
|
mg_iobuf_add(wio, wio->len, "\x16\x03\x03\x00\x7a", 5);
|
|
mg_iobuf_add(wio, wio->len, msg_server_hello, sizeof(msg_server_hello));
|
|
mg_sha256_update(&tls->sha256, msg_server_hello, sizeof(msg_server_hello));
|
|
|
|
// change cipher message
|
|
mg_iobuf_add(wio, wio->len, "\x14\x03\x03\x00\x01\x01", 6);
|
|
}
|
|
|
|
static void mg_tls_server_send_ext(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
// server extensions
|
|
uint8_t ext[6] = {0x08, 0, 0, 2, 0, 0};
|
|
mg_sha256_update(&tls->sha256, ext, sizeof(ext));
|
|
mg_tls_encrypt(c, ext, sizeof(ext), MG_TLS_HANDSHAKE);
|
|
}
|
|
|
|
static void mg_tls_server_send_cert(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
// server DER certificate (empty)
|
|
size_t n = tls->server_cert_der.len;
|
|
uint8_t *cert = (uint8_t *) calloc(1, 13 + n);
|
|
if (cert == NULL) {
|
|
mg_error(c, "tls cert oom");
|
|
return;
|
|
}
|
|
cert[0] = 0x0b; // handshake header
|
|
cert[1] = (uint8_t) (((n + 9) >> 16) & 255U); // 3 bytes: payload length
|
|
cert[2] = (uint8_t) (((n + 9) >> 8) & 255U);
|
|
cert[3] = (uint8_t) ((n + 9) & 255U);
|
|
cert[4] = 0; // request context
|
|
cert[5] = (uint8_t) (((n + 5) >> 16) & 255U); // 3 bytes: cert (s) length
|
|
cert[6] = (uint8_t) (((n + 5) >> 8) & 255U);
|
|
cert[7] = (uint8_t) ((n + 5) & 255U);
|
|
cert[8] =
|
|
(uint8_t) (((n) >> 16) & 255U); // 3 bytes: first (and only) cert len
|
|
cert[9] = (uint8_t) (((n) >> 8) & 255U);
|
|
cert[10] = (uint8_t) (n & 255U);
|
|
// bytes 11+ are certificate in DER format
|
|
memmove(cert + 11, tls->server_cert_der.buf, n);
|
|
cert[11 + n] = cert[12 + n] = 0; // certificate extensions (none)
|
|
mg_sha256_update(&tls->sha256, cert, 13 + n);
|
|
mg_tls_encrypt(c, cert, 13 + n, MG_TLS_HANDSHAKE);
|
|
free(cert);
|
|
}
|
|
|
|
// type adapter between uECC hash context and our sha256 implementation
|
|
typedef struct SHA256_HashContext {
|
|
MG_UECC_HashContext uECC;
|
|
mg_sha256_ctx ctx;
|
|
} SHA256_HashContext;
|
|
|
|
static void init_SHA256(const MG_UECC_HashContext *base) {
|
|
SHA256_HashContext *c = (SHA256_HashContext *) base;
|
|
mg_sha256_init(&c->ctx);
|
|
}
|
|
|
|
static void update_SHA256(const MG_UECC_HashContext *base,
|
|
const uint8_t *message, unsigned message_size) {
|
|
SHA256_HashContext *c = (SHA256_HashContext *) base;
|
|
mg_sha256_update(&c->ctx, message, message_size);
|
|
}
|
|
static void finish_SHA256(const MG_UECC_HashContext *base,
|
|
uint8_t *hash_result) {
|
|
SHA256_HashContext *c = (SHA256_HashContext *) base;
|
|
mg_sha256_final(hash_result, &c->ctx);
|
|
}
|
|
|
|
static void mg_tls_server_send_cert_verify(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
// server certificate verify packet
|
|
uint8_t verify[82] = {0x0f, 0x00, 0x00, 0x00, 0x04, 0x03, 0x00, 0x00};
|
|
size_t sigsz, verifysz = 0;
|
|
uint8_t hash[32] = {0}, tmp[2 * 32 + 64] = {0};
|
|
struct SHA256_HashContext ctx = {
|
|
{&init_SHA256, &update_SHA256, &finish_SHA256, 64, 32, tmp},
|
|
{{0}, 0, 0, {0}}};
|
|
int neg1, neg2;
|
|
uint8_t sig[64] = {0};
|
|
|
|
mg_tls_calc_cert_verify_hash(c, (uint8_t *) hash);
|
|
|
|
mg_uecc_sign_deterministic(tls->server_key, hash, sizeof(hash), &ctx.uECC,
|
|
sig, mg_uecc_secp256r1());
|
|
|
|
neg1 = !!(sig[0] & 0x80);
|
|
neg2 = !!(sig[32] & 0x80);
|
|
verify[8] = 0x30; // ASN.1 SEQUENCE
|
|
verify[9] = (uint8_t) (68 + neg1 + neg2);
|
|
verify[10] = 0x02; // ASN.1 INTEGER
|
|
verify[11] = (uint8_t) (32 + neg1);
|
|
memmove(verify + 12 + neg1, sig, 32);
|
|
verify[12 + 32 + neg1] = 0x02; // ASN.1 INTEGER
|
|
verify[13 + 32 + neg1] = (uint8_t) (32 + neg2);
|
|
memmove(verify + 14 + 32 + neg1 + neg2, sig + 32, 32);
|
|
|
|
sigsz = (size_t) (70 + neg1 + neg2);
|
|
verifysz = 8U + sigsz;
|
|
verify[3] = (uint8_t) (sigsz + 4);
|
|
verify[7] = (uint8_t) sigsz;
|
|
|
|
mg_sha256_update(&tls->sha256, verify, verifysz);
|
|
mg_tls_encrypt(c, verify, verifysz, MG_TLS_HANDSHAKE);
|
|
}
|
|
|
|
static void mg_tls_server_send_finish(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *wio = &tls->send;
|
|
mg_sha256_ctx sha256;
|
|
uint8_t hash[32];
|
|
uint8_t finish[36] = {0x14, 0, 0, 32};
|
|
memmove(&sha256, &tls->sha256, sizeof(mg_sha256_ctx));
|
|
mg_sha256_final(hash, &sha256);
|
|
mg_hmac_sha256(finish + 4, tls->server_finished_key, 32, hash, 32);
|
|
mg_tls_encrypt(c, finish, sizeof(finish), MG_TLS_HANDSHAKE);
|
|
mg_io_send(c, wio->buf, wio->len);
|
|
wio->len = 0;
|
|
|
|
mg_sha256_update(&tls->sha256, finish, sizeof(finish));
|
|
}
|
|
|
|
static int mg_tls_server_recv_finish(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
// we have to backup sha256 value to restore it later, since Finished record
|
|
// is exceptional and is not supposed to be added to the rolling hash
|
|
// calculation.
|
|
mg_sha256_ctx sha256 = tls->sha256;
|
|
if (mg_tls_recv_record(c) < 0) {
|
|
return -1;
|
|
}
|
|
if (tls->recv.buf[0] != MG_TLS_FINISHED) {
|
|
mg_error(c, "expected Finish but got msg 0x%02x", tls->recv.buf[0]);
|
|
return -1;
|
|
}
|
|
mg_tls_drop_message(c);
|
|
|
|
// restore hash
|
|
tls->sha256 = sha256;
|
|
return 0;
|
|
}
|
|
|
|
static void mg_tls_client_send_hello(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *wio = &tls->send;
|
|
|
|
const char *hostname = tls->hostname;
|
|
size_t hostnamesz = strlen(tls->hostname);
|
|
uint8_t x25519_pub[X25519_BYTES];
|
|
|
|
uint8_t msg_client_hello[162 + 32] = {
|
|
// TLS Client Hello header reported as TLS1.2 (5)
|
|
0x16,
|
|
0x03,
|
|
0x01,
|
|
0x00,
|
|
0xfe,
|
|
// server hello, tls 1.2 (6)
|
|
0x01,
|
|
0x00,
|
|
0x00,
|
|
0x8c,
|
|
0x03,
|
|
0x03,
|
|
// random (32 bytes)
|
|
PLACEHOLDER_32B,
|
|
// session ID length + session ID (32 bytes)
|
|
0x20,
|
|
PLACEHOLDER_32B,
|
|
#if defined(CHACHA20) && CHACHA20
|
|
// TLS_CHACHA20_POLY1305_SHA256 + no compression
|
|
0x13,
|
|
0x03,
|
|
0x00,
|
|
#else
|
|
0x00,
|
|
0x02, // size = 2 bytes
|
|
0x13,
|
|
0x01, // TLS_AES_128_GCM_SHA256
|
|
0x01,
|
|
0x00, // no compression
|
|
#endif
|
|
|
|
// extensions + keyshare
|
|
0x00,
|
|
0xfe,
|
|
// x25519 keyshare
|
|
0x00,
|
|
0x33,
|
|
0x00,
|
|
0x26,
|
|
0x00,
|
|
0x24,
|
|
0x00,
|
|
0x1d,
|
|
0x00,
|
|
0x20,
|
|
PLACEHOLDER_32B,
|
|
// supported groups (x25519)
|
|
0x00,
|
|
0x0a,
|
|
0x00,
|
|
0x04,
|
|
0x00,
|
|
0x02,
|
|
0x00,
|
|
0x1d,
|
|
// supported versions (tls1.3 == 0x304)
|
|
0x00,
|
|
0x2b,
|
|
0x00,
|
|
0x03,
|
|
0x02,
|
|
0x03,
|
|
0x04,
|
|
// session ticket (none)
|
|
0x00,
|
|
0x23,
|
|
0x00,
|
|
0x00,
|
|
// signature algorithms (we don't care, so list all the common ones)
|
|
0x00,
|
|
0x0d,
|
|
0x00,
|
|
0x24,
|
|
0x00,
|
|
0x22,
|
|
0x04,
|
|
0x03,
|
|
0x05,
|
|
0x03,
|
|
0x06,
|
|
0x03,
|
|
0x08,
|
|
0x07,
|
|
0x08,
|
|
0x08,
|
|
0x08,
|
|
0x1a,
|
|
0x08,
|
|
0x1b,
|
|
0x08,
|
|
0x1c,
|
|
0x08,
|
|
0x09,
|
|
0x08,
|
|
0x0a,
|
|
0x08,
|
|
0x0b,
|
|
0x08,
|
|
0x04,
|
|
0x08,
|
|
0x05,
|
|
0x08,
|
|
0x06,
|
|
0x04,
|
|
0x01,
|
|
0x05,
|
|
0x01,
|
|
0x06,
|
|
0x01,
|
|
// server name
|
|
0x00,
|
|
0x00,
|
|
0x00,
|
|
0xfe,
|
|
0x00,
|
|
0xfe,
|
|
0x00,
|
|
0x00,
|
|
0xfe
|
|
};
|
|
|
|
// patch ClientHello with correct hostname length + offset:
|
|
MG_STORE_BE16(msg_client_hello + 3, hostnamesz + 189);
|
|
MG_STORE_BE16(msg_client_hello + 7, hostnamesz + 185);
|
|
MG_STORE_BE16(msg_client_hello + 82, hostnamesz + 110);
|
|
MG_STORE_BE16(msg_client_hello + 187, hostnamesz + 5);
|
|
MG_STORE_BE16(msg_client_hello + 189, hostnamesz + 3);
|
|
MG_STORE_BE16(msg_client_hello + 192, hostnamesz);
|
|
|
|
// calculate keyshare
|
|
mg_random(tls->x25519_cli, sizeof(tls->x25519_cli));
|
|
mg_tls_x25519(x25519_pub, tls->x25519_cli, X25519_BASE_POINT, 1);
|
|
|
|
// fill in the gaps: random + session ID + keyshare
|
|
mg_random(tls->session_id, sizeof(tls->session_id));
|
|
mg_random(tls->random, sizeof(tls->random));
|
|
memmove(msg_client_hello + 11, tls->random, sizeof(tls->random));
|
|
memmove(msg_client_hello + 44, tls->session_id, sizeof(tls->session_id));
|
|
memmove(msg_client_hello + 94, x25519_pub, sizeof(x25519_pub));
|
|
|
|
// server hello message
|
|
mg_iobuf_add(wio, wio->len, msg_client_hello, sizeof(msg_client_hello));
|
|
mg_iobuf_add(wio, wio->len, hostname, strlen(hostname));
|
|
mg_sha256_update(&tls->sha256, msg_client_hello + 5,
|
|
sizeof(msg_client_hello) - 5);
|
|
mg_sha256_update(&tls->sha256, (uint8_t *) hostname, strlen(hostname));
|
|
|
|
// change cipher message
|
|
mg_iobuf_add(wio, wio->len, (const char *) "\x14\x03\x03\x00\x01\x01", 6);
|
|
mg_io_send(c, wio->buf, wio->len);
|
|
wio->len = 0;
|
|
}
|
|
|
|
static int mg_tls_client_recv_hello(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *rio = &c->rtls;
|
|
uint16_t msgsz;
|
|
uint8_t *ext;
|
|
uint16_t ext_len;
|
|
int j;
|
|
|
|
if (!mg_tls_got_record(c)) {
|
|
return MG_IO_WAIT;
|
|
}
|
|
if (rio->buf[0] != MG_TLS_HANDSHAKE || rio->buf[5] != MG_TLS_SERVER_HELLO) {
|
|
if (rio->buf[0] == MG_TLS_ALERT && rio->len >= 7) {
|
|
mg_error(c, "tls alert %d", rio->buf[6]);
|
|
return -1;
|
|
}
|
|
MG_INFO(("got packet type 0x%02x/0x%02x", rio->buf[0], rio->buf[5]));
|
|
mg_error(c, "not a server hello packet");
|
|
return -1;
|
|
}
|
|
|
|
msgsz = MG_LOAD_BE16(rio->buf + 3);
|
|
mg_sha256_update(&tls->sha256, rio->buf + 5, msgsz);
|
|
|
|
ext_len = MG_LOAD_BE16(rio->buf + 5 + 39 + 32 + 3);
|
|
ext = rio->buf + 5 + 39 + 32 + 3 + 2;
|
|
|
|
for (j = 0; j < ext_len;) {
|
|
uint16_t ext_type = MG_LOAD_BE16(ext + j);
|
|
uint16_t ext_len2 = MG_LOAD_BE16(ext + j + 2);
|
|
uint16_t group;
|
|
uint8_t *key_exchange;
|
|
uint16_t key_exchange_len;
|
|
if (ext_type != 0x0033) { // not a key share extension, ignore
|
|
j += (uint16_t) (ext_len2 + 4);
|
|
continue;
|
|
}
|
|
group = MG_LOAD_BE16(ext + j + 4);
|
|
if (group != 0x001d) {
|
|
mg_error(c, "bad key exchange group");
|
|
return -1;
|
|
}
|
|
key_exchange_len = MG_LOAD_BE16(ext + j + 6);
|
|
key_exchange = ext + j + 8;
|
|
if (key_exchange_len != 32) {
|
|
mg_error(c, "bad key exchange length");
|
|
return -1;
|
|
}
|
|
mg_tls_x25519(tls->x25519_sec, tls->x25519_cli, key_exchange, 1);
|
|
mg_tls_hexdump("c x25519 sec", tls->x25519_sec, 32);
|
|
mg_tls_drop_record(c);
|
|
/* generate handshake keys */
|
|
mg_tls_generate_handshake_keys(c);
|
|
return 0;
|
|
}
|
|
mg_error(c, "bad client hello");
|
|
return -1;
|
|
}
|
|
|
|
static int mg_tls_client_recv_ext(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
if (mg_tls_recv_record(c) < 0) {
|
|
return -1;
|
|
}
|
|
if (tls->recv.buf[0] != MG_TLS_ENCRYPTED_EXTENSIONS) {
|
|
mg_error(c, "expected server extensions but got msg 0x%02x",
|
|
tls->recv.buf[0]);
|
|
return -1;
|
|
}
|
|
mg_tls_drop_message(c);
|
|
return 0;
|
|
}
|
|
|
|
static int mg_tls_client_recv_cert(struct mg_connection *c) {
|
|
uint8_t *cert;
|
|
uint32_t certsz;
|
|
struct mg_der_tlv oid, pubkey, seq, subj;
|
|
int subj_match = 0;
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
if (mg_tls_recv_record(c) < 0) {
|
|
return -1;
|
|
}
|
|
if (tls->recv.buf[0] != MG_TLS_CERTIFICATE) {
|
|
mg_error(c, "expected server certificate but got msg 0x%02x",
|
|
tls->recv.buf[0]);
|
|
return -1;
|
|
}
|
|
if (tls->skip_verification) {
|
|
mg_tls_drop_message(c);
|
|
return 0;
|
|
}
|
|
|
|
if (tls->recv.len < 11) {
|
|
mg_error(c, "certificate list too short");
|
|
return -1;
|
|
}
|
|
|
|
cert = tls->recv.buf + 11;
|
|
certsz = MG_LOAD_BE24(tls->recv.buf + 8);
|
|
if (certsz > tls->recv.len - 11) {
|
|
mg_error(c, "certificate too long: %d vs %d", certsz, tls->recv.len - 11);
|
|
return -1;
|
|
}
|
|
|
|
do {
|
|
// secp256r1 public key
|
|
if (mg_der_find(cert, certsz,
|
|
(uint8_t *) "\x2A\x86\x48\xCE\x3D\x03\x01\x07", 8,
|
|
&oid) < 0) {
|
|
mg_error(c, "certificate secp256r1 public key OID not found");
|
|
return -1;
|
|
}
|
|
if (mg_der_to_tlv(oid.value + oid.len,
|
|
(size_t) (cert + certsz - (oid.value + oid.len)),
|
|
&pubkey) < 0) {
|
|
mg_error(c, "certificate secp256r1 public key not found");
|
|
return -1;
|
|
}
|
|
|
|
// expect BIT STRING, unpadded, uncompressed: [0]+[4]+32+32 content bytes
|
|
if (pubkey.type != 3 || pubkey.len != 66 || pubkey.value[0] != 0 ||
|
|
pubkey.value[1] != 4) {
|
|
mg_error(c, "unsupported public key bitstring encoding");
|
|
return -1;
|
|
}
|
|
memmove(tls->pubkey, pubkey.value + 2, pubkey.len - 2);
|
|
} while (0);
|
|
|
|
// Subject Alternative Names
|
|
do {
|
|
if (mg_der_find(cert, certsz, (uint8_t *) "\x55\x1d\x11", 3, &oid) < 0) {
|
|
mg_error(c, "certificate does not contain subject alternative names");
|
|
return -1;
|
|
}
|
|
if (mg_der_to_tlv(oid.value + oid.len,
|
|
(size_t) (cert + certsz - (oid.value + oid.len)),
|
|
&seq) < 0) {
|
|
mg_error(c, "certificate subject alternative names not found");
|
|
return -1;
|
|
}
|
|
if (mg_der_to_tlv(seq.value, seq.len, &seq) < 0) {
|
|
mg_error(
|
|
c,
|
|
"certificate subject alternative names is not a constructed object");
|
|
return -1;
|
|
}
|
|
MG_VERBOSE(("verify hostname %s", tls->hostname));
|
|
while (seq.len > 0) {
|
|
if (mg_der_to_tlv(seq.value, seq.len, &subj) < 0) {
|
|
mg_error(c, "bad subject alternative name");
|
|
return -1;
|
|
}
|
|
MG_VERBOSE(("subj=%.*s", subj.len, subj.value));
|
|
if (mg_match(mg_str((const char *) tls->hostname),
|
|
mg_str_n((const char *) subj.value, subj.len), NULL)) {
|
|
subj_match = 1;
|
|
break;
|
|
}
|
|
seq.len = (uint32_t) (seq.value + seq.len - (subj.value + subj.len));
|
|
seq.value = subj.value + subj.len;
|
|
}
|
|
if (!subj_match) {
|
|
mg_error(c, "certificate did not match the hostname");
|
|
return -1;
|
|
}
|
|
} while (0);
|
|
|
|
mg_tls_drop_message(c);
|
|
mg_tls_calc_cert_verify_hash(c, tls->sighash);
|
|
return 0;
|
|
}
|
|
|
|
static int mg_tls_client_recv_cert_verify(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
if (mg_tls_recv_record(c) < 0) {
|
|
return -1;
|
|
}
|
|
if (tls->recv.buf[0] != MG_TLS_CERTIFICATE_VERIFY) {
|
|
mg_error(c, "expected server certificate verify but got msg 0x%02x",
|
|
tls->recv.buf[0]);
|
|
return -1;
|
|
}
|
|
// Ignore CertificateVerify is strict checks are not required
|
|
if (tls->skip_verification) {
|
|
mg_tls_drop_message(c);
|
|
return 0;
|
|
}
|
|
|
|
// Extract certificate signature and verify it using pubkey and sighash
|
|
do {
|
|
uint8_t sig[64];
|
|
struct mg_der_tlv seq, a, b;
|
|
if (mg_der_to_tlv(tls->recv.buf + 8, tls->recv.len - 8, &seq) < 0) {
|
|
mg_error(c, "verification message is not an ASN.1 DER sequence");
|
|
return -1;
|
|
}
|
|
if (mg_der_to_tlv(seq.value, seq.len, &a) < 0) {
|
|
mg_error(c, "missing first part of the signature");
|
|
return -1;
|
|
}
|
|
if (mg_der_to_tlv(a.value + a.len, seq.len - a.len, &b) < 0) {
|
|
mg_error(c, "missing second part of the signature");
|
|
return -1;
|
|
}
|
|
// Integers may be padded with zeroes
|
|
if (a.len > 32) {
|
|
a.value = a.value + (a.len - 32);
|
|
a.len = 32;
|
|
}
|
|
if (b.len > 32) {
|
|
b.value = b.value + (b.len - 32);
|
|
b.len = 32;
|
|
}
|
|
|
|
memmove(sig, a.value, a.len);
|
|
memmove(sig + 32, b.value, b.len);
|
|
|
|
if (mg_uecc_verify(tls->pubkey, tls->sighash, sizeof(tls->sighash), sig,
|
|
mg_uecc_secp256r1()) != 1) {
|
|
mg_error(c, "failed to verify certificate");
|
|
return -1;
|
|
}
|
|
} while (0);
|
|
|
|
mg_tls_drop_message(c);
|
|
return 0;
|
|
}
|
|
|
|
static int mg_tls_client_recv_finish(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
if (mg_tls_recv_record(c) < 0) {
|
|
return -1;
|
|
}
|
|
if (tls->recv.buf[0] != MG_TLS_FINISHED) {
|
|
mg_error(c, "expected server finished but got msg 0x%02x",
|
|
tls->recv.buf[0]);
|
|
return -1;
|
|
}
|
|
mg_tls_drop_message(c);
|
|
return 0;
|
|
}
|
|
|
|
static void mg_tls_client_send_finish(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
struct mg_iobuf *wio = &tls->send;
|
|
mg_sha256_ctx sha256;
|
|
uint8_t hash[32];
|
|
uint8_t finish[36] = {0x14, 0, 0, 32};
|
|
memmove(&sha256, &tls->sha256, sizeof(mg_sha256_ctx));
|
|
mg_sha256_final(hash, &sha256);
|
|
mg_hmac_sha256(finish + 4, tls->client_finished_key, 32, hash, 32);
|
|
mg_tls_encrypt(c, finish, sizeof(finish), MG_TLS_HANDSHAKE);
|
|
mg_io_send(c, wio->buf, wio->len);
|
|
wio->len = 0;
|
|
}
|
|
|
|
static void mg_tls_client_handshake(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
switch (tls->state) {
|
|
case MG_TLS_STATE_CLIENT_START:
|
|
mg_tls_client_send_hello(c);
|
|
tls->state = MG_TLS_STATE_CLIENT_WAIT_SH;
|
|
// Fallthrough
|
|
case MG_TLS_STATE_CLIENT_WAIT_SH:
|
|
if (mg_tls_client_recv_hello(c) < 0) {
|
|
break;
|
|
}
|
|
tls->state = MG_TLS_STATE_CLIENT_WAIT_EE;
|
|
// Fallthrough
|
|
case MG_TLS_STATE_CLIENT_WAIT_EE:
|
|
if (mg_tls_client_recv_ext(c) < 0) {
|
|
break;
|
|
}
|
|
tls->state = MG_TLS_STATE_CLIENT_WAIT_CERT;
|
|
// Fallthrough
|
|
case MG_TLS_STATE_CLIENT_WAIT_CERT:
|
|
if (mg_tls_client_recv_cert(c) < 0) {
|
|
break;
|
|
}
|
|
tls->state = MG_TLS_STATE_CLIENT_WAIT_CV;
|
|
// Fallthrough
|
|
case MG_TLS_STATE_CLIENT_WAIT_CV:
|
|
if (mg_tls_client_recv_cert_verify(c) < 0) {
|
|
break;
|
|
}
|
|
tls->state = MG_TLS_STATE_CLIENT_WAIT_FINISHED;
|
|
// Fallthrough
|
|
case MG_TLS_STATE_CLIENT_WAIT_FINISHED:
|
|
if (mg_tls_client_recv_finish(c) < 0) {
|
|
break;
|
|
}
|
|
mg_tls_client_send_finish(c);
|
|
mg_tls_generate_application_keys(c);
|
|
tls->state = MG_TLS_STATE_CLIENT_CONNECTED;
|
|
c->is_tls_hs = 0;
|
|
break;
|
|
default: mg_error(c, "unexpected client state: %d", tls->state); break;
|
|
}
|
|
}
|
|
|
|
static void mg_tls_server_handshake(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
switch (tls->state) {
|
|
case MG_TLS_STATE_SERVER_START:
|
|
if (mg_tls_server_recv_hello(c) < 0) {
|
|
return;
|
|
}
|
|
mg_tls_server_send_hello(c);
|
|
mg_tls_generate_handshake_keys(c);
|
|
mg_tls_server_send_ext(c);
|
|
mg_tls_server_send_cert(c);
|
|
mg_tls_server_send_cert_verify(c);
|
|
mg_tls_server_send_finish(c);
|
|
tls->state = MG_TLS_STATE_SERVER_NEGOTIATED;
|
|
// fallthrough
|
|
case MG_TLS_STATE_SERVER_NEGOTIATED:
|
|
if (mg_tls_server_recv_finish(c) < 0) {
|
|
return;
|
|
}
|
|
mg_tls_generate_application_keys(c);
|
|
tls->state = MG_TLS_STATE_SERVER_CONNECTED;
|
|
c->is_tls_hs = 0;
|
|
return;
|
|
default: mg_error(c, "unexpected server state: %d", tls->state); break;
|
|
}
|
|
}
|
|
|
|
void mg_tls_handshake(struct mg_connection *c) {
|
|
if (c->is_client) {
|
|
mg_tls_client_handshake(c);
|
|
} else {
|
|
mg_tls_server_handshake(c);
|
|
}
|
|
}
|
|
|
|
static int mg_parse_pem(const struct mg_str pem, const struct mg_str label,
|
|
struct mg_str *der) {
|
|
size_t n = 0, m = 0;
|
|
char *s;
|
|
const char *c;
|
|
struct mg_str caps[5];
|
|
if (!mg_match(pem, mg_str("#-----BEGIN #-----#-----END #-----#"), caps)) {
|
|
der->buf = mg_mprintf("%.*s", pem.len, pem.buf);
|
|
der->len = pem.len;
|
|
return 0;
|
|
}
|
|
if (mg_strcmp(caps[1], label) != 0 || mg_strcmp(caps[3], label) != 0) {
|
|
return -1; // bad label
|
|
}
|
|
if ((s = (char *) calloc(1, caps[2].len)) == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
for (c = caps[2].buf; c < caps[2].buf + caps[2].len; c++) {
|
|
if (*c == ' ' || *c == '\n' || *c == '\r' || *c == '\t') {
|
|
continue;
|
|
}
|
|
s[n++] = *c;
|
|
}
|
|
m = mg_base64_decode(s, n, s, n);
|
|
if (m == 0) {
|
|
free(s);
|
|
return -1;
|
|
}
|
|
der->buf = s;
|
|
der->len = m;
|
|
return 0;
|
|
}
|
|
|
|
void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
|
|
struct mg_str key;
|
|
struct tls_data *tls = (struct tls_data *) calloc(1, sizeof(struct tls_data));
|
|
if (tls == NULL) {
|
|
mg_error(c, "tls oom");
|
|
return;
|
|
}
|
|
|
|
tls->state =
|
|
c->is_client ? MG_TLS_STATE_CLIENT_START : MG_TLS_STATE_SERVER_START;
|
|
|
|
tls->skip_verification = opts->skip_verification;
|
|
tls->send.align = MG_IO_SIZE;
|
|
|
|
c->tls = tls;
|
|
c->is_tls = c->is_tls_hs = 1;
|
|
mg_sha256_init(&tls->sha256);
|
|
|
|
// save hostname (client extension)
|
|
if (opts->name.len > 0) {
|
|
if (opts->name.len >= sizeof(tls->hostname) - 1) {
|
|
mg_error(c, "hostname too long");
|
|
}
|
|
strncpy((char *) tls->hostname, opts->name.buf, sizeof(tls->hostname) - 1);
|
|
tls->hostname[opts->name.len] = 0;
|
|
}
|
|
|
|
if (c->is_client) {
|
|
tls->server_cert_der.buf = NULL;
|
|
return;
|
|
}
|
|
|
|
// parse PEM or DER certificate
|
|
if (mg_parse_pem(opts->cert, mg_str_s("CERTIFICATE"), &tls->server_cert_der) <
|
|
0) {
|
|
MG_ERROR(("Failed to load certificate"));
|
|
return;
|
|
}
|
|
|
|
// parse PEM or DER EC key
|
|
if (opts->key.buf == NULL) {
|
|
mg_error(c, "certificate provided without a private key");
|
|
return;
|
|
}
|
|
|
|
if (mg_parse_pem(opts->key, mg_str_s("EC PRIVATE KEY"), &key) == 0) {
|
|
if (key.len < 39) {
|
|
MG_ERROR(("EC private key too short"));
|
|
return;
|
|
}
|
|
// expect ASN.1 SEQUENCE=[INTEGER=1, BITSTRING of 32 bytes, ...]
|
|
// 30 nn 02 01 01 04 20 [key] ...
|
|
if (key.buf[0] != 0x30 || (key.buf[1] & 0x80) != 0) {
|
|
MG_ERROR(("EC private key: ASN.1 bad sequence"));
|
|
return;
|
|
}
|
|
if (memcmp(key.buf + 2, "\x02\x01\x01\x04\x20", 5) != 0) {
|
|
MG_ERROR(("EC private key: ASN.1 bad data"));
|
|
}
|
|
memmove(tls->server_key, key.buf + 7, 32);
|
|
free((void *) key.buf);
|
|
} else if (mg_parse_pem(opts->key, mg_str_s("PRIVATE KEY"), &key) == 0) {
|
|
mg_error(c, "PKCS8 private key format is not supported");
|
|
} else {
|
|
mg_error(c, "expected EC PRIVATE KEY or PRIVATE KEY");
|
|
}
|
|
}
|
|
|
|
void mg_tls_free(struct mg_connection *c) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
if (tls != NULL) {
|
|
mg_iobuf_free(&tls->send);
|
|
free((void *) tls->server_cert_der.buf);
|
|
}
|
|
free(c->tls);
|
|
c->tls = NULL;
|
|
}
|
|
|
|
long mg_tls_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
long n = MG_IO_WAIT;
|
|
if (len > MG_IO_SIZE) len = MG_IO_SIZE;
|
|
mg_tls_encrypt(c, (const uint8_t *) buf, len, MG_TLS_APP_DATA);
|
|
while (tls->send.len > 0 &&
|
|
(n = mg_io_send(c, tls->send.buf, tls->send.len)) > 0) {
|
|
mg_iobuf_del(&tls->send, 0, (size_t) n);
|
|
}
|
|
if (n == MG_IO_ERR || n == MG_IO_WAIT) return n;
|
|
return (long) len;
|
|
}
|
|
|
|
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
|
|
int r = 0;
|
|
struct tls_data *tls = (struct tls_data *) c->tls;
|
|
size_t minlen;
|
|
|
|
r = mg_tls_recv_record(c);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
if (tls->content_type != MG_TLS_APP_DATA) {
|
|
tls->recv.len = 0;
|
|
mg_tls_drop_record(c);
|
|
return MG_IO_WAIT;
|
|
}
|
|
minlen = len < tls->recv.len ? len : tls->recv.len;
|
|
memmove(buf, tls->recv.buf, minlen);
|
|
tls->recv.buf += minlen;
|
|
tls->recv.len -= minlen;
|
|
if (tls->recv.len == 0) {
|
|
mg_tls_drop_record(c);
|
|
}
|
|
return (long) minlen;
|
|
}
|
|
|
|
size_t mg_tls_pending(struct mg_connection *c) {
|
|
return mg_tls_got_record(c) ? 1 : 0;
|
|
}
|
|
|
|
void mg_tls_ctx_init(struct mg_mgr *mgr) {
|
|
(void) mgr;
|
|
}
|
|
|
|
void mg_tls_ctx_free(struct mg_mgr *mgr) {
|
|
(void) mgr;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_dummy.c"
|
|
#endif
|
|
|
|
|
|
#if MG_TLS == MG_TLS_NONE
|
|
void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
|
|
(void) opts;
|
|
mg_error(c, "TLS is not enabled");
|
|
}
|
|
void mg_tls_handshake(struct mg_connection *c) {
|
|
(void) c;
|
|
}
|
|
void mg_tls_free(struct mg_connection *c) {
|
|
(void) c;
|
|
}
|
|
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
|
|
return c == NULL || buf == NULL || len == 0 ? 0 : -1;
|
|
}
|
|
long mg_tls_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
return c == NULL || buf == NULL || len == 0 ? 0 : -1;
|
|
}
|
|
size_t mg_tls_pending(struct mg_connection *c) {
|
|
(void) c;
|
|
return 0;
|
|
}
|
|
void mg_tls_ctx_init(struct mg_mgr *mgr) {
|
|
(void) mgr;
|
|
}
|
|
void mg_tls_ctx_free(struct mg_mgr *mgr) {
|
|
(void) mgr;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_mbed.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_TLS == MG_TLS_MBED
|
|
|
|
#if defined(MBEDTLS_VERSION_NUMBER) && MBEDTLS_VERSION_NUMBER >= 0x03000000
|
|
#define MG_MBEDTLS_RNG_GET , mg_mbed_rng, NULL
|
|
#else
|
|
#define MG_MBEDTLS_RNG_GET
|
|
#endif
|
|
|
|
static int mg_mbed_rng(void *ctx, unsigned char *buf, size_t len) {
|
|
mg_random(buf, len);
|
|
(void) ctx;
|
|
return 0;
|
|
}
|
|
|
|
static bool mg_load_cert(struct mg_str str, mbedtls_x509_crt *p) {
|
|
int rc;
|
|
if (str.buf == NULL || str.buf[0] == '\0' || str.buf[0] == '*') return true;
|
|
if (str.buf[0] == '-') str.len++; // PEM, include trailing NUL
|
|
if ((rc = mbedtls_x509_crt_parse(p, (uint8_t *) str.buf, str.len)) != 0) {
|
|
MG_ERROR(("cert err %#x", -rc));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool mg_load_key(struct mg_str str, mbedtls_pk_context *p) {
|
|
int rc;
|
|
if (str.buf == NULL || str.buf[0] == '\0' || str.buf[0] == '*') return true;
|
|
if (str.buf[0] == '-') str.len++; // PEM, include trailing NUL
|
|
if ((rc = mbedtls_pk_parse_key(p, (uint8_t *) str.buf, str.len, NULL,
|
|
0 MG_MBEDTLS_RNG_GET)) != 0) {
|
|
MG_ERROR(("key err %#x", -rc));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void mg_tls_free(struct mg_connection *c) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
if (tls != NULL) {
|
|
mbedtls_ssl_free(&tls->ssl);
|
|
mbedtls_pk_free(&tls->pk);
|
|
mbedtls_x509_crt_free(&tls->ca);
|
|
mbedtls_x509_crt_free(&tls->cert);
|
|
mbedtls_ssl_config_free(&tls->conf);
|
|
#ifdef MBEDTLS_SSL_SESSION_TICKETS
|
|
mbedtls_ssl_ticket_free(&tls->ticket);
|
|
#endif
|
|
free(tls);
|
|
c->tls = NULL;
|
|
}
|
|
}
|
|
|
|
static int mg_net_send(void *ctx, const unsigned char *buf, size_t len) {
|
|
long n = mg_io_send((struct mg_connection *) ctx, buf, len);
|
|
MG_VERBOSE(("%lu n=%ld e=%d", ((struct mg_connection *) ctx)->id, n, errno));
|
|
if (n == MG_IO_WAIT) return MBEDTLS_ERR_SSL_WANT_WRITE;
|
|
if (n == MG_IO_RESET) return MBEDTLS_ERR_NET_CONN_RESET;
|
|
if (n == MG_IO_ERR) return MBEDTLS_ERR_NET_SEND_FAILED;
|
|
return (int) n;
|
|
}
|
|
|
|
static int mg_net_recv(void *ctx, unsigned char *buf, size_t len) {
|
|
long n = mg_io_recv((struct mg_connection *) ctx, buf, len);
|
|
MG_VERBOSE(("%lu n=%ld", ((struct mg_connection *) ctx)->id, n));
|
|
if (n == MG_IO_WAIT) return MBEDTLS_ERR_SSL_WANT_WRITE;
|
|
if (n == MG_IO_RESET) return MBEDTLS_ERR_NET_CONN_RESET;
|
|
if (n == MG_IO_ERR) return MBEDTLS_ERR_NET_RECV_FAILED;
|
|
return (int) n;
|
|
}
|
|
|
|
void mg_tls_handshake(struct mg_connection *c) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
int rc = mbedtls_ssl_handshake(&tls->ssl);
|
|
if (rc == 0) { // Success
|
|
MG_DEBUG(("%lu success", c->id));
|
|
c->is_tls_hs = 0;
|
|
mg_call(c, MG_EV_TLS_HS, NULL);
|
|
} else if (rc == MBEDTLS_ERR_SSL_WANT_READ ||
|
|
rc == MBEDTLS_ERR_SSL_WANT_WRITE) { // Still pending
|
|
MG_VERBOSE(("%lu pending, %d%d %d (-%#x)", c->id, c->is_connecting,
|
|
c->is_tls_hs, rc, -rc));
|
|
} else {
|
|
mg_error(c, "TLS handshake: -%#x", -rc); // Error
|
|
}
|
|
}
|
|
|
|
static void debug_cb(void *c, int lev, const char *s, int n, const char *s2) {
|
|
n = (int) strlen(s2) - 1;
|
|
MG_INFO(("%lu %d %.*s", ((struct mg_connection *) c)->id, lev, n, s2));
|
|
(void) s;
|
|
}
|
|
|
|
void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
|
|
struct mg_tls *tls = (struct mg_tls *) calloc(1, sizeof(*tls));
|
|
int rc = 0;
|
|
c->tls = tls;
|
|
if (c->tls == NULL) {
|
|
mg_error(c, "TLS OOM");
|
|
goto fail;
|
|
}
|
|
if (c->is_listening) goto fail;
|
|
MG_DEBUG(("%lu Setting TLS", c->id));
|
|
MG_PROF_ADD(c, "mbedtls_init_start");
|
|
mbedtls_ssl_init(&tls->ssl);
|
|
mbedtls_ssl_config_init(&tls->conf);
|
|
mbedtls_x509_crt_init(&tls->ca);
|
|
mbedtls_x509_crt_init(&tls->cert);
|
|
mbedtls_pk_init(&tls->pk);
|
|
mbedtls_ssl_conf_dbg(&tls->conf, debug_cb, c);
|
|
#if defined(MG_MBEDTLS_DEBUG_LEVEL)
|
|
mbedtls_debug_set_threshold(MG_MBEDTLS_DEBUG_LEVEL);
|
|
#endif
|
|
if ((rc = mbedtls_ssl_config_defaults(
|
|
&tls->conf,
|
|
c->is_client ? MBEDTLS_SSL_IS_CLIENT : MBEDTLS_SSL_IS_SERVER,
|
|
MBEDTLS_SSL_TRANSPORT_STREAM, MBEDTLS_SSL_PRESET_DEFAULT)) != 0) {
|
|
mg_error(c, "tls defaults %#x", -rc);
|
|
goto fail;
|
|
}
|
|
mbedtls_ssl_conf_rng(&tls->conf, mg_mbed_rng, c);
|
|
|
|
if (opts->ca.len == 0 || mg_strcmp(opts->ca, mg_str("*")) == 0) {
|
|
mbedtls_ssl_conf_authmode(&tls->conf, MBEDTLS_SSL_VERIFY_NONE);
|
|
} else {
|
|
if (mg_load_cert(opts->ca, &tls->ca) == false) goto fail;
|
|
mbedtls_ssl_conf_ca_chain(&tls->conf, &tls->ca, NULL);
|
|
if (c->is_client && opts->name.buf != NULL && opts->name.buf[0] != '\0') {
|
|
char *host = mg_mprintf("%.*s", opts->name.len, opts->name.buf);
|
|
mbedtls_ssl_set_hostname(&tls->ssl, host);
|
|
MG_DEBUG(("%lu hostname verification: %s", c->id, host));
|
|
free(host);
|
|
}
|
|
mbedtls_ssl_conf_authmode(&tls->conf, MBEDTLS_SSL_VERIFY_REQUIRED);
|
|
}
|
|
if (!mg_load_cert(opts->cert, &tls->cert)) goto fail;
|
|
if (!mg_load_key(opts->key, &tls->pk)) goto fail;
|
|
if (tls->cert.version &&
|
|
(rc = mbedtls_ssl_conf_own_cert(&tls->conf, &tls->cert, &tls->pk)) != 0) {
|
|
mg_error(c, "own cert %#x", -rc);
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef MBEDTLS_SSL_SESSION_TICKETS
|
|
mbedtls_ssl_conf_session_tickets_cb(
|
|
&tls->conf, mbedtls_ssl_ticket_write, mbedtls_ssl_ticket_parse,
|
|
&((struct mg_tls_ctx *) c->mgr->tls_ctx)->tickets);
|
|
#endif
|
|
|
|
if ((rc = mbedtls_ssl_setup(&tls->ssl, &tls->conf)) != 0) {
|
|
mg_error(c, "setup err %#x", -rc);
|
|
goto fail;
|
|
}
|
|
c->is_tls = 1;
|
|
c->is_tls_hs = 1;
|
|
mbedtls_ssl_set_bio(&tls->ssl, c, mg_net_send, mg_net_recv, 0);
|
|
MG_PROF_ADD(c, "mbedtls_init_end");
|
|
if (c->is_client && c->is_resolving == 0 && c->is_connecting == 0) {
|
|
mg_tls_handshake(c);
|
|
}
|
|
return;
|
|
fail:
|
|
mg_tls_free(c);
|
|
}
|
|
|
|
size_t mg_tls_pending(struct mg_connection *c) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
return tls == NULL ? 0 : mbedtls_ssl_get_bytes_avail(&tls->ssl);
|
|
}
|
|
|
|
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
long n = mbedtls_ssl_read(&tls->ssl, (unsigned char *) buf, len);
|
|
if (n == MBEDTLS_ERR_SSL_WANT_READ || n == MBEDTLS_ERR_SSL_WANT_WRITE)
|
|
return MG_IO_WAIT;
|
|
if (n <= 0) return MG_IO_ERR;
|
|
return n;
|
|
}
|
|
|
|
long mg_tls_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
long n = mbedtls_ssl_write(&tls->ssl, (unsigned char *) buf, len);
|
|
if (n == MBEDTLS_ERR_SSL_WANT_READ || n == MBEDTLS_ERR_SSL_WANT_WRITE)
|
|
return MG_IO_WAIT;
|
|
if (n <= 0) return MG_IO_ERR;
|
|
return n;
|
|
}
|
|
|
|
void mg_tls_ctx_init(struct mg_mgr *mgr) {
|
|
struct mg_tls_ctx *ctx = (struct mg_tls_ctx *) calloc(1, sizeof(*ctx));
|
|
if (ctx == NULL) {
|
|
MG_ERROR(("TLS context init OOM"));
|
|
} else {
|
|
#ifdef MBEDTLS_SSL_SESSION_TICKETS
|
|
int rc;
|
|
mbedtls_ssl_ticket_init(&ctx->tickets);
|
|
if ((rc = mbedtls_ssl_ticket_setup(&ctx->tickets, mg_mbed_rng, NULL,
|
|
MBEDTLS_CIPHER_AES_128_GCM, 86400)) !=
|
|
0) {
|
|
MG_ERROR((" mbedtls_ssl_ticket_setup %#x", -rc));
|
|
}
|
|
#endif
|
|
mgr->tls_ctx = ctx;
|
|
}
|
|
}
|
|
|
|
void mg_tls_ctx_free(struct mg_mgr *mgr) {
|
|
struct mg_tls_ctx *ctx = (struct mg_tls_ctx *) mgr->tls_ctx;
|
|
if (ctx != NULL) {
|
|
#ifdef MBEDTLS_SSL_SESSION_TICKETS
|
|
mbedtls_ssl_ticket_free(&ctx->tickets);
|
|
#endif
|
|
free(ctx);
|
|
mgr->tls_ctx = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_openssl.c"
|
|
#endif
|
|
|
|
|
|
|
|
#if MG_TLS == MG_TLS_OPENSSL
|
|
static int tls_err_cb(const char *s, size_t len, void *c) {
|
|
int n = (int) len - 1;
|
|
MG_ERROR(("%lu %.*s", ((struct mg_connection *) c)->id, n, s));
|
|
return 0; // undocumented
|
|
}
|
|
|
|
static int mg_tls_err(struct mg_connection *c, struct mg_tls *tls, int res) {
|
|
int err = SSL_get_error(tls->ssl, res);
|
|
// We've just fetched the last error from the queue.
|
|
// Now we need to clear the error queue. If we do not, then the following
|
|
// can happen (actually reported):
|
|
// - A new connection is accept()-ed with cert error (e.g. self-signed cert)
|
|
// - Since all accept()-ed connections share listener's context,
|
|
// - *ALL* SSL accepted connection report read error on the next poll cycle.
|
|
// Thus a single errored connection can close all the rest, unrelated ones.
|
|
// Clearing the error keeps the shared SSL_CTX in an OK state.
|
|
|
|
if (err != 0) ERR_print_errors_cb(tls_err_cb, c);
|
|
ERR_clear_error();
|
|
if (err == SSL_ERROR_WANT_READ) return 0;
|
|
if (err == SSL_ERROR_WANT_WRITE) return 0;
|
|
return err;
|
|
}
|
|
|
|
static STACK_OF(X509_INFO) * load_ca_certs(struct mg_str ca) {
|
|
BIO *bio = BIO_new_mem_buf(ca.buf, (int) ca.len);
|
|
STACK_OF(X509_INFO) *certs =
|
|
bio ? PEM_X509_INFO_read_bio(bio, NULL, NULL, NULL) : NULL;
|
|
if (bio) BIO_free(bio);
|
|
return certs;
|
|
}
|
|
|
|
static bool add_ca_certs(SSL_CTX *ctx, STACK_OF(X509_INFO) * certs) {
|
|
X509_STORE *cert_store = SSL_CTX_get_cert_store(ctx);
|
|
for (int i = 0; i < sk_X509_INFO_num(certs); i++) {
|
|
X509_INFO *cert_info = sk_X509_INFO_value(certs, i);
|
|
if (cert_info->x509 && !X509_STORE_add_cert(cert_store, cert_info->x509))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static EVP_PKEY *load_key(struct mg_str s) {
|
|
BIO *bio = BIO_new_mem_buf(s.buf, (int) (long) s.len);
|
|
EVP_PKEY *key = bio ? PEM_read_bio_PrivateKey(bio, NULL, 0, NULL) : NULL;
|
|
if (bio) BIO_free(bio);
|
|
return key;
|
|
}
|
|
|
|
static X509 *load_cert(struct mg_str s) {
|
|
BIO *bio = BIO_new_mem_buf(s.buf, (int) (long) s.len);
|
|
X509 *cert = bio == NULL ? NULL
|
|
: s.buf[0] == '-'
|
|
? PEM_read_bio_X509(bio, NULL, NULL, NULL) // PEM
|
|
: d2i_X509_bio(bio, NULL); // DER
|
|
if (bio) BIO_free(bio);
|
|
return cert;
|
|
}
|
|
|
|
|
|
static long mg_bio_ctrl(BIO *b, int cmd, long larg, void *pargs) {
|
|
long ret = 0;
|
|
if (cmd == BIO_CTRL_PUSH) ret = 1;
|
|
if (cmd == BIO_CTRL_POP) ret = 1;
|
|
if (cmd == BIO_CTRL_FLUSH) ret = 1;
|
|
if (cmd == BIO_C_SET_NBIO) ret = 1;
|
|
// MG_DEBUG(("%d -> %ld", cmd, ret));
|
|
(void) b, (void) cmd, (void) larg, (void) pargs;
|
|
return ret;
|
|
}
|
|
|
|
static int mg_bio_read(BIO *bio, char *buf, int len) {
|
|
struct mg_connection *c = (struct mg_connection *) BIO_get_data(bio);
|
|
long res = mg_io_recv(c, buf, (size_t) len);
|
|
// MG_DEBUG(("%p %d %ld", buf, len, res));
|
|
len = res > 0 ? (int) res : -1;
|
|
if (res == MG_IO_WAIT) BIO_set_retry_read(bio);
|
|
return len;
|
|
}
|
|
|
|
static int mg_bio_write(BIO *bio, const char *buf, int len) {
|
|
struct mg_connection *c = (struct mg_connection *) BIO_get_data(bio);
|
|
long res = mg_io_send(c, buf, (size_t) len);
|
|
// MG_DEBUG(("%p %d %ld", buf, len, res));
|
|
len = res > 0 ? (int) res : -1;
|
|
if (res == MG_IO_WAIT) BIO_set_retry_write(bio);
|
|
return len;
|
|
}
|
|
|
|
void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
|
|
struct mg_tls *tls = (struct mg_tls *) calloc(1, sizeof(*tls));
|
|
const char *id = "mongoose";
|
|
static unsigned char s_initialised = 0;
|
|
BIO *bio = NULL;
|
|
int rc;
|
|
|
|
if (tls == NULL) {
|
|
mg_error(c, "TLS OOM");
|
|
goto fail;
|
|
}
|
|
|
|
if (!s_initialised) {
|
|
SSL_library_init();
|
|
s_initialised++;
|
|
}
|
|
MG_DEBUG(("%lu Setting TLS", c->id));
|
|
tls->ctx = c->is_client ? SSL_CTX_new(SSLv23_client_method())
|
|
: SSL_CTX_new(SSLv23_server_method());
|
|
if ((tls->ssl = SSL_new(tls->ctx)) == NULL) {
|
|
mg_error(c, "SSL_new");
|
|
goto fail;
|
|
}
|
|
SSL_set_session_id_context(tls->ssl, (const uint8_t *) id,
|
|
(unsigned) strlen(id));
|
|
// Disable deprecated protocols
|
|
SSL_set_options(tls->ssl, SSL_OP_NO_SSLv2);
|
|
SSL_set_options(tls->ssl, SSL_OP_NO_SSLv3);
|
|
SSL_set_options(tls->ssl, SSL_OP_NO_TLSv1);
|
|
SSL_set_options(tls->ssl, SSL_OP_NO_TLSv1_1);
|
|
#ifdef MG_ENABLE_OPENSSL_NO_COMPRESSION
|
|
SSL_set_options(tls->ssl, SSL_OP_NO_COMPRESSION);
|
|
#endif
|
|
#ifdef MG_ENABLE_OPENSSL_CIPHER_SERVER_PREFERENCE
|
|
SSL_set_options(tls->ssl, SSL_OP_CIPHER_SERVER_PREFERENCE);
|
|
#endif
|
|
|
|
if (opts->ca.buf != NULL && opts->ca.buf[0] != '\0') {
|
|
SSL_set_verify(tls->ssl, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
|
|
NULL);
|
|
STACK_OF(X509_INFO) *certs = load_ca_certs(opts->ca);
|
|
rc = add_ca_certs(tls->ctx, certs);
|
|
sk_X509_INFO_pop_free(certs, X509_INFO_free);
|
|
if (!rc) {
|
|
mg_error(c, "CA err");
|
|
goto fail;
|
|
}
|
|
}
|
|
if (opts->cert.buf != NULL && opts->cert.buf[0] != '\0') {
|
|
X509 *cert = load_cert(opts->cert);
|
|
rc = cert == NULL ? 0 : SSL_use_certificate(tls->ssl, cert);
|
|
X509_free(cert);
|
|
if (cert == NULL || rc != 1) {
|
|
mg_error(c, "CERT err %d", mg_tls_err(c, tls, rc));
|
|
goto fail;
|
|
}
|
|
}
|
|
if (opts->key.buf != NULL && opts->key.buf[0] != '\0') {
|
|
EVP_PKEY *key = load_key(opts->key);
|
|
rc = key == NULL ? 0 : SSL_use_PrivateKey(tls->ssl, key);
|
|
EVP_PKEY_free(key);
|
|
if (key == NULL || rc != 1) {
|
|
mg_error(c, "KEY err %d", mg_tls_err(c, tls, rc));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
SSL_set_mode(tls->ssl, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
|
|
#if OPENSSL_VERSION_NUMBER > 0x10002000L
|
|
(void) SSL_set_ecdh_auto(tls->ssl, 1);
|
|
#endif
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
|
|
if (opts->name.len > 0) {
|
|
char *s = mg_mprintf("%.*s", (int) opts->name.len, opts->name.buf);
|
|
SSL_set1_host(tls->ssl, s);
|
|
SSL_set_tlsext_host_name(tls->ssl, s);
|
|
free(s);
|
|
}
|
|
#endif
|
|
|
|
tls->bm = BIO_meth_new(BIO_get_new_index() | BIO_TYPE_SOURCE_SINK, "bio_mg");
|
|
BIO_meth_set_write(tls->bm, mg_bio_write);
|
|
BIO_meth_set_read(tls->bm, mg_bio_read);
|
|
BIO_meth_set_ctrl(tls->bm, mg_bio_ctrl);
|
|
|
|
bio = BIO_new(tls->bm);
|
|
BIO_set_data(bio, c);
|
|
SSL_set_bio(tls->ssl, bio, bio);
|
|
|
|
c->tls = tls;
|
|
c->is_tls = 1;
|
|
c->is_tls_hs = 1;
|
|
if (c->is_client && c->is_resolving == 0 && c->is_connecting == 0) {
|
|
mg_tls_handshake(c);
|
|
}
|
|
MG_DEBUG(("%lu SSL %s OK", c->id, c->is_accepted ? "accept" : "client"));
|
|
return;
|
|
fail:
|
|
free(tls);
|
|
}
|
|
|
|
void mg_tls_handshake(struct mg_connection *c) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
int rc = c->is_client ? SSL_connect(tls->ssl) : SSL_accept(tls->ssl);
|
|
if (rc == 1) {
|
|
MG_DEBUG(("%lu success", c->id));
|
|
c->is_tls_hs = 0;
|
|
mg_call(c, MG_EV_TLS_HS, NULL);
|
|
} else {
|
|
int code = mg_tls_err(c, tls, rc);
|
|
if (code != 0) mg_error(c, "tls hs: rc %d, err %d", rc, code);
|
|
}
|
|
}
|
|
|
|
void mg_tls_free(struct mg_connection *c) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
if (tls == NULL) return;
|
|
SSL_free(tls->ssl);
|
|
SSL_CTX_free(tls->ctx);
|
|
BIO_meth_free(tls->bm);
|
|
free(tls);
|
|
c->tls = NULL;
|
|
}
|
|
|
|
size_t mg_tls_pending(struct mg_connection *c) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
return tls == NULL ? 0 : (size_t) SSL_pending(tls->ssl);
|
|
}
|
|
|
|
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
int n = SSL_read(tls->ssl, buf, (int) len);
|
|
if (n < 0 && mg_tls_err(c, tls, n) == 0) return MG_IO_WAIT;
|
|
if (n <= 0) return MG_IO_ERR;
|
|
return n;
|
|
}
|
|
|
|
long mg_tls_send(struct mg_connection *c, const void *buf, size_t len) {
|
|
struct mg_tls *tls = (struct mg_tls *) c->tls;
|
|
int n = SSL_write(tls->ssl, buf, (int) len);
|
|
if (n < 0 && mg_tls_err(c, tls, n) == 0) return MG_IO_WAIT;
|
|
if (n <= 0) return MG_IO_ERR;
|
|
return n;
|
|
}
|
|
|
|
void mg_tls_ctx_init(struct mg_mgr *mgr) {
|
|
(void) mgr;
|
|
}
|
|
|
|
void mg_tls_ctx_free(struct mg_mgr *mgr) {
|
|
(void) mgr;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_uecc.c"
|
|
#endif
|
|
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
|
|
|
|
|
|
|
|
|
#if MG_TLS == MG_TLS_BUILTIN
|
|
|
|
#ifndef MG_UECC_RNG_MAX_TRIES
|
|
#define MG_UECC_RNG_MAX_TRIES 64
|
|
#endif
|
|
|
|
#if MG_UECC_ENABLE_VLI_API
|
|
#define MG_UECC_VLI_API
|
|
#else
|
|
#define MG_UECC_VLI_API static
|
|
#endif
|
|
|
|
#if (MG_UECC_PLATFORM == mg_uecc_avr) || (MG_UECC_PLATFORM == mg_uecc_arm) || \
|
|
(MG_UECC_PLATFORM == mg_uecc_arm_thumb) || \
|
|
(MG_UECC_PLATFORM == mg_uecc_arm_thumb2)
|
|
#define CONCATX(a, ...) a##__VA_ARGS__
|
|
#define CONCAT(a, ...) CONCATX(a, __VA_ARGS__)
|
|
|
|
#define STRX(a) #a
|
|
#define STR(a) STRX(a)
|
|
|
|
#define EVAL(...) EVAL1(EVAL1(EVAL1(EVAL1(__VA_ARGS__))))
|
|
#define EVAL1(...) EVAL2(EVAL2(EVAL2(EVAL2(__VA_ARGS__))))
|
|
#define EVAL2(...) EVAL3(EVAL3(EVAL3(EVAL3(__VA_ARGS__))))
|
|
#define EVAL3(...) EVAL4(EVAL4(EVAL4(EVAL4(__VA_ARGS__))))
|
|
#define EVAL4(...) __VA_ARGS__
|
|
|
|
#define DEC_1 0
|
|
#define DEC_2 1
|
|
#define DEC_3 2
|
|
#define DEC_4 3
|
|
#define DEC_5 4
|
|
#define DEC_6 5
|
|
#define DEC_7 6
|
|
#define DEC_8 7
|
|
#define DEC_9 8
|
|
#define DEC_10 9
|
|
#define DEC_11 10
|
|
#define DEC_12 11
|
|
#define DEC_13 12
|
|
#define DEC_14 13
|
|
#define DEC_15 14
|
|
#define DEC_16 15
|
|
#define DEC_17 16
|
|
#define DEC_18 17
|
|
#define DEC_19 18
|
|
#define DEC_20 19
|
|
#define DEC_21 20
|
|
#define DEC_22 21
|
|
#define DEC_23 22
|
|
#define DEC_24 23
|
|
#define DEC_25 24
|
|
#define DEC_26 25
|
|
#define DEC_27 26
|
|
#define DEC_28 27
|
|
#define DEC_29 28
|
|
#define DEC_30 29
|
|
#define DEC_31 30
|
|
#define DEC_32 31
|
|
|
|
#define DEC(N) CONCAT(DEC_, N)
|
|
|
|
#define SECOND_ARG(_, val, ...) val
|
|
#define SOME_CHECK_0 ~, 0
|
|
#define GET_SECOND_ARG(...) SECOND_ARG(__VA_ARGS__, SOME, )
|
|
#define SOME_OR_0(N) GET_SECOND_ARG(CONCAT(SOME_CHECK_, N))
|
|
|
|
#define EMPTY(...)
|
|
#define DEFER(...) __VA_ARGS__ EMPTY()
|
|
|
|
#define REPEAT_NAME_0() REPEAT_0
|
|
#define REPEAT_NAME_SOME() REPEAT_SOME
|
|
#define REPEAT_0(...)
|
|
#define REPEAT_SOME(N, stuff) \
|
|
DEFER(CONCAT(REPEAT_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), stuff) stuff
|
|
#define REPEAT(N, stuff) EVAL(REPEAT_SOME(N, stuff))
|
|
|
|
#define REPEATM_NAME_0() REPEATM_0
|
|
#define REPEATM_NAME_SOME() REPEATM_SOME
|
|
#define REPEATM_0(...)
|
|
#define REPEATM_SOME(N, macro) \
|
|
macro(N) DEFER(CONCAT(REPEATM_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), macro)
|
|
#define REPEATM(N, macro) EVAL(REPEATM_SOME(N, macro))
|
|
#endif
|
|
|
|
//
|
|
|
|
#if (MG_UECC_WORD_SIZE == 1)
|
|
#if MG_UECC_SUPPORTS_secp160r1
|
|
#define MG_UECC_MAX_WORDS 21 /* Due to the size of curve_n. */
|
|
#endif
|
|
#if MG_UECC_SUPPORTS_secp192r1
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 24
|
|
#endif
|
|
#if MG_UECC_SUPPORTS_secp224r1
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 28
|
|
#endif
|
|
#if (MG_UECC_SUPPORTS_secp256r1 || MG_UECC_SUPPORTS_secp256k1)
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 32
|
|
#endif
|
|
#elif (MG_UECC_WORD_SIZE == 4)
|
|
#if MG_UECC_SUPPORTS_secp160r1
|
|
#define MG_UECC_MAX_WORDS 6 /* Due to the size of curve_n. */
|
|
#endif
|
|
#if MG_UECC_SUPPORTS_secp192r1
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 6
|
|
#endif
|
|
#if MG_UECC_SUPPORTS_secp224r1
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 7
|
|
#endif
|
|
#if (MG_UECC_SUPPORTS_secp256r1 || MG_UECC_SUPPORTS_secp256k1)
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 8
|
|
#endif
|
|
#elif (MG_UECC_WORD_SIZE == 8)
|
|
#if MG_UECC_SUPPORTS_secp160r1
|
|
#define MG_UECC_MAX_WORDS 3
|
|
#endif
|
|
#if MG_UECC_SUPPORTS_secp192r1
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 3
|
|
#endif
|
|
#if MG_UECC_SUPPORTS_secp224r1
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 4
|
|
#endif
|
|
#if (MG_UECC_SUPPORTS_secp256r1 || MG_UECC_SUPPORTS_secp256k1)
|
|
#undef MG_UECC_MAX_WORDS
|
|
#define MG_UECC_MAX_WORDS 4
|
|
#endif
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
|
|
#define BITS_TO_WORDS(num_bits) \
|
|
((wordcount_t) ((num_bits + ((MG_UECC_WORD_SIZE * 8) - 1)) / \
|
|
(MG_UECC_WORD_SIZE * 8)))
|
|
#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
|
|
|
|
struct MG_UECC_Curve_t {
|
|
wordcount_t num_words;
|
|
wordcount_t num_bytes;
|
|
bitcount_t num_n_bits;
|
|
mg_uecc_word_t p[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t n[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t G[MG_UECC_MAX_WORDS * 2];
|
|
mg_uecc_word_t b[MG_UECC_MAX_WORDS];
|
|
void (*double_jacobian)(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
mg_uecc_word_t *Z1, MG_UECC_Curve curve);
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
void (*mod_sqrt)(mg_uecc_word_t *a, MG_UECC_Curve curve);
|
|
#endif
|
|
void (*x_side)(mg_uecc_word_t *result, const mg_uecc_word_t *x,
|
|
MG_UECC_Curve curve);
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
void (*mmod_fast)(mg_uecc_word_t *result, mg_uecc_word_t *product);
|
|
#endif
|
|
};
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
static void bcopy(uint8_t *dst, const uint8_t *src, unsigned num_bytes) {
|
|
while (0 != num_bytes) {
|
|
num_bytes--;
|
|
dst[num_bytes] = src[num_bytes];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static cmpresult_t mg_uecc_vli_cmp_unsafe(const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words);
|
|
|
|
#if (MG_UECC_PLATFORM == mg_uecc_arm || \
|
|
MG_UECC_PLATFORM == mg_uecc_arm_thumb || \
|
|
MG_UECC_PLATFORM == mg_uecc_arm_thumb2)
|
|
|
|
#endif
|
|
|
|
#if (MG_UECC_PLATFORM == mg_uecc_avr)
|
|
|
|
#endif
|
|
|
|
#ifndef asm_clear
|
|
#define asm_clear 0
|
|
#endif
|
|
#ifndef asm_set
|
|
#define asm_set 0
|
|
#endif
|
|
#ifndef asm_add
|
|
#define asm_add 0
|
|
#endif
|
|
#ifndef asm_sub
|
|
#define asm_sub 0
|
|
#endif
|
|
#ifndef asm_mult
|
|
#define asm_mult 0
|
|
#endif
|
|
#ifndef asm_rshift1
|
|
#define asm_rshift1 0
|
|
#endif
|
|
#ifndef asm_mmod_fast_secp256r1
|
|
#define asm_mmod_fast_secp256r1 0
|
|
#endif
|
|
|
|
#if defined(default_RNG_defined) && default_RNG_defined
|
|
static MG_UECC_RNG_Function g_rng_function = &default_RNG;
|
|
#else
|
|
static MG_UECC_RNG_Function g_rng_function = 0;
|
|
#endif
|
|
|
|
void mg_uecc_set_rng(MG_UECC_RNG_Function rng_function) {
|
|
g_rng_function = rng_function;
|
|
}
|
|
|
|
MG_UECC_RNG_Function mg_uecc_get_rng(void) {
|
|
return g_rng_function;
|
|
}
|
|
|
|
int mg_uecc_curve_private_key_size(MG_UECC_Curve curve) {
|
|
return BITS_TO_BYTES(curve->num_n_bits);
|
|
}
|
|
|
|
int mg_uecc_curve_public_key_size(MG_UECC_Curve curve) {
|
|
return 2 * curve->num_bytes;
|
|
}
|
|
|
|
#if !asm_clear
|
|
MG_UECC_VLI_API void mg_uecc_vli_clear(mg_uecc_word_t *vli,
|
|
wordcount_t num_words) {
|
|
wordcount_t i;
|
|
for (i = 0; i < num_words; ++i) {
|
|
vli[i] = 0;
|
|
}
|
|
}
|
|
#endif /* !asm_clear */
|
|
|
|
/* Constant-time comparison to zero - secure way to compare long integers */
|
|
/* Returns 1 if vli == 0, 0 otherwise. */
|
|
MG_UECC_VLI_API mg_uecc_word_t mg_uecc_vli_isZero(const mg_uecc_word_t *vli,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t bits = 0;
|
|
wordcount_t i;
|
|
for (i = 0; i < num_words; ++i) {
|
|
bits |= vli[i];
|
|
}
|
|
return (bits == 0);
|
|
}
|
|
|
|
/* Returns nonzero if bit 'bit' of vli is set. */
|
|
MG_UECC_VLI_API mg_uecc_word_t mg_uecc_vli_testBit(const mg_uecc_word_t *vli,
|
|
bitcount_t bit) {
|
|
return (vli[bit >> MG_UECC_WORD_BITS_SHIFT] &
|
|
((mg_uecc_word_t) 1 << (bit & MG_UECC_WORD_BITS_MASK)));
|
|
}
|
|
|
|
/* Counts the number of words in vli. */
|
|
static wordcount_t vli_numDigits(const mg_uecc_word_t *vli,
|
|
const wordcount_t max_words) {
|
|
wordcount_t i;
|
|
/* Search from the end until we find a non-zero digit.
|
|
We do it in reverse because we expect that most digits will be nonzero. */
|
|
for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
|
|
}
|
|
|
|
return (i + 1);
|
|
}
|
|
|
|
/* Counts the number of bits required to represent vli. */
|
|
MG_UECC_VLI_API bitcount_t mg_uecc_vli_numBits(const mg_uecc_word_t *vli,
|
|
const wordcount_t max_words) {
|
|
mg_uecc_word_t i;
|
|
mg_uecc_word_t digit;
|
|
|
|
wordcount_t num_digits = vli_numDigits(vli, max_words);
|
|
if (num_digits == 0) {
|
|
return 0;
|
|
}
|
|
|
|
digit = vli[num_digits - 1];
|
|
for (i = 0; digit; ++i) {
|
|
digit >>= 1;
|
|
}
|
|
|
|
return (((bitcount_t) ((num_digits - 1) << MG_UECC_WORD_BITS_SHIFT)) +
|
|
(bitcount_t) i);
|
|
}
|
|
|
|
/* Sets dest = src. */
|
|
#if !asm_set
|
|
MG_UECC_VLI_API void mg_uecc_vli_set(mg_uecc_word_t *dest,
|
|
const mg_uecc_word_t *src,
|
|
wordcount_t num_words) {
|
|
wordcount_t i;
|
|
for (i = 0; i < num_words; ++i) {
|
|
dest[i] = src[i];
|
|
}
|
|
}
|
|
#endif /* !asm_set */
|
|
|
|
/* Returns sign of left - right. */
|
|
static cmpresult_t mg_uecc_vli_cmp_unsafe(const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words) {
|
|
wordcount_t i;
|
|
for (i = num_words - 1; i >= 0; --i) {
|
|
if (left[i] > right[i]) {
|
|
return 1;
|
|
} else if (left[i] < right[i]) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Constant-time comparison function - secure way to compare long integers */
|
|
/* Returns one if left == right, zero otherwise. */
|
|
MG_UECC_VLI_API mg_uecc_word_t mg_uecc_vli_equal(const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t diff = 0;
|
|
wordcount_t i;
|
|
for (i = num_words - 1; i >= 0; --i) {
|
|
diff |= (left[i] ^ right[i]);
|
|
}
|
|
return (diff == 0);
|
|
}
|
|
|
|
MG_UECC_VLI_API mg_uecc_word_t mg_uecc_vli_sub(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words);
|
|
|
|
/* Returns sign of left - right, in constant time. */
|
|
MG_UECC_VLI_API cmpresult_t mg_uecc_vli_cmp(const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t tmp[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t neg = !!mg_uecc_vli_sub(tmp, left, right, num_words);
|
|
mg_uecc_word_t equal = mg_uecc_vli_isZero(tmp, num_words);
|
|
return (cmpresult_t) (!equal - 2 * neg);
|
|
}
|
|
|
|
/* Computes vli = vli >> 1. */
|
|
#if !asm_rshift1
|
|
MG_UECC_VLI_API void mg_uecc_vli_rshift1(mg_uecc_word_t *vli,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t *end = vli;
|
|
mg_uecc_word_t carry = 0;
|
|
|
|
vli += num_words;
|
|
while (vli-- > end) {
|
|
mg_uecc_word_t temp = *vli;
|
|
*vli = (temp >> 1) | carry;
|
|
carry = temp << (MG_UECC_WORD_BITS - 1);
|
|
}
|
|
}
|
|
#endif /* !asm_rshift1 */
|
|
|
|
/* Computes result = left + right, returning carry. Can modify in place. */
|
|
#if !asm_add
|
|
MG_UECC_VLI_API mg_uecc_word_t mg_uecc_vli_add(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t carry = 0;
|
|
wordcount_t i;
|
|
for (i = 0; i < num_words; ++i) {
|
|
mg_uecc_word_t sum = left[i] + right[i] + carry;
|
|
if (sum != left[i]) {
|
|
carry = (sum < left[i]);
|
|
}
|
|
result[i] = sum;
|
|
}
|
|
return carry;
|
|
}
|
|
#endif /* !asm_add */
|
|
|
|
/* Computes result = left - right, returning borrow. Can modify in place. */
|
|
#if !asm_sub
|
|
MG_UECC_VLI_API mg_uecc_word_t mg_uecc_vli_sub(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t borrow = 0;
|
|
wordcount_t i;
|
|
for (i = 0; i < num_words; ++i) {
|
|
mg_uecc_word_t diff = left[i] - right[i] - borrow;
|
|
if (diff != left[i]) {
|
|
borrow = (diff > left[i]);
|
|
}
|
|
result[i] = diff;
|
|
}
|
|
return borrow;
|
|
}
|
|
#endif /* !asm_sub */
|
|
|
|
#if !asm_mult || (MG_UECC_SQUARE_FUNC && !asm_square) || \
|
|
(MG_UECC_SUPPORTS_secp256k1 && (MG_UECC_OPTIMIZATION_LEVEL > 0) && \
|
|
((MG_UECC_WORD_SIZE == 1) || (MG_UECC_WORD_SIZE == 8)))
|
|
static void muladd(mg_uecc_word_t a, mg_uecc_word_t b, mg_uecc_word_t *r0,
|
|
mg_uecc_word_t *r1, mg_uecc_word_t *r2) {
|
|
#if MG_UECC_WORD_SIZE == 8
|
|
uint64_t a0 = a & 0xffffffff;
|
|
uint64_t a1 = a >> 32;
|
|
uint64_t b0 = b & 0xffffffff;
|
|
uint64_t b1 = b >> 32;
|
|
|
|
uint64_t i0 = a0 * b0;
|
|
uint64_t i1 = a0 * b1;
|
|
uint64_t i2 = a1 * b0;
|
|
uint64_t i3 = a1 * b1;
|
|
|
|
uint64_t p0, p1;
|
|
|
|
i2 += (i0 >> 32);
|
|
i2 += i1;
|
|
if (i2 < i1) { /* overflow */
|
|
i3 += 0x100000000;
|
|
}
|
|
|
|
p0 = (i0 & 0xffffffff) | (i2 << 32);
|
|
p1 = i3 + (i2 >> 32);
|
|
|
|
*r0 += p0;
|
|
*r1 += (p1 + (*r0 < p0));
|
|
*r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
|
|
#else
|
|
mg_uecc_dword_t p = (mg_uecc_dword_t) a * b;
|
|
mg_uecc_dword_t r01 = ((mg_uecc_dword_t) (*r1) << MG_UECC_WORD_BITS) | *r0;
|
|
r01 += p;
|
|
*r2 += (r01 < p);
|
|
*r1 = (mg_uecc_word_t) (r01 >> MG_UECC_WORD_BITS);
|
|
*r0 = (mg_uecc_word_t) r01;
|
|
#endif
|
|
}
|
|
#endif /* muladd needed */
|
|
|
|
#if !asm_mult
|
|
MG_UECC_VLI_API void mg_uecc_vli_mult(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t r0 = 0;
|
|
mg_uecc_word_t r1 = 0;
|
|
mg_uecc_word_t r2 = 0;
|
|
wordcount_t i, k;
|
|
|
|
/* Compute each digit of result in sequence, maintaining the carries. */
|
|
for (k = 0; k < num_words; ++k) {
|
|
for (i = 0; i <= k; ++i) {
|
|
muladd(left[i], right[k - i], &r0, &r1, &r2);
|
|
}
|
|
result[k] = r0;
|
|
r0 = r1;
|
|
r1 = r2;
|
|
r2 = 0;
|
|
}
|
|
for (k = num_words; k < num_words * 2 - 1; ++k) {
|
|
for (i = (wordcount_t) ((k + 1) - num_words); i < num_words; ++i) {
|
|
muladd(left[i], right[k - i], &r0, &r1, &r2);
|
|
}
|
|
result[k] = r0;
|
|
r0 = r1;
|
|
r1 = r2;
|
|
r2 = 0;
|
|
}
|
|
result[num_words * 2 - 1] = r0;
|
|
}
|
|
#endif /* !asm_mult */
|
|
|
|
#if MG_UECC_SQUARE_FUNC
|
|
|
|
#if !asm_square
|
|
static void mul2add(mg_uecc_word_t a, mg_uecc_word_t b, mg_uecc_word_t *r0,
|
|
mg_uecc_word_t *r1, mg_uecc_word_t *r2) {
|
|
#if MG_UECC_WORD_SIZE == 8
|
|
uint64_t a0 = a & 0xffffffffull;
|
|
uint64_t a1 = a >> 32;
|
|
uint64_t b0 = b & 0xffffffffull;
|
|
uint64_t b1 = b >> 32;
|
|
|
|
uint64_t i0 = a0 * b0;
|
|
uint64_t i1 = a0 * b1;
|
|
uint64_t i2 = a1 * b0;
|
|
uint64_t i3 = a1 * b1;
|
|
|
|
uint64_t p0, p1;
|
|
|
|
i2 += (i0 >> 32);
|
|
i2 += i1;
|
|
if (i2 < i1) { /* overflow */
|
|
i3 += 0x100000000ull;
|
|
}
|
|
|
|
p0 = (i0 & 0xffffffffull) | (i2 << 32);
|
|
p1 = i3 + (i2 >> 32);
|
|
|
|
*r2 += (p1 >> 63);
|
|
p1 = (p1 << 1) | (p0 >> 63);
|
|
p0 <<= 1;
|
|
|
|
*r0 += p0;
|
|
*r1 += (p1 + (*r0 < p0));
|
|
*r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
|
|
#else
|
|
mg_uecc_dword_t p = (mg_uecc_dword_t) a * b;
|
|
mg_uecc_dword_t r01 = ((mg_uecc_dword_t) (*r1) << MG_UECC_WORD_BITS) | *r0;
|
|
*r2 += (p >> (MG_UECC_WORD_BITS * 2 - 1));
|
|
p *= 2;
|
|
r01 += p;
|
|
*r2 += (r01 < p);
|
|
*r1 = r01 >> MG_UECC_WORD_BITS;
|
|
*r0 = (mg_uecc_word_t) r01;
|
|
#endif
|
|
}
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_square(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t r0 = 0;
|
|
mg_uecc_word_t r1 = 0;
|
|
mg_uecc_word_t r2 = 0;
|
|
|
|
wordcount_t i, k;
|
|
|
|
for (k = 0; k < num_words * 2 - 1; ++k) {
|
|
mg_uecc_word_t min = (k < num_words ? 0 : (k + 1) - num_words);
|
|
for (i = min; i <= k && i <= k - i; ++i) {
|
|
if (i < k - i) {
|
|
mul2add(left[i], left[k - i], &r0, &r1, &r2);
|
|
} else {
|
|
muladd(left[i], left[k - i], &r0, &r1, &r2);
|
|
}
|
|
}
|
|
result[k] = r0;
|
|
r0 = r1;
|
|
r1 = r2;
|
|
r2 = 0;
|
|
}
|
|
|
|
result[num_words * 2 - 1] = r0;
|
|
}
|
|
#endif /* !asm_square */
|
|
|
|
#else /* MG_UECC_SQUARE_FUNC */
|
|
|
|
#if MG_UECC_ENABLE_VLI_API
|
|
MG_UECC_VLI_API void mg_uecc_vli_square(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
wordcount_t num_words) {
|
|
mg_uecc_vli_mult(result, left, left, num_words);
|
|
}
|
|
#endif /* MG_UECC_ENABLE_VLI_API */
|
|
|
|
#endif /* MG_UECC_SQUARE_FUNC */
|
|
|
|
/* Computes result = (left + right) % mod.
|
|
Assumes that left < mod and right < mod, and that result does not overlap
|
|
mod. */
|
|
MG_UECC_VLI_API void mg_uecc_vli_modAdd(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t carry = mg_uecc_vli_add(result, left, right, num_words);
|
|
if (carry || mg_uecc_vli_cmp_unsafe(mod, result, num_words) != 1) {
|
|
/* result > mod (result = mod + remainder), so subtract mod to get
|
|
* remainder. */
|
|
mg_uecc_vli_sub(result, result, mod, num_words);
|
|
}
|
|
}
|
|
|
|
/* Computes result = (left - right) % mod.
|
|
Assumes that left < mod and right < mod, and that result does not overlap
|
|
mod. */
|
|
MG_UECC_VLI_API void mg_uecc_vli_modSub(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t l_borrow = mg_uecc_vli_sub(result, left, right, num_words);
|
|
if (l_borrow) {
|
|
/* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
|
|
we can get the correct result from result + mod (with overflow). */
|
|
mg_uecc_vli_add(result, result, mod, num_words);
|
|
}
|
|
}
|
|
|
|
/* Computes result = product % mod, where product is 2N words long. */
|
|
/* Currently only designed to work for curve_p or curve_n. */
|
|
MG_UECC_VLI_API void mg_uecc_vli_mmod(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t mod_multiple[2 * MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tmp[2 * MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t *v[2] = {tmp, product};
|
|
mg_uecc_word_t index;
|
|
|
|
/* Shift mod so its highest set bit is at the maximum position. */
|
|
bitcount_t shift = (bitcount_t) ((num_words * 2 * MG_UECC_WORD_BITS) -
|
|
mg_uecc_vli_numBits(mod, num_words));
|
|
wordcount_t word_shift = (wordcount_t) (shift / MG_UECC_WORD_BITS);
|
|
wordcount_t bit_shift = (wordcount_t) (shift % MG_UECC_WORD_BITS);
|
|
mg_uecc_word_t carry = 0;
|
|
mg_uecc_vli_clear(mod_multiple, word_shift);
|
|
if (bit_shift > 0) {
|
|
for (index = 0; index < (mg_uecc_word_t) num_words; ++index) {
|
|
mod_multiple[(mg_uecc_word_t) word_shift + index] =
|
|
(mg_uecc_word_t) (mod[index] << bit_shift) | carry;
|
|
carry = mod[index] >> (MG_UECC_WORD_BITS - bit_shift);
|
|
}
|
|
} else {
|
|
mg_uecc_vli_set(mod_multiple + word_shift, mod, num_words);
|
|
}
|
|
|
|
for (index = 1; shift >= 0; --shift) {
|
|
mg_uecc_word_t borrow = 0;
|
|
wordcount_t i;
|
|
for (i = 0; i < num_words * 2; ++i) {
|
|
mg_uecc_word_t diff = v[index][i] - mod_multiple[i] - borrow;
|
|
if (diff != v[index][i]) {
|
|
borrow = (diff > v[index][i]);
|
|
}
|
|
v[1 - index][i] = diff;
|
|
}
|
|
index = !(index ^ borrow); /* Swap the index if there was no borrow */
|
|
mg_uecc_vli_rshift1(mod_multiple, num_words);
|
|
mod_multiple[num_words - 1] |= mod_multiple[num_words]
|
|
<< (MG_UECC_WORD_BITS - 1);
|
|
mg_uecc_vli_rshift1(mod_multiple + num_words, num_words);
|
|
}
|
|
mg_uecc_vli_set(result, v[index], num_words);
|
|
}
|
|
|
|
/* Computes result = (left * right) % mod. */
|
|
MG_UECC_VLI_API void mg_uecc_vli_modMult(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t product[2 * MG_UECC_MAX_WORDS];
|
|
mg_uecc_vli_mult(product, left, right, num_words);
|
|
mg_uecc_vli_mmod(result, product, mod, num_words);
|
|
}
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_modMult_fast(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *right,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t product[2 * MG_UECC_MAX_WORDS];
|
|
mg_uecc_vli_mult(product, left, right, curve->num_words);
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
curve->mmod_fast(result, product);
|
|
#else
|
|
mg_uecc_vli_mmod(result, product, curve->p, curve->num_words);
|
|
#endif
|
|
}
|
|
|
|
#if MG_UECC_SQUARE_FUNC
|
|
|
|
#if MG_UECC_ENABLE_VLI_API
|
|
/* Computes result = left^2 % mod. */
|
|
MG_UECC_VLI_API void mg_uecc_vli_modSquare(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t product[2 * MG_UECC_MAX_WORDS];
|
|
mg_uecc_vli_square(product, left, num_words);
|
|
mg_uecc_vli_mmod(result, product, mod, num_words);
|
|
}
|
|
#endif /* MG_UECC_ENABLE_VLI_API */
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_modSquare_fast(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t product[2 * MG_UECC_MAX_WORDS];
|
|
mg_uecc_vli_square(product, left, curve->num_words);
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
curve->mmod_fast(result, product);
|
|
#else
|
|
mg_uecc_vli_mmod(result, product, curve->p, curve->num_words);
|
|
#endif
|
|
}
|
|
|
|
#else /* MG_UECC_SQUARE_FUNC */
|
|
|
|
#if MG_UECC_ENABLE_VLI_API
|
|
MG_UECC_VLI_API void mg_uecc_vli_modSquare(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_vli_modMult(result, left, left, mod, num_words);
|
|
}
|
|
#endif /* MG_UECC_ENABLE_VLI_API */
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_modSquare_fast(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *left,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_vli_modMult_fast(result, left, left, curve);
|
|
}
|
|
|
|
#endif /* MG_UECC_SQUARE_FUNC */
|
|
|
|
#define EVEN(vli) (!(vli[0] & 1))
|
|
static void vli_modInv_update(mg_uecc_word_t *uv, const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t carry = 0;
|
|
if (!EVEN(uv)) {
|
|
carry = mg_uecc_vli_add(uv, uv, mod, num_words);
|
|
}
|
|
mg_uecc_vli_rshift1(uv, num_words);
|
|
if (carry) {
|
|
uv[num_words - 1] |= HIGH_BIT_SET;
|
|
}
|
|
}
|
|
|
|
/* Computes result = (1 / input) % mod. All VLIs are the same size.
|
|
See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" */
|
|
MG_UECC_VLI_API void mg_uecc_vli_modInv(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *input,
|
|
const mg_uecc_word_t *mod,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t a[MG_UECC_MAX_WORDS], b[MG_UECC_MAX_WORDS],
|
|
u[MG_UECC_MAX_WORDS], v[MG_UECC_MAX_WORDS];
|
|
cmpresult_t cmpResult;
|
|
|
|
if (mg_uecc_vli_isZero(input, num_words)) {
|
|
mg_uecc_vli_clear(result, num_words);
|
|
return;
|
|
}
|
|
|
|
mg_uecc_vli_set(a, input, num_words);
|
|
mg_uecc_vli_set(b, mod, num_words);
|
|
mg_uecc_vli_clear(u, num_words);
|
|
u[0] = 1;
|
|
mg_uecc_vli_clear(v, num_words);
|
|
while ((cmpResult = mg_uecc_vli_cmp_unsafe(a, b, num_words)) != 0) {
|
|
if (EVEN(a)) {
|
|
mg_uecc_vli_rshift1(a, num_words);
|
|
vli_modInv_update(u, mod, num_words);
|
|
} else if (EVEN(b)) {
|
|
mg_uecc_vli_rshift1(b, num_words);
|
|
vli_modInv_update(v, mod, num_words);
|
|
} else if (cmpResult > 0) {
|
|
mg_uecc_vli_sub(a, a, b, num_words);
|
|
mg_uecc_vli_rshift1(a, num_words);
|
|
if (mg_uecc_vli_cmp_unsafe(u, v, num_words) < 0) {
|
|
mg_uecc_vli_add(u, u, mod, num_words);
|
|
}
|
|
mg_uecc_vli_sub(u, u, v, num_words);
|
|
vli_modInv_update(u, mod, num_words);
|
|
} else {
|
|
mg_uecc_vli_sub(b, b, a, num_words);
|
|
mg_uecc_vli_rshift1(b, num_words);
|
|
if (mg_uecc_vli_cmp_unsafe(v, u, num_words) < 0) {
|
|
mg_uecc_vli_add(v, v, mod, num_words);
|
|
}
|
|
mg_uecc_vli_sub(v, v, u, num_words);
|
|
vli_modInv_update(v, mod, num_words);
|
|
}
|
|
}
|
|
mg_uecc_vli_set(result, u, num_words);
|
|
}
|
|
|
|
/* ------ Point operations ------ */
|
|
|
|
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
|
|
|
#ifndef _UECC_CURVE_SPECIFIC_H_
|
|
#define _UECC_CURVE_SPECIFIC_H_
|
|
|
|
#define num_bytes_secp160r1 20
|
|
#define num_bytes_secp192r1 24
|
|
#define num_bytes_secp224r1 28
|
|
#define num_bytes_secp256r1 32
|
|
#define num_bytes_secp256k1 32
|
|
|
|
#if (MG_UECC_WORD_SIZE == 1)
|
|
|
|
#define num_words_secp160r1 20
|
|
#define num_words_secp192r1 24
|
|
#define num_words_secp224r1 28
|
|
#define num_words_secp256r1 32
|
|
#define num_words_secp256k1 32
|
|
|
|
#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) \
|
|
0x##a, 0x##b, 0x##c, 0x##d, 0x##e, 0x##f, 0x##g, 0x##h
|
|
#define BYTES_TO_WORDS_4(a, b, c, d) 0x##a, 0x##b, 0x##c, 0x##d
|
|
|
|
#elif (MG_UECC_WORD_SIZE == 4)
|
|
|
|
#define num_words_secp160r1 5
|
|
#define num_words_secp192r1 6
|
|
#define num_words_secp224r1 7
|
|
#define num_words_secp256r1 8
|
|
#define num_words_secp256k1 8
|
|
|
|
#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
|
|
#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
|
|
|
|
#elif (MG_UECC_WORD_SIZE == 8)
|
|
|
|
#define num_words_secp160r1 3
|
|
#define num_words_secp192r1 3
|
|
#define num_words_secp224r1 4
|
|
#define num_words_secp256r1 4
|
|
#define num_words_secp256k1 4
|
|
|
|
#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##h##g##f##e##d##c##b##a##U
|
|
#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a##U
|
|
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
|
|
#if MG_UECC_SUPPORTS_secp160r1 || MG_UECC_SUPPORTS_secp192r1 || \
|
|
MG_UECC_SUPPORTS_secp224r1 || MG_UECC_SUPPORTS_secp256r1
|
|
static void double_jacobian_default(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
mg_uecc_word_t *Z1, MG_UECC_Curve curve) {
|
|
/* t1 = X, t2 = Y, t3 = Z */
|
|
mg_uecc_word_t t4[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t t5[MG_UECC_MAX_WORDS];
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
if (mg_uecc_vli_isZero(Z1, num_words)) {
|
|
return;
|
|
}
|
|
|
|
mg_uecc_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
|
|
mg_uecc_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
|
|
mg_uecc_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
|
|
mg_uecc_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
|
|
mg_uecc_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
|
|
|
|
mg_uecc_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
|
|
mg_uecc_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
|
|
mg_uecc_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
|
|
mg_uecc_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
|
|
|
|
mg_uecc_vli_modAdd(Z1, X1, X1, curve->p,
|
|
num_words); /* t3 = 2*(x1^2 - z1^4) */
|
|
mg_uecc_vli_modAdd(X1, X1, Z1, curve->p,
|
|
num_words); /* t1 = 3*(x1^2 - z1^4) */
|
|
if (mg_uecc_vli_testBit(X1, 0)) {
|
|
mg_uecc_word_t l_carry = mg_uecc_vli_add(X1, X1, curve->p, num_words);
|
|
mg_uecc_vli_rshift1(X1, num_words);
|
|
X1[num_words - 1] |= l_carry << (MG_UECC_WORD_BITS - 1);
|
|
} else {
|
|
mg_uecc_vli_rshift1(X1, num_words);
|
|
}
|
|
/* t1 = 3/2*(x1^2 - z1^4) = B */
|
|
|
|
mg_uecc_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
|
|
mg_uecc_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
|
|
mg_uecc_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
|
|
mg_uecc_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
|
|
mg_uecc_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
|
|
mg_uecc_vli_modSub(t4, X1, t4, curve->p,
|
|
num_words); /* t4 = B * (A - x3) - y1^4 = y3 */
|
|
|
|
mg_uecc_vli_set(X1, Z1, num_words);
|
|
mg_uecc_vli_set(Z1, Y1, num_words);
|
|
mg_uecc_vli_set(Y1, t4, num_words);
|
|
}
|
|
|
|
/* Computes result = x^3 + ax + b. result must not overlap x. */
|
|
static void x_side_default(mg_uecc_word_t *result, const mg_uecc_word_t *x,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t _3[MG_UECC_MAX_WORDS] = {3}; /* -a = 3 */
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
mg_uecc_vli_modSquare_fast(result, x, curve); /* r = x^2 */
|
|
mg_uecc_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
|
|
mg_uecc_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
|
|
mg_uecc_vli_modAdd(result, result, curve->b, curve->p,
|
|
num_words); /* r = x^3 - 3x + b */
|
|
}
|
|
#endif /* MG_UECC_SUPPORTS_secp... */
|
|
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
#if MG_UECC_SUPPORTS_secp160r1 || MG_UECC_SUPPORTS_secp192r1 || \
|
|
MG_UECC_SUPPORTS_secp256r1 || MG_UECC_SUPPORTS_secp256k1
|
|
/* Compute a = sqrt(a) (mod curve_p). */
|
|
static void mod_sqrt_default(mg_uecc_word_t *a, MG_UECC_Curve curve) {
|
|
bitcount_t i;
|
|
mg_uecc_word_t p1[MG_UECC_MAX_WORDS] = {1};
|
|
mg_uecc_word_t l_result[MG_UECC_MAX_WORDS] = {1};
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
/* When curve->p == 3 (mod 4), we can compute
|
|
sqrt(a) = a^((curve->p + 1) / 4) (mod curve->p). */
|
|
mg_uecc_vli_add(p1, curve->p, p1, num_words); /* p1 = curve_p + 1 */
|
|
for (i = mg_uecc_vli_numBits(p1, num_words) - 1; i > 1; --i) {
|
|
mg_uecc_vli_modSquare_fast(l_result, l_result, curve);
|
|
if (mg_uecc_vli_testBit(p1, i)) {
|
|
mg_uecc_vli_modMult_fast(l_result, l_result, a, curve);
|
|
}
|
|
}
|
|
mg_uecc_vli_set(a, l_result, num_words);
|
|
}
|
|
#endif /* MG_UECC_SUPPORTS_secp... */
|
|
#endif /* MG_UECC_SUPPORT_COMPRESSED_POINT */
|
|
|
|
#if MG_UECC_SUPPORTS_secp160r1
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
static void vli_mmod_fast_secp160r1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product);
|
|
#endif
|
|
|
|
static const struct MG_UECC_Curve_t curve_secp160r1 = {
|
|
num_words_secp160r1,
|
|
num_bytes_secp160r1,
|
|
161, /* num_n_bits */
|
|
{BYTES_TO_WORDS_8(FF, FF, FF, 7F, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_4(FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(57, 22, 75, CA, D3, AE, 27, F9),
|
|
BYTES_TO_WORDS_8(C8, F4, 01, 00, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, 01, 00, 00, 00)},
|
|
{BYTES_TO_WORDS_8(82, FC, CB, 13, B9, 8B, C3, 68),
|
|
BYTES_TO_WORDS_8(89, 69, 64, 46, 28, 73, F5, 8E),
|
|
BYTES_TO_WORDS_4(68, B5, 96, 4A),
|
|
|
|
BYTES_TO_WORDS_8(32, FB, C5, 7A, 37, 51, 23, 04),
|
|
BYTES_TO_WORDS_8(12, C9, DC, 59, 7D, 94, 68, 31),
|
|
BYTES_TO_WORDS_4(55, 28, A6, 23)},
|
|
{BYTES_TO_WORDS_8(45, FA, 65, C5, AD, D4, D4, 81),
|
|
BYTES_TO_WORDS_8(9F, F8, AC, 65, 8B, 7A, BD, 54),
|
|
BYTES_TO_WORDS_4(FC, BE, 97, 1C)},
|
|
&double_jacobian_default,
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
&mod_sqrt_default,
|
|
#endif
|
|
&x_side_default,
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
&vli_mmod_fast_secp160r1
|
|
#endif
|
|
};
|
|
|
|
MG_UECC_Curve mg_uecc_secp160r1(void) {
|
|
return &curve_secp160r1;
|
|
}
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp160r1)
|
|
/* Computes result = product % curve_p
|
|
see http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf page 354
|
|
|
|
Note that this only works if log2(omega) < log2(p) / 2 */
|
|
static void omega_mult_secp160r1(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *right);
|
|
#if MG_UECC_WORD_SIZE == 8
|
|
static void vli_mmod_fast_secp160r1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product) {
|
|
mg_uecc_word_t tmp[2 * num_words_secp160r1];
|
|
mg_uecc_word_t copy;
|
|
|
|
mg_uecc_vli_clear(tmp, num_words_secp160r1);
|
|
mg_uecc_vli_clear(tmp + num_words_secp160r1, num_words_secp160r1);
|
|
|
|
omega_mult_secp160r1(tmp,
|
|
product + num_words_secp160r1 - 1); /* (Rq, q) = q * c */
|
|
|
|
product[num_words_secp160r1 - 1] &= 0xffffffff;
|
|
copy = tmp[num_words_secp160r1 - 1];
|
|
tmp[num_words_secp160r1 - 1] &= 0xffffffff;
|
|
mg_uecc_vli_add(result, product, tmp,
|
|
num_words_secp160r1); /* (C, r) = r + q */
|
|
mg_uecc_vli_clear(product, num_words_secp160r1);
|
|
tmp[num_words_secp160r1 - 1] = copy;
|
|
omega_mult_secp160r1(product, tmp + num_words_secp160r1 - 1); /* Rq*c */
|
|
mg_uecc_vli_add(result, result, product,
|
|
num_words_secp160r1); /* (C1, r) = r + Rq*c */
|
|
|
|
while (mg_uecc_vli_cmp_unsafe(result, curve_secp160r1.p,
|
|
num_words_secp160r1) > 0) {
|
|
mg_uecc_vli_sub(result, result, curve_secp160r1.p, num_words_secp160r1);
|
|
}
|
|
}
|
|
|
|
static void omega_mult_secp160r1(uint64_t *result, const uint64_t *right) {
|
|
uint32_t carry;
|
|
unsigned i;
|
|
|
|
/* Multiply by (2^31 + 1). */
|
|
carry = 0;
|
|
for (i = 0; i < num_words_secp160r1; ++i) {
|
|
uint64_t tmp = (right[i] >> 32) | (right[i + 1] << 32);
|
|
result[i] = (tmp << 31) + tmp + carry;
|
|
carry = (tmp >> 33) + (result[i] < tmp || (carry && result[i] == tmp));
|
|
}
|
|
result[i] = carry;
|
|
}
|
|
#else
|
|
static void vli_mmod_fast_secp160r1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product) {
|
|
mg_uecc_word_t tmp[2 * num_words_secp160r1];
|
|
mg_uecc_word_t carry;
|
|
|
|
mg_uecc_vli_clear(tmp, num_words_secp160r1);
|
|
mg_uecc_vli_clear(tmp + num_words_secp160r1, num_words_secp160r1);
|
|
|
|
omega_mult_secp160r1(tmp,
|
|
product + num_words_secp160r1); /* (Rq, q) = q * c */
|
|
|
|
carry = mg_uecc_vli_add(result, product, tmp,
|
|
num_words_secp160r1); /* (C, r) = r + q */
|
|
mg_uecc_vli_clear(product, num_words_secp160r1);
|
|
omega_mult_secp160r1(product, tmp + num_words_secp160r1); /* Rq*c */
|
|
carry += mg_uecc_vli_add(result, result, product,
|
|
num_words_secp160r1); /* (C1, r) = r + Rq*c */
|
|
|
|
while (carry > 0) {
|
|
--carry;
|
|
mg_uecc_vli_sub(result, result, curve_secp160r1.p, num_words_secp160r1);
|
|
}
|
|
if (mg_uecc_vli_cmp_unsafe(result, curve_secp160r1.p, num_words_secp160r1) >
|
|
0) {
|
|
mg_uecc_vli_sub(result, result, curve_secp160r1.p, num_words_secp160r1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if MG_UECC_WORD_SIZE == 1
|
|
static void omega_mult_secp160r1(uint8_t *result, const uint8_t *right) {
|
|
uint8_t carry;
|
|
uint8_t i;
|
|
|
|
/* Multiply by (2^31 + 1). */
|
|
mg_uecc_vli_set(result + 4, right, num_words_secp160r1); /* 2^32 */
|
|
mg_uecc_vli_rshift1(result + 4, num_words_secp160r1); /* 2^31 */
|
|
result[3] = right[0] << 7; /* get last bit from shift */
|
|
|
|
carry = mg_uecc_vli_add(result, result, right,
|
|
num_words_secp160r1); /* 2^31 + 1 */
|
|
for (i = num_words_secp160r1; carry; ++i) {
|
|
uint16_t sum = (uint16_t) result[i] + carry;
|
|
result[i] = (uint8_t) sum;
|
|
carry = sum >> 8;
|
|
}
|
|
}
|
|
#elif MG_UECC_WORD_SIZE == 4
|
|
static void omega_mult_secp160r1(uint32_t *result, const uint32_t *right) {
|
|
uint32_t carry;
|
|
unsigned i;
|
|
|
|
/* Multiply by (2^31 + 1). */
|
|
mg_uecc_vli_set(result + 1, right, num_words_secp160r1); /* 2^32 */
|
|
mg_uecc_vli_rshift1(result + 1, num_words_secp160r1); /* 2^31 */
|
|
result[0] = right[0] << 31; /* get last bit from shift */
|
|
|
|
carry = mg_uecc_vli_add(result, result, right,
|
|
num_words_secp160r1); /* 2^31 + 1 */
|
|
for (i = num_words_secp160r1; carry; ++i) {
|
|
uint64_t sum = (uint64_t) result[i] + carry;
|
|
result[i] = (uint32_t) sum;
|
|
carry = sum >> 32;
|
|
}
|
|
}
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
#endif /* (MG_UECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp160r1) */
|
|
|
|
#endif /* MG_UECC_SUPPORTS_secp160r1 */
|
|
|
|
#if MG_UECC_SUPPORTS_secp192r1
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
static void vli_mmod_fast_secp192r1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product);
|
|
#endif
|
|
|
|
static const struct MG_UECC_Curve_t curve_secp192r1 = {
|
|
num_words_secp192r1,
|
|
num_bytes_secp192r1,
|
|
192, /* num_n_bits */
|
|
{BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FE, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(31, 28, D2, B4, B1, C9, 6B, 14),
|
|
BYTES_TO_WORDS_8(36, F8, DE, 99, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(12, 10, FF, 82, FD, 0A, FF, F4),
|
|
BYTES_TO_WORDS_8(00, 88, A1, 43, EB, 20, BF, 7C),
|
|
BYTES_TO_WORDS_8(F6, 90, 30, B0, 0E, A8, 8D, 18),
|
|
|
|
BYTES_TO_WORDS_8(11, 48, 79, 1E, A1, 77, F9, 73),
|
|
BYTES_TO_WORDS_8(D5, CD, 24, 6B, ED, 11, 10, 63),
|
|
BYTES_TO_WORDS_8(78, DA, C8, FF, 95, 2B, 19, 07)},
|
|
{BYTES_TO_WORDS_8(B1, B9, 46, C1, EC, DE, B8, FE),
|
|
BYTES_TO_WORDS_8(49, 30, 24, 72, AB, E9, A7, 0F),
|
|
BYTES_TO_WORDS_8(E7, 80, 9C, E5, 19, 05, 21, 64)},
|
|
&double_jacobian_default,
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
&mod_sqrt_default,
|
|
#endif
|
|
&x_side_default,
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
&vli_mmod_fast_secp192r1
|
|
#endif
|
|
};
|
|
|
|
MG_UECC_Curve mg_uecc_secp192r1(void) {
|
|
return &curve_secp192r1;
|
|
}
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
/* Computes result = product % curve_p.
|
|
See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
|
|
*/
|
|
#if MG_UECC_WORD_SIZE == 1
|
|
static void vli_mmod_fast_secp192r1(uint8_t *result, uint8_t *product) {
|
|
uint8_t tmp[num_words_secp192r1];
|
|
uint8_t carry;
|
|
|
|
mg_uecc_vli_set(result, product, num_words_secp192r1);
|
|
|
|
mg_uecc_vli_set(tmp, &product[24], num_words_secp192r1);
|
|
carry = mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
tmp[0] = tmp[1] = tmp[2] = tmp[3] = tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
|
|
tmp[8] = product[24];
|
|
tmp[9] = product[25];
|
|
tmp[10] = product[26];
|
|
tmp[11] = product[27];
|
|
tmp[12] = product[28];
|
|
tmp[13] = product[29];
|
|
tmp[14] = product[30];
|
|
tmp[15] = product[31];
|
|
tmp[16] = product[32];
|
|
tmp[17] = product[33];
|
|
tmp[18] = product[34];
|
|
tmp[19] = product[35];
|
|
tmp[20] = product[36];
|
|
tmp[21] = product[37];
|
|
tmp[22] = product[38];
|
|
tmp[23] = product[39];
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
tmp[0] = tmp[8] = product[40];
|
|
tmp[1] = tmp[9] = product[41];
|
|
tmp[2] = tmp[10] = product[42];
|
|
tmp[3] = tmp[11] = product[43];
|
|
tmp[4] = tmp[12] = product[44];
|
|
tmp[5] = tmp[13] = product[45];
|
|
tmp[6] = tmp[14] = product[46];
|
|
tmp[7] = tmp[15] = product[47];
|
|
tmp[16] = tmp[17] = tmp[18] = tmp[19] = tmp[20] = tmp[21] = tmp[22] =
|
|
tmp[23] = 0;
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp192r1.p, result,
|
|
num_words_secp192r1) != 1) {
|
|
carry -=
|
|
mg_uecc_vli_sub(result, result, curve_secp192r1.p, num_words_secp192r1);
|
|
}
|
|
}
|
|
#elif MG_UECC_WORD_SIZE == 4
|
|
static void vli_mmod_fast_secp192r1(uint32_t *result, uint32_t *product) {
|
|
uint32_t tmp[num_words_secp192r1];
|
|
int carry;
|
|
|
|
mg_uecc_vli_set(result, product, num_words_secp192r1);
|
|
|
|
mg_uecc_vli_set(tmp, &product[6], num_words_secp192r1);
|
|
carry = mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
tmp[0] = tmp[1] = 0;
|
|
tmp[2] = product[6];
|
|
tmp[3] = product[7];
|
|
tmp[4] = product[8];
|
|
tmp[5] = product[9];
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
tmp[0] = tmp[2] = product[10];
|
|
tmp[1] = tmp[3] = product[11];
|
|
tmp[4] = tmp[5] = 0;
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp192r1.p, result,
|
|
num_words_secp192r1) != 1) {
|
|
carry -=
|
|
mg_uecc_vli_sub(result, result, curve_secp192r1.p, num_words_secp192r1);
|
|
}
|
|
}
|
|
#else
|
|
static void vli_mmod_fast_secp192r1(uint64_t *result, uint64_t *product) {
|
|
uint64_t tmp[num_words_secp192r1];
|
|
int carry;
|
|
|
|
mg_uecc_vli_set(result, product, num_words_secp192r1);
|
|
|
|
mg_uecc_vli_set(tmp, &product[3], num_words_secp192r1);
|
|
carry = (int) mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
tmp[0] = 0;
|
|
tmp[1] = product[3];
|
|
tmp[2] = product[4];
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
tmp[0] = tmp[1] = product[5];
|
|
tmp[2] = 0;
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp192r1);
|
|
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp192r1.p, result,
|
|
num_words_secp192r1) != 1) {
|
|
carry -=
|
|
mg_uecc_vli_sub(result, result, curve_secp192r1.p, num_words_secp192r1);
|
|
}
|
|
}
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
#endif /* (MG_UECC_OPTIMIZATION_LEVEL > 0) */
|
|
|
|
#endif /* MG_UECC_SUPPORTS_secp192r1 */
|
|
|
|
#if MG_UECC_SUPPORTS_secp224r1
|
|
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
static void mod_sqrt_secp224r1(mg_uecc_word_t *a, MG_UECC_Curve curve);
|
|
#endif
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
static void vli_mmod_fast_secp224r1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product);
|
|
#endif
|
|
|
|
static const struct MG_UECC_Curve_t curve_secp224r1 = {
|
|
num_words_secp224r1,
|
|
num_bytes_secp224r1,
|
|
224, /* num_n_bits */
|
|
{BYTES_TO_WORDS_8(01, 00, 00, 00, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_4(FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(3D, 2A, 5C, 5C, 45, 29, DD, 13),
|
|
BYTES_TO_WORDS_8(3E, F0, B8, E0, A2, 16, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_4(FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(21, 1D, 5C, 11, D6, 80, 32, 34),
|
|
BYTES_TO_WORDS_8(22, 11, C2, 56, D3, C1, 03, 4A),
|
|
BYTES_TO_WORDS_8(B9, 90, 13, 32, 7F, BF, B4, 6B),
|
|
BYTES_TO_WORDS_4(BD, 0C, 0E, B7),
|
|
|
|
BYTES_TO_WORDS_8(34, 7E, 00, 85, 99, 81, D5, 44),
|
|
BYTES_TO_WORDS_8(64, 47, 07, 5A, A0, 75, 43, CD),
|
|
BYTES_TO_WORDS_8(E6, DF, 22, 4C, FB, 23, F7, B5),
|
|
BYTES_TO_WORDS_4(88, 63, 37, BD)},
|
|
{BYTES_TO_WORDS_8(B4, FF, 55, 23, 43, 39, 0B, 27),
|
|
BYTES_TO_WORDS_8(BA, D8, BF, D7, B7, B0, 44, 50),
|
|
BYTES_TO_WORDS_8(56, 32, 41, F5, AB, B3, 04, 0C),
|
|
BYTES_TO_WORDS_4(85, 0A, 05, B4)},
|
|
&double_jacobian_default,
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
&mod_sqrt_secp224r1,
|
|
#endif
|
|
&x_side_default,
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
&vli_mmod_fast_secp224r1
|
|
#endif
|
|
};
|
|
|
|
MG_UECC_Curve mg_uecc_secp224r1(void) {
|
|
return &curve_secp224r1;
|
|
}
|
|
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
/* Routine 3.2.4 RS; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
static void mod_sqrt_secp224r1_rs(mg_uecc_word_t *d1, mg_uecc_word_t *e1,
|
|
mg_uecc_word_t *f1, const mg_uecc_word_t *d0,
|
|
const mg_uecc_word_t *e0,
|
|
const mg_uecc_word_t *f0) {
|
|
mg_uecc_word_t t[num_words_secp224r1];
|
|
|
|
mg_uecc_vli_modSquare_fast(t, d0, &curve_secp224r1); /* t <-- d0 ^ 2 */
|
|
mg_uecc_vli_modMult_fast(e1, d0, e0, &curve_secp224r1); /* e1 <-- d0 * e0 */
|
|
mg_uecc_vli_modAdd(d1, t, f0, curve_secp224r1.p,
|
|
num_words_secp224r1); /* d1 <-- t + f0 */
|
|
mg_uecc_vli_modAdd(e1, e1, e1, curve_secp224r1.p,
|
|
num_words_secp224r1); /* e1 <-- e1 + e1 */
|
|
mg_uecc_vli_modMult_fast(f1, t, f0, &curve_secp224r1); /* f1 <-- t * f0 */
|
|
mg_uecc_vli_modAdd(f1, f1, f1, curve_secp224r1.p,
|
|
num_words_secp224r1); /* f1 <-- f1 + f1 */
|
|
mg_uecc_vli_modAdd(f1, f1, f1, curve_secp224r1.p,
|
|
num_words_secp224r1); /* f1 <-- f1 + f1 */
|
|
}
|
|
|
|
/* Routine 3.2.5 RSS; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
static void mod_sqrt_secp224r1_rss(mg_uecc_word_t *d1, mg_uecc_word_t *e1,
|
|
mg_uecc_word_t *f1, const mg_uecc_word_t *d0,
|
|
const mg_uecc_word_t *e0,
|
|
const mg_uecc_word_t *f0,
|
|
const bitcount_t j) {
|
|
bitcount_t i;
|
|
|
|
mg_uecc_vli_set(d1, d0, num_words_secp224r1); /* d1 <-- d0 */
|
|
mg_uecc_vli_set(e1, e0, num_words_secp224r1); /* e1 <-- e0 */
|
|
mg_uecc_vli_set(f1, f0, num_words_secp224r1); /* f1 <-- f0 */
|
|
for (i = 1; i <= j; i++) {
|
|
mod_sqrt_secp224r1_rs(d1, e1, f1, d1, e1, f1); /* RS (d1,e1,f1,d1,e1,f1) */
|
|
}
|
|
}
|
|
|
|
/* Routine 3.2.6 RM; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
static void mod_sqrt_secp224r1_rm(mg_uecc_word_t *d2, mg_uecc_word_t *e2,
|
|
mg_uecc_word_t *f2, const mg_uecc_word_t *c,
|
|
const mg_uecc_word_t *d0,
|
|
const mg_uecc_word_t *e0,
|
|
const mg_uecc_word_t *d1,
|
|
const mg_uecc_word_t *e1) {
|
|
mg_uecc_word_t t1[num_words_secp224r1];
|
|
mg_uecc_word_t t2[num_words_secp224r1];
|
|
|
|
mg_uecc_vli_modMult_fast(t1, e0, e1, &curve_secp224r1); /* t1 <-- e0 * e1 */
|
|
mg_uecc_vli_modMult_fast(t1, t1, c, &curve_secp224r1); /* t1 <-- t1 * c */
|
|
/* t1 <-- p - t1 */
|
|
mg_uecc_vli_modSub(t1, curve_secp224r1.p, t1, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
mg_uecc_vli_modMult_fast(t2, d0, d1, &curve_secp224r1); /* t2 <-- d0 * d1 */
|
|
mg_uecc_vli_modAdd(t2, t2, t1, curve_secp224r1.p,
|
|
num_words_secp224r1); /* t2 <-- t2 + t1 */
|
|
mg_uecc_vli_modMult_fast(t1, d0, e1, &curve_secp224r1); /* t1 <-- d0 * e1 */
|
|
mg_uecc_vli_modMult_fast(e2, d1, e0, &curve_secp224r1); /* e2 <-- d1 * e0 */
|
|
mg_uecc_vli_modAdd(e2, e2, t1, curve_secp224r1.p,
|
|
num_words_secp224r1); /* e2 <-- e2 + t1 */
|
|
mg_uecc_vli_modSquare_fast(f2, e2, &curve_secp224r1); /* f2 <-- e2^2 */
|
|
mg_uecc_vli_modMult_fast(f2, f2, c, &curve_secp224r1); /* f2 <-- f2 * c */
|
|
/* f2 <-- p - f2 */
|
|
mg_uecc_vli_modSub(f2, curve_secp224r1.p, f2, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
mg_uecc_vli_set(d2, t2, num_words_secp224r1); /* d2 <-- t2 */
|
|
}
|
|
|
|
/* Routine 3.2.7 RP; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
static void mod_sqrt_secp224r1_rp(mg_uecc_word_t *d1, mg_uecc_word_t *e1,
|
|
mg_uecc_word_t *f1, const mg_uecc_word_t *c,
|
|
const mg_uecc_word_t *r) {
|
|
wordcount_t i;
|
|
wordcount_t pow2i = 1;
|
|
mg_uecc_word_t d0[num_words_secp224r1];
|
|
mg_uecc_word_t e0[num_words_secp224r1] = {1}; /* e0 <-- 1 */
|
|
mg_uecc_word_t f0[num_words_secp224r1];
|
|
|
|
mg_uecc_vli_set(d0, r, num_words_secp224r1); /* d0 <-- r */
|
|
/* f0 <-- p - c */
|
|
mg_uecc_vli_modSub(f0, curve_secp224r1.p, c, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
for (i = 0; i <= 6; i++) {
|
|
mod_sqrt_secp224r1_rss(d1, e1, f1, d0, e0, f0,
|
|
pow2i); /* RSS (d1,e1,f1,d0,e0,f0,2^i) */
|
|
mod_sqrt_secp224r1_rm(d1, e1, f1, c, d1, e1, d0,
|
|
e0); /* RM (d1,e1,f1,c,d1,e1,d0,e0) */
|
|
mg_uecc_vli_set(d0, d1, num_words_secp224r1); /* d0 <-- d1 */
|
|
mg_uecc_vli_set(e0, e1, num_words_secp224r1); /* e0 <-- e1 */
|
|
mg_uecc_vli_set(f0, f1, num_words_secp224r1); /* f0 <-- f1 */
|
|
pow2i *= 2;
|
|
}
|
|
}
|
|
|
|
/* Compute a = sqrt(a) (mod curve_p). */
|
|
/* Routine 3.2.8 mp_mod_sqrt_224; from
|
|
* http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
static void mod_sqrt_secp224r1(mg_uecc_word_t *a, MG_UECC_Curve curve) {
|
|
(void) curve;
|
|
bitcount_t i;
|
|
mg_uecc_word_t e1[num_words_secp224r1];
|
|
mg_uecc_word_t f1[num_words_secp224r1];
|
|
mg_uecc_word_t d0[num_words_secp224r1];
|
|
mg_uecc_word_t e0[num_words_secp224r1];
|
|
mg_uecc_word_t f0[num_words_secp224r1];
|
|
mg_uecc_word_t d1[num_words_secp224r1];
|
|
|
|
/* s = a; using constant instead of random value */
|
|
mod_sqrt_secp224r1_rp(d0, e0, f0, a, a); /* RP (d0, e0, f0, c, s) */
|
|
mod_sqrt_secp224r1_rs(d1, e1, f1, d0, e0,
|
|
f0); /* RS (d1, e1, f1, d0, e0, f0) */
|
|
for (i = 1; i <= 95; i++) {
|
|
mg_uecc_vli_set(d0, d1, num_words_secp224r1); /* d0 <-- d1 */
|
|
mg_uecc_vli_set(e0, e1, num_words_secp224r1); /* e0 <-- e1 */
|
|
mg_uecc_vli_set(f0, f1, num_words_secp224r1); /* f0 <-- f1 */
|
|
mod_sqrt_secp224r1_rs(d1, e1, f1, d0, e0,
|
|
f0); /* RS (d1, e1, f1, d0, e0, f0) */
|
|
if (mg_uecc_vli_isZero(d1, num_words_secp224r1)) { /* if d1 == 0 */
|
|
break;
|
|
}
|
|
}
|
|
mg_uecc_vli_modInv(f1, e0, curve_secp224r1.p,
|
|
num_words_secp224r1); /* f1 <-- 1 / e0 */
|
|
mg_uecc_vli_modMult_fast(a, d0, f1, &curve_secp224r1); /* a <-- d0 / e0 */
|
|
}
|
|
#endif /* MG_UECC_SUPPORT_COMPRESSED_POINT */
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
/* Computes result = product % curve_p
|
|
from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
#if MG_UECC_WORD_SIZE == 1
|
|
static void vli_mmod_fast_secp224r1(uint8_t *result, uint8_t *product) {
|
|
uint8_t tmp[num_words_secp224r1];
|
|
int8_t carry;
|
|
|
|
/* t */
|
|
mg_uecc_vli_set(result, product, num_words_secp224r1);
|
|
|
|
/* s1 */
|
|
tmp[0] = tmp[1] = tmp[2] = tmp[3] = 0;
|
|
tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
|
|
tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
|
|
tmp[12] = product[28];
|
|
tmp[13] = product[29];
|
|
tmp[14] = product[30];
|
|
tmp[15] = product[31];
|
|
tmp[16] = product[32];
|
|
tmp[17] = product[33];
|
|
tmp[18] = product[34];
|
|
tmp[19] = product[35];
|
|
tmp[20] = product[36];
|
|
tmp[21] = product[37];
|
|
tmp[22] = product[38];
|
|
tmp[23] = product[39];
|
|
tmp[24] = product[40];
|
|
tmp[25] = product[41];
|
|
tmp[26] = product[42];
|
|
tmp[27] = product[43];
|
|
carry = mg_uecc_vli_add(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* s2 */
|
|
tmp[12] = product[44];
|
|
tmp[13] = product[45];
|
|
tmp[14] = product[46];
|
|
tmp[15] = product[47];
|
|
tmp[16] = product[48];
|
|
tmp[17] = product[49];
|
|
tmp[18] = product[50];
|
|
tmp[19] = product[51];
|
|
tmp[20] = product[52];
|
|
tmp[21] = product[53];
|
|
tmp[22] = product[54];
|
|
tmp[23] = product[55];
|
|
tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* d1 */
|
|
tmp[0] = product[28];
|
|
tmp[1] = product[29];
|
|
tmp[2] = product[30];
|
|
tmp[3] = product[31];
|
|
tmp[4] = product[32];
|
|
tmp[5] = product[33];
|
|
tmp[6] = product[34];
|
|
tmp[7] = product[35];
|
|
tmp[8] = product[36];
|
|
tmp[9] = product[37];
|
|
tmp[10] = product[38];
|
|
tmp[11] = product[39];
|
|
tmp[12] = product[40];
|
|
tmp[13] = product[41];
|
|
tmp[14] = product[42];
|
|
tmp[15] = product[43];
|
|
tmp[16] = product[44];
|
|
tmp[17] = product[45];
|
|
tmp[18] = product[46];
|
|
tmp[19] = product[47];
|
|
tmp[20] = product[48];
|
|
tmp[21] = product[49];
|
|
tmp[22] = product[50];
|
|
tmp[23] = product[51];
|
|
tmp[24] = product[52];
|
|
tmp[25] = product[53];
|
|
tmp[26] = product[54];
|
|
tmp[27] = product[55];
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* d2 */
|
|
tmp[0] = product[44];
|
|
tmp[1] = product[45];
|
|
tmp[2] = product[46];
|
|
tmp[3] = product[47];
|
|
tmp[4] = product[48];
|
|
tmp[5] = product[49];
|
|
tmp[6] = product[50];
|
|
tmp[7] = product[51];
|
|
tmp[8] = product[52];
|
|
tmp[9] = product[53];
|
|
tmp[10] = product[54];
|
|
tmp[11] = product[55];
|
|
tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
|
|
tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
|
|
tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
|
|
tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp224r1);
|
|
|
|
if (carry < 0) {
|
|
do {
|
|
carry += mg_uecc_vli_add(result, result, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
} while (carry < 0);
|
|
} else {
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp224r1.p, result,
|
|
num_words_secp224r1) != 1) {
|
|
carry -= mg_uecc_vli_sub(result, result, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
}
|
|
}
|
|
}
|
|
#elif MG_UECC_WORD_SIZE == 4
|
|
static void vli_mmod_fast_secp224r1(uint32_t *result, uint32_t *product) {
|
|
uint32_t tmp[num_words_secp224r1];
|
|
int carry;
|
|
|
|
/* t */
|
|
mg_uecc_vli_set(result, product, num_words_secp224r1);
|
|
|
|
/* s1 */
|
|
tmp[0] = tmp[1] = tmp[2] = 0;
|
|
tmp[3] = product[7];
|
|
tmp[4] = product[8];
|
|
tmp[5] = product[9];
|
|
tmp[6] = product[10];
|
|
carry = mg_uecc_vli_add(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* s2 */
|
|
tmp[3] = product[11];
|
|
tmp[4] = product[12];
|
|
tmp[5] = product[13];
|
|
tmp[6] = 0;
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* d1 */
|
|
tmp[0] = product[7];
|
|
tmp[1] = product[8];
|
|
tmp[2] = product[9];
|
|
tmp[3] = product[10];
|
|
tmp[4] = product[11];
|
|
tmp[5] = product[12];
|
|
tmp[6] = product[13];
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* d2 */
|
|
tmp[0] = product[11];
|
|
tmp[1] = product[12];
|
|
tmp[2] = product[13];
|
|
tmp[3] = tmp[4] = tmp[5] = tmp[6] = 0;
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp224r1);
|
|
|
|
if (carry < 0) {
|
|
do {
|
|
carry += mg_uecc_vli_add(result, result, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
} while (carry < 0);
|
|
} else {
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp224r1.p, result,
|
|
num_words_secp224r1) != 1) {
|
|
carry -= mg_uecc_vli_sub(result, result, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static void vli_mmod_fast_secp224r1(uint64_t *result, uint64_t *product) {
|
|
uint64_t tmp[num_words_secp224r1];
|
|
int carry = 0;
|
|
|
|
/* t */
|
|
mg_uecc_vli_set(result, product, num_words_secp224r1);
|
|
result[num_words_secp224r1 - 1] &= 0xffffffff;
|
|
|
|
/* s1 */
|
|
tmp[0] = 0;
|
|
tmp[1] = product[3] & 0xffffffff00000000ull;
|
|
tmp[2] = product[4];
|
|
tmp[3] = product[5] & 0xffffffff;
|
|
mg_uecc_vli_add(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* s2 */
|
|
tmp[1] = product[5] & 0xffffffff00000000ull;
|
|
tmp[2] = product[6];
|
|
tmp[3] = 0;
|
|
mg_uecc_vli_add(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* d1 */
|
|
tmp[0] = (product[3] >> 32) | (product[4] << 32);
|
|
tmp[1] = (product[4] >> 32) | (product[5] << 32);
|
|
tmp[2] = (product[5] >> 32) | (product[6] << 32);
|
|
tmp[3] = product[6] >> 32;
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp224r1);
|
|
|
|
/* d2 */
|
|
tmp[0] = (product[5] >> 32) | (product[6] << 32);
|
|
tmp[1] = product[6] >> 32;
|
|
tmp[2] = tmp[3] = 0;
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp224r1);
|
|
|
|
if (carry < 0) {
|
|
do {
|
|
carry += mg_uecc_vli_add(result, result, curve_secp224r1.p,
|
|
num_words_secp224r1);
|
|
} while (carry < 0);
|
|
} else {
|
|
while (mg_uecc_vli_cmp_unsafe(curve_secp224r1.p, result,
|
|
num_words_secp224r1) != 1) {
|
|
mg_uecc_vli_sub(result, result, curve_secp224r1.p, num_words_secp224r1);
|
|
}
|
|
}
|
|
}
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
#endif /* (MG_UECC_OPTIMIZATION_LEVEL > 0) */
|
|
|
|
#endif /* MG_UECC_SUPPORTS_secp224r1 */
|
|
|
|
#if MG_UECC_SUPPORTS_secp256r1
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
static void vli_mmod_fast_secp256r1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product);
|
|
#endif
|
|
|
|
static const struct MG_UECC_Curve_t curve_secp256r1 = {
|
|
num_words_secp256r1,
|
|
num_bytes_secp256r1,
|
|
256, /* num_n_bits */
|
|
{BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
|
|
BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
|
|
BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
|
|
BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
|
|
BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
|
|
|
|
BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
|
|
BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
|
|
BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
|
|
BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)},
|
|
{BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
|
|
BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
|
|
BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
|
|
BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)},
|
|
&double_jacobian_default,
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
&mod_sqrt_default,
|
|
#endif
|
|
&x_side_default,
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
&vli_mmod_fast_secp256r1
|
|
#endif
|
|
};
|
|
|
|
MG_UECC_Curve mg_uecc_secp256r1(void) {
|
|
return &curve_secp256r1;
|
|
}
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp256r1)
|
|
/* Computes result = product % curve_p
|
|
from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
|
#if MG_UECC_WORD_SIZE == 1
|
|
static void vli_mmod_fast_secp256r1(uint8_t *result, uint8_t *product) {
|
|
uint8_t tmp[num_words_secp256r1];
|
|
int8_t carry;
|
|
|
|
/* t */
|
|
mg_uecc_vli_set(result, product, num_words_secp256r1);
|
|
|
|
/* s1 */
|
|
tmp[0] = tmp[1] = tmp[2] = tmp[3] = 0;
|
|
tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
|
|
tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
|
|
tmp[12] = product[44];
|
|
tmp[13] = product[45];
|
|
tmp[14] = product[46];
|
|
tmp[15] = product[47];
|
|
tmp[16] = product[48];
|
|
tmp[17] = product[49];
|
|
tmp[18] = product[50];
|
|
tmp[19] = product[51];
|
|
tmp[20] = product[52];
|
|
tmp[21] = product[53];
|
|
tmp[22] = product[54];
|
|
tmp[23] = product[55];
|
|
tmp[24] = product[56];
|
|
tmp[25] = product[57];
|
|
tmp[26] = product[58];
|
|
tmp[27] = product[59];
|
|
tmp[28] = product[60];
|
|
tmp[29] = product[61];
|
|
tmp[30] = product[62];
|
|
tmp[31] = product[63];
|
|
carry = mg_uecc_vli_add(tmp, tmp, tmp, num_words_secp256r1);
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s2 */
|
|
tmp[12] = product[48];
|
|
tmp[13] = product[49];
|
|
tmp[14] = product[50];
|
|
tmp[15] = product[51];
|
|
tmp[16] = product[52];
|
|
tmp[17] = product[53];
|
|
tmp[18] = product[54];
|
|
tmp[19] = product[55];
|
|
tmp[20] = product[56];
|
|
tmp[21] = product[57];
|
|
tmp[22] = product[58];
|
|
tmp[23] = product[59];
|
|
tmp[24] = product[60];
|
|
tmp[25] = product[61];
|
|
tmp[26] = product[62];
|
|
tmp[27] = product[63];
|
|
tmp[28] = tmp[29] = tmp[30] = tmp[31] = 0;
|
|
carry += mg_uecc_vli_add(tmp, tmp, tmp, num_words_secp256r1);
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s3 */
|
|
tmp[0] = product[32];
|
|
tmp[1] = product[33];
|
|
tmp[2] = product[34];
|
|
tmp[3] = product[35];
|
|
tmp[4] = product[36];
|
|
tmp[5] = product[37];
|
|
tmp[6] = product[38];
|
|
tmp[7] = product[39];
|
|
tmp[8] = product[40];
|
|
tmp[9] = product[41];
|
|
tmp[10] = product[42];
|
|
tmp[11] = product[43];
|
|
tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
|
|
tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
|
|
tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
|
|
tmp[24] = product[56];
|
|
tmp[25] = product[57];
|
|
tmp[26] = product[58];
|
|
tmp[27] = product[59];
|
|
tmp[28] = product[60];
|
|
tmp[29] = product[61];
|
|
tmp[30] = product[62];
|
|
tmp[31] = product[63];
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s4 */
|
|
tmp[0] = product[36];
|
|
tmp[1] = product[37];
|
|
tmp[2] = product[38];
|
|
tmp[3] = product[39];
|
|
tmp[4] = product[40];
|
|
tmp[5] = product[41];
|
|
tmp[6] = product[42];
|
|
tmp[7] = product[43];
|
|
tmp[8] = product[44];
|
|
tmp[9] = product[45];
|
|
tmp[10] = product[46];
|
|
tmp[11] = product[47];
|
|
tmp[12] = product[52];
|
|
tmp[13] = product[53];
|
|
tmp[14] = product[54];
|
|
tmp[15] = product[55];
|
|
tmp[16] = product[56];
|
|
tmp[17] = product[57];
|
|
tmp[18] = product[58];
|
|
tmp[19] = product[59];
|
|
tmp[20] = product[60];
|
|
tmp[21] = product[61];
|
|
tmp[22] = product[62];
|
|
tmp[23] = product[63];
|
|
tmp[24] = product[52];
|
|
tmp[25] = product[53];
|
|
tmp[26] = product[54];
|
|
tmp[27] = product[55];
|
|
tmp[28] = product[32];
|
|
tmp[29] = product[33];
|
|
tmp[30] = product[34];
|
|
tmp[31] = product[35];
|
|
carry += mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d1 */
|
|
tmp[0] = product[44];
|
|
tmp[1] = product[45];
|
|
tmp[2] = product[46];
|
|
tmp[3] = product[47];
|
|
tmp[4] = product[48];
|
|
tmp[5] = product[49];
|
|
tmp[6] = product[50];
|
|
tmp[7] = product[51];
|
|
tmp[8] = product[52];
|
|
tmp[9] = product[53];
|
|
tmp[10] = product[54];
|
|
tmp[11] = product[55];
|
|
tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
|
|
tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
|
|
tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
|
|
tmp[24] = product[32];
|
|
tmp[25] = product[33];
|
|
tmp[26] = product[34];
|
|
tmp[27] = product[35];
|
|
tmp[28] = product[40];
|
|
tmp[29] = product[41];
|
|
tmp[30] = product[42];
|
|
tmp[31] = product[43];
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d2 */
|
|
tmp[0] = product[48];
|
|
tmp[1] = product[49];
|
|
tmp[2] = product[50];
|
|
tmp[3] = product[51];
|
|
tmp[4] = product[52];
|
|
tmp[5] = product[53];
|
|
tmp[6] = product[54];
|
|
tmp[7] = product[55];
|
|
tmp[8] = product[56];
|
|
tmp[9] = product[57];
|
|
tmp[10] = product[58];
|
|
tmp[11] = product[59];
|
|
tmp[12] = product[60];
|
|
tmp[13] = product[61];
|
|
tmp[14] = product[62];
|
|
tmp[15] = product[63];
|
|
tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
|
|
tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
|
|
tmp[24] = product[36];
|
|
tmp[25] = product[37];
|
|
tmp[26] = product[38];
|
|
tmp[27] = product[39];
|
|
tmp[28] = product[44];
|
|
tmp[29] = product[45];
|
|
tmp[30] = product[46];
|
|
tmp[31] = product[47];
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d3 */
|
|
tmp[0] = product[52];
|
|
tmp[1] = product[53];
|
|
tmp[2] = product[54];
|
|
tmp[3] = product[55];
|
|
tmp[4] = product[56];
|
|
tmp[5] = product[57];
|
|
tmp[6] = product[58];
|
|
tmp[7] = product[59];
|
|
tmp[8] = product[60];
|
|
tmp[9] = product[61];
|
|
tmp[10] = product[62];
|
|
tmp[11] = product[63];
|
|
tmp[12] = product[32];
|
|
tmp[13] = product[33];
|
|
tmp[14] = product[34];
|
|
tmp[15] = product[35];
|
|
tmp[16] = product[36];
|
|
tmp[17] = product[37];
|
|
tmp[18] = product[38];
|
|
tmp[19] = product[39];
|
|
tmp[20] = product[40];
|
|
tmp[21] = product[41];
|
|
tmp[22] = product[42];
|
|
tmp[23] = product[43];
|
|
tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
|
|
tmp[28] = product[48];
|
|
tmp[29] = product[49];
|
|
tmp[30] = product[50];
|
|
tmp[31] = product[51];
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d4 */
|
|
tmp[0] = product[56];
|
|
tmp[1] = product[57];
|
|
tmp[2] = product[58];
|
|
tmp[3] = product[59];
|
|
tmp[4] = product[60];
|
|
tmp[5] = product[61];
|
|
tmp[6] = product[62];
|
|
tmp[7] = product[63];
|
|
tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
|
|
tmp[12] = product[36];
|
|
tmp[13] = product[37];
|
|
tmp[14] = product[38];
|
|
tmp[15] = product[39];
|
|
tmp[16] = product[40];
|
|
tmp[17] = product[41];
|
|
tmp[18] = product[42];
|
|
tmp[19] = product[43];
|
|
tmp[20] = product[44];
|
|
tmp[21] = product[45];
|
|
tmp[22] = product[46];
|
|
tmp[23] = product[47];
|
|
tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
|
|
tmp[28] = product[52];
|
|
tmp[29] = product[53];
|
|
tmp[30] = product[54];
|
|
tmp[31] = product[55];
|
|
carry -= mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
if (carry < 0) {
|
|
do {
|
|
carry += mg_uecc_vli_add(result, result, curve_secp256r1.p,
|
|
num_words_secp256r1);
|
|
} while (carry < 0);
|
|
} else {
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp256r1.p, result,
|
|
num_words_secp256r1) != 1) {
|
|
carry -= mg_uecc_vli_sub(result, result, curve_secp256r1.p,
|
|
num_words_secp256r1);
|
|
}
|
|
}
|
|
}
|
|
#elif MG_UECC_WORD_SIZE == 4
|
|
static void vli_mmod_fast_secp256r1(uint32_t *result, uint32_t *product) {
|
|
uint32_t tmp[num_words_secp256r1];
|
|
int carry;
|
|
|
|
/* t */
|
|
mg_uecc_vli_set(result, product, num_words_secp256r1);
|
|
|
|
/* s1 */
|
|
tmp[0] = tmp[1] = tmp[2] = 0;
|
|
tmp[3] = product[11];
|
|
tmp[4] = product[12];
|
|
tmp[5] = product[13];
|
|
tmp[6] = product[14];
|
|
tmp[7] = product[15];
|
|
carry = (int) mg_uecc_vli_add(tmp, tmp, tmp, num_words_secp256r1);
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s2 */
|
|
tmp[3] = product[12];
|
|
tmp[4] = product[13];
|
|
tmp[5] = product[14];
|
|
tmp[6] = product[15];
|
|
tmp[7] = 0;
|
|
carry += (int) mg_uecc_vli_add(tmp, tmp, tmp, num_words_secp256r1);
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s3 */
|
|
tmp[0] = product[8];
|
|
tmp[1] = product[9];
|
|
tmp[2] = product[10];
|
|
tmp[3] = tmp[4] = tmp[5] = 0;
|
|
tmp[6] = product[14];
|
|
tmp[7] = product[15];
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s4 */
|
|
tmp[0] = product[9];
|
|
tmp[1] = product[10];
|
|
tmp[2] = product[11];
|
|
tmp[3] = product[13];
|
|
tmp[4] = product[14];
|
|
tmp[5] = product[15];
|
|
tmp[6] = product[13];
|
|
tmp[7] = product[8];
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d1 */
|
|
tmp[0] = product[11];
|
|
tmp[1] = product[12];
|
|
tmp[2] = product[13];
|
|
tmp[3] = tmp[4] = tmp[5] = 0;
|
|
tmp[6] = product[8];
|
|
tmp[7] = product[10];
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d2 */
|
|
tmp[0] = product[12];
|
|
tmp[1] = product[13];
|
|
tmp[2] = product[14];
|
|
tmp[3] = product[15];
|
|
tmp[4] = tmp[5] = 0;
|
|
tmp[6] = product[9];
|
|
tmp[7] = product[11];
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d3 */
|
|
tmp[0] = product[13];
|
|
tmp[1] = product[14];
|
|
tmp[2] = product[15];
|
|
tmp[3] = product[8];
|
|
tmp[4] = product[9];
|
|
tmp[5] = product[10];
|
|
tmp[6] = 0;
|
|
tmp[7] = product[12];
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d4 */
|
|
tmp[0] = product[14];
|
|
tmp[1] = product[15];
|
|
tmp[2] = 0;
|
|
tmp[3] = product[9];
|
|
tmp[4] = product[10];
|
|
tmp[5] = product[11];
|
|
tmp[6] = 0;
|
|
tmp[7] = product[13];
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
if (carry < 0) {
|
|
do {
|
|
carry += (int) mg_uecc_vli_add(result, result, curve_secp256r1.p,
|
|
num_words_secp256r1);
|
|
} while (carry < 0);
|
|
} else {
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp256r1.p, result,
|
|
num_words_secp256r1) != 1) {
|
|
carry -= (int) mg_uecc_vli_sub(result, result, curve_secp256r1.p,
|
|
num_words_secp256r1);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static void vli_mmod_fast_secp256r1(uint64_t *result, uint64_t *product) {
|
|
uint64_t tmp[num_words_secp256r1];
|
|
int carry;
|
|
|
|
/* t */
|
|
mg_uecc_vli_set(result, product, num_words_secp256r1);
|
|
|
|
/* s1 */
|
|
tmp[0] = 0;
|
|
tmp[1] = product[5] & 0xffffffff00000000U;
|
|
tmp[2] = product[6];
|
|
tmp[3] = product[7];
|
|
carry = (int) mg_uecc_vli_add(tmp, tmp, tmp, num_words_secp256r1);
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s2 */
|
|
tmp[1] = product[6] << 32;
|
|
tmp[2] = (product[6] >> 32) | (product[7] << 32);
|
|
tmp[3] = product[7] >> 32;
|
|
carry += (int) mg_uecc_vli_add(tmp, tmp, tmp, num_words_secp256r1);
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s3 */
|
|
tmp[0] = product[4];
|
|
tmp[1] = product[5] & 0xffffffff;
|
|
tmp[2] = 0;
|
|
tmp[3] = product[7];
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* s4 */
|
|
tmp[0] = (product[4] >> 32) | (product[5] << 32);
|
|
tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000U);
|
|
tmp[2] = product[7];
|
|
tmp[3] = (product[6] >> 32) | (product[4] << 32);
|
|
carry += (int) mg_uecc_vli_add(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d1 */
|
|
tmp[0] = (product[5] >> 32) | (product[6] << 32);
|
|
tmp[1] = (product[6] >> 32);
|
|
tmp[2] = 0;
|
|
tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d2 */
|
|
tmp[0] = product[6];
|
|
tmp[1] = product[7];
|
|
tmp[2] = 0;
|
|
tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000);
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d3 */
|
|
tmp[0] = (product[6] >> 32) | (product[7] << 32);
|
|
tmp[1] = (product[7] >> 32) | (product[4] << 32);
|
|
tmp[2] = (product[4] >> 32) | (product[5] << 32);
|
|
tmp[3] = (product[6] << 32);
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
/* d4 */
|
|
tmp[0] = product[7];
|
|
tmp[1] = product[4] & 0xffffffff00000000U;
|
|
tmp[2] = product[5];
|
|
tmp[3] = product[6] & 0xffffffff00000000U;
|
|
carry -= (int) mg_uecc_vli_sub(result, result, tmp, num_words_secp256r1);
|
|
|
|
if (carry < 0) {
|
|
do {
|
|
carry += (int) mg_uecc_vli_add(result, result, curve_secp256r1.p,
|
|
num_words_secp256r1);
|
|
} while (carry < 0);
|
|
} else {
|
|
while (carry || mg_uecc_vli_cmp_unsafe(curve_secp256r1.p, result,
|
|
num_words_secp256r1) != 1) {
|
|
carry -= (int) mg_uecc_vli_sub(result, result, curve_secp256r1.p,
|
|
num_words_secp256r1);
|
|
}
|
|
}
|
|
}
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
#endif /* (MG_UECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp256r1) */
|
|
|
|
#endif /* MG_UECC_SUPPORTS_secp256r1 */
|
|
|
|
#if MG_UECC_SUPPORTS_secp256k1
|
|
|
|
static void double_jacobian_secp256k1(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
mg_uecc_word_t *Z1, MG_UECC_Curve curve);
|
|
static void x_side_secp256k1(mg_uecc_word_t *result, const mg_uecc_word_t *x,
|
|
MG_UECC_Curve curve);
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
static void vli_mmod_fast_secp256k1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product);
|
|
#endif
|
|
|
|
static const struct MG_UECC_Curve_t curve_secp256k1 = {
|
|
num_words_secp256k1,
|
|
num_bytes_secp256k1,
|
|
256, /* num_n_bits */
|
|
{BYTES_TO_WORDS_8(2F, FC, FF, FF, FE, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(41, 41, 36, D0, 8C, 5E, D2, BF),
|
|
BYTES_TO_WORDS_8(3B, A0, 48, AF, E6, DC, AE, BA),
|
|
BYTES_TO_WORDS_8(FE, FF, FF, FF, FF, FF, FF, FF),
|
|
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF)},
|
|
{BYTES_TO_WORDS_8(98, 17, F8, 16, 5B, 81, F2, 59),
|
|
BYTES_TO_WORDS_8(D9, 28, CE, 2D, DB, FC, 9B, 02),
|
|
BYTES_TO_WORDS_8(07, 0B, 87, CE, 95, 62, A0, 55),
|
|
BYTES_TO_WORDS_8(AC, BB, DC, F9, 7E, 66, BE, 79),
|
|
|
|
BYTES_TO_WORDS_8(B8, D4, 10, FB, 8F, D0, 47, 9C),
|
|
BYTES_TO_WORDS_8(19, 54, 85, A6, 48, B4, 17, FD),
|
|
BYTES_TO_WORDS_8(A8, 08, 11, 0E, FC, FB, A4, 5D),
|
|
BYTES_TO_WORDS_8(65, C4, A3, 26, 77, DA, 3A, 48)},
|
|
{BYTES_TO_WORDS_8(07, 00, 00, 00, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
|
|
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00)},
|
|
&double_jacobian_secp256k1,
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
&mod_sqrt_default,
|
|
#endif
|
|
&x_side_secp256k1,
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
&vli_mmod_fast_secp256k1
|
|
#endif
|
|
};
|
|
|
|
MG_UECC_Curve mg_uecc_secp256k1(void) {
|
|
return &curve_secp256k1;
|
|
}
|
|
|
|
/* Double in place */
|
|
static void double_jacobian_secp256k1(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
mg_uecc_word_t *Z1, MG_UECC_Curve curve) {
|
|
/* t1 = X, t2 = Y, t3 = Z */
|
|
mg_uecc_word_t t4[num_words_secp256k1];
|
|
mg_uecc_word_t t5[num_words_secp256k1];
|
|
|
|
if (mg_uecc_vli_isZero(Z1, num_words_secp256k1)) {
|
|
return;
|
|
}
|
|
|
|
mg_uecc_vli_modSquare_fast(t5, Y1, curve); /* t5 = y1^2 */
|
|
mg_uecc_vli_modMult_fast(t4, X1, t5, curve); /* t4 = x1*y1^2 = A */
|
|
mg_uecc_vli_modSquare_fast(X1, X1, curve); /* t1 = x1^2 */
|
|
mg_uecc_vli_modSquare_fast(t5, t5, curve); /* t5 = y1^4 */
|
|
mg_uecc_vli_modMult_fast(Z1, Y1, Z1, curve); /* t3 = y1*z1 = z3 */
|
|
|
|
mg_uecc_vli_modAdd(Y1, X1, X1, curve->p,
|
|
num_words_secp256k1); /* t2 = 2*x1^2 */
|
|
mg_uecc_vli_modAdd(Y1, Y1, X1, curve->p,
|
|
num_words_secp256k1); /* t2 = 3*x1^2 */
|
|
if (mg_uecc_vli_testBit(Y1, 0)) {
|
|
mg_uecc_word_t carry =
|
|
mg_uecc_vli_add(Y1, Y1, curve->p, num_words_secp256k1);
|
|
mg_uecc_vli_rshift1(Y1, num_words_secp256k1);
|
|
Y1[num_words_secp256k1 - 1] |= carry << (MG_UECC_WORD_BITS - 1);
|
|
} else {
|
|
mg_uecc_vli_rshift1(Y1, num_words_secp256k1);
|
|
}
|
|
/* t2 = 3/2*(x1^2) = B */
|
|
|
|
mg_uecc_vli_modSquare_fast(X1, Y1, curve); /* t1 = B^2 */
|
|
mg_uecc_vli_modSub(X1, X1, t4, curve->p,
|
|
num_words_secp256k1); /* t1 = B^2 - A */
|
|
mg_uecc_vli_modSub(X1, X1, t4, curve->p,
|
|
num_words_secp256k1); /* t1 = B^2 - 2A = x3 */
|
|
|
|
mg_uecc_vli_modSub(t4, t4, X1, curve->p,
|
|
num_words_secp256k1); /* t4 = A - x3 */
|
|
mg_uecc_vli_modMult_fast(Y1, Y1, t4, curve); /* t2 = B * (A - x3) */
|
|
mg_uecc_vli_modSub(Y1, Y1, t5, curve->p,
|
|
num_words_secp256k1); /* t2 = B * (A - x3) - y1^4 = y3 */
|
|
}
|
|
|
|
/* Computes result = x^3 + b. result must not overlap x. */
|
|
static void x_side_secp256k1(mg_uecc_word_t *result, const mg_uecc_word_t *x,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_vli_modSquare_fast(result, x, curve); /* r = x^2 */
|
|
mg_uecc_vli_modMult_fast(result, result, x, curve); /* r = x^3 */
|
|
mg_uecc_vli_modAdd(result, result, curve->b, curve->p,
|
|
num_words_secp256k1); /* r = x^3 + b */
|
|
}
|
|
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp256k1)
|
|
static void omega_mult_secp256k1(mg_uecc_word_t *result,
|
|
const mg_uecc_word_t *right);
|
|
static void vli_mmod_fast_secp256k1(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *product) {
|
|
mg_uecc_word_t tmp[2 * num_words_secp256k1];
|
|
mg_uecc_word_t carry;
|
|
|
|
mg_uecc_vli_clear(tmp, num_words_secp256k1);
|
|
mg_uecc_vli_clear(tmp + num_words_secp256k1, num_words_secp256k1);
|
|
|
|
omega_mult_secp256k1(tmp,
|
|
product + num_words_secp256k1); /* (Rq, q) = q * c */
|
|
|
|
carry = mg_uecc_vli_add(result, product, tmp,
|
|
num_words_secp256k1); /* (C, r) = r + q */
|
|
mg_uecc_vli_clear(product, num_words_secp256k1);
|
|
omega_mult_secp256k1(product, tmp + num_words_secp256k1); /* Rq*c */
|
|
carry += mg_uecc_vli_add(result, result, product,
|
|
num_words_secp256k1); /* (C1, r) = r + Rq*c */
|
|
|
|
while (carry > 0) {
|
|
--carry;
|
|
mg_uecc_vli_sub(result, result, curve_secp256k1.p, num_words_secp256k1);
|
|
}
|
|
if (mg_uecc_vli_cmp_unsafe(result, curve_secp256k1.p, num_words_secp256k1) >
|
|
0) {
|
|
mg_uecc_vli_sub(result, result, curve_secp256k1.p, num_words_secp256k1);
|
|
}
|
|
}
|
|
|
|
#if MG_UECC_WORD_SIZE == 1
|
|
static void omega_mult_secp256k1(uint8_t *result, const uint8_t *right) {
|
|
/* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
|
|
mg_uecc_word_t r0 = 0;
|
|
mg_uecc_word_t r1 = 0;
|
|
mg_uecc_word_t r2 = 0;
|
|
wordcount_t k;
|
|
|
|
/* Multiply by (2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
|
|
muladd(0xD1, right[0], &r0, &r1, &r2);
|
|
result[0] = r0;
|
|
r0 = r1;
|
|
r1 = r2;
|
|
/* r2 is still 0 */
|
|
|
|
for (k = 1; k < num_words_secp256k1; ++k) {
|
|
muladd(0x03, right[k - 1], &r0, &r1, &r2);
|
|
muladd(0xD1, right[k], &r0, &r1, &r2);
|
|
result[k] = r0;
|
|
r0 = r1;
|
|
r1 = r2;
|
|
r2 = 0;
|
|
}
|
|
muladd(0x03, right[num_words_secp256k1 - 1], &r0, &r1, &r2);
|
|
result[num_words_secp256k1] = r0;
|
|
result[num_words_secp256k1 + 1] = r1;
|
|
/* add the 2^32 multiple */
|
|
result[4 + num_words_secp256k1] =
|
|
mg_uecc_vli_add(result + 4, result + 4, right, num_words_secp256k1);
|
|
}
|
|
#elif MG_UECC_WORD_SIZE == 4
|
|
static void omega_mult_secp256k1(uint32_t *result, const uint32_t *right) {
|
|
/* Multiply by (2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
|
|
uint32_t carry = 0;
|
|
wordcount_t k;
|
|
|
|
for (k = 0; k < num_words_secp256k1; ++k) {
|
|
uint64_t p = (uint64_t) 0x3D1 * right[k] + carry;
|
|
result[k] = (uint32_t) p;
|
|
carry = p >> 32;
|
|
}
|
|
result[num_words_secp256k1] = carry;
|
|
/* add the 2^32 multiple */
|
|
result[1 + num_words_secp256k1] =
|
|
mg_uecc_vli_add(result + 1, result + 1, right, num_words_secp256k1);
|
|
}
|
|
#else
|
|
static void omega_mult_secp256k1(uint64_t *result, const uint64_t *right) {
|
|
mg_uecc_word_t r0 = 0;
|
|
mg_uecc_word_t r1 = 0;
|
|
mg_uecc_word_t r2 = 0;
|
|
wordcount_t k;
|
|
|
|
/* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
|
|
for (k = 0; k < num_words_secp256k1; ++k) {
|
|
muladd(0x1000003D1ull, right[k], &r0, &r1, &r2);
|
|
result[k] = r0;
|
|
r0 = r1;
|
|
r1 = r2;
|
|
r2 = 0;
|
|
}
|
|
result[num_words_secp256k1] = r0;
|
|
}
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
#endif /* (MG_UECC_OPTIMIZATION_LEVEL > 0 && && !asm_mmod_fast_secp256k1) */
|
|
|
|
#endif /* MG_UECC_SUPPORTS_secp256k1 */
|
|
|
|
#endif /* _UECC_CURVE_SPECIFIC_H_ */
|
|
|
|
/* Returns 1 if 'point' is the point at infinity, 0 otherwise. */
|
|
#define EccPoint_isZero(point, curve) \
|
|
mg_uecc_vli_isZero((point), (wordcount_t) ((curve)->num_words * 2))
|
|
|
|
/* Point multiplication algorithm using Montgomery's ladder with co-Z
|
|
coordinates. From http://eprint.iacr.org/2011/338.pdf
|
|
*/
|
|
|
|
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
|
|
static void apply_z(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
const mg_uecc_word_t *const Z, MG_UECC_Curve curve) {
|
|
mg_uecc_word_t t1[MG_UECC_MAX_WORDS];
|
|
|
|
mg_uecc_vli_modSquare_fast(t1, Z, curve); /* z^2 */
|
|
mg_uecc_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
|
|
mg_uecc_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
|
|
mg_uecc_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
|
|
}
|
|
|
|
/* P = (x1, y1) => 2P, (x2, y2) => P' */
|
|
static void XYcZ_initial_double(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
mg_uecc_word_t *X2, mg_uecc_word_t *Y2,
|
|
const mg_uecc_word_t *const initial_Z,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t z[MG_UECC_MAX_WORDS];
|
|
wordcount_t num_words = curve->num_words;
|
|
if (initial_Z) {
|
|
mg_uecc_vli_set(z, initial_Z, num_words);
|
|
} else {
|
|
mg_uecc_vli_clear(z, num_words);
|
|
z[0] = 1;
|
|
}
|
|
|
|
mg_uecc_vli_set(X2, X1, num_words);
|
|
mg_uecc_vli_set(Y2, Y1, num_words);
|
|
|
|
apply_z(X1, Y1, z, curve);
|
|
curve->double_jacobian(X1, Y1, z, curve);
|
|
apply_z(X2, Y2, z, curve);
|
|
}
|
|
|
|
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
|
Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
|
|
or P => P', Q => P + Q
|
|
*/
|
|
static void XYcZ_add(mg_uecc_word_t *X1, mg_uecc_word_t *Y1, mg_uecc_word_t *X2,
|
|
mg_uecc_word_t *Y2, MG_UECC_Curve curve) {
|
|
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
|
mg_uecc_word_t t5[MG_UECC_MAX_WORDS] = {0};
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
mg_uecc_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
|
|
mg_uecc_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
|
|
mg_uecc_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
|
|
mg_uecc_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
|
|
mg_uecc_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
|
|
mg_uecc_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
|
|
|
|
mg_uecc_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
|
|
mg_uecc_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
|
|
mg_uecc_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
|
|
mg_uecc_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
|
|
mg_uecc_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
|
|
mg_uecc_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
|
|
mg_uecc_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
|
|
|
|
mg_uecc_vli_set(X2, t5, num_words);
|
|
}
|
|
|
|
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
|
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
|
|
or P => P - Q, Q => P + Q
|
|
*/
|
|
static void XYcZ_addC(mg_uecc_word_t *X1, mg_uecc_word_t *Y1,
|
|
mg_uecc_word_t *X2, mg_uecc_word_t *Y2,
|
|
MG_UECC_Curve curve) {
|
|
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
|
mg_uecc_word_t t5[MG_UECC_MAX_WORDS] = {0};
|
|
mg_uecc_word_t t6[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t t7[MG_UECC_MAX_WORDS];
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
mg_uecc_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
|
|
mg_uecc_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
|
|
mg_uecc_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
|
|
mg_uecc_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
|
|
mg_uecc_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
|
|
mg_uecc_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
|
|
|
|
mg_uecc_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
|
|
mg_uecc_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
|
|
mg_uecc_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
|
|
mg_uecc_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
|
|
mg_uecc_vli_modSub(X2, X2, t6, curve->p,
|
|
num_words); /* t3 = D - (B + C) = x3 */
|
|
|
|
mg_uecc_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
|
|
mg_uecc_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
|
|
mg_uecc_vli_modSub(Y2, Y2, Y1, curve->p,
|
|
num_words); /* t4 = (y2 - y1)*(B - x3) - E = y3 */
|
|
|
|
mg_uecc_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
|
|
mg_uecc_vli_modSub(t7, t7, t6, curve->p,
|
|
num_words); /* t7 = F - (B + C) = x3' */
|
|
mg_uecc_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
|
|
mg_uecc_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
|
|
mg_uecc_vli_modSub(Y1, t6, Y1, curve->p,
|
|
num_words); /* t2 = (y2+y1)*(x3' - B) - E = y3' */
|
|
|
|
mg_uecc_vli_set(X1, t7, num_words);
|
|
}
|
|
|
|
/* result may overlap point. */
|
|
static void EccPoint_mult(mg_uecc_word_t *result, const mg_uecc_word_t *point,
|
|
const mg_uecc_word_t *scalar,
|
|
const mg_uecc_word_t *initial_Z, bitcount_t num_bits,
|
|
MG_UECC_Curve curve) {
|
|
/* R0 and R1 */
|
|
mg_uecc_word_t Rx[2][MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t Ry[2][MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t z[MG_UECC_MAX_WORDS];
|
|
bitcount_t i;
|
|
mg_uecc_word_t nb;
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
mg_uecc_vli_set(Rx[1], point, num_words);
|
|
mg_uecc_vli_set(Ry[1], point + num_words, num_words);
|
|
|
|
XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
|
|
|
|
for (i = num_bits - 2; i > 0; --i) {
|
|
nb = !mg_uecc_vli_testBit(scalar, i);
|
|
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
|
|
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
|
|
}
|
|
|
|
nb = !mg_uecc_vli_testBit(scalar, 0);
|
|
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
|
|
|
|
/* Find final 1/Z value. */
|
|
mg_uecc_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
|
|
mg_uecc_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
|
|
mg_uecc_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
|
|
mg_uecc_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0)) */
|
|
/* yP / (xP * Yb * (X1 - X0)) */
|
|
mg_uecc_vli_modMult_fast(z, z, point + num_words, curve);
|
|
mg_uecc_vli_modMult_fast(z, z, Rx[1 - nb],
|
|
curve); /* Xb * yP / (xP * Yb * (X1 - X0)) */
|
|
/* End 1/Z calculation */
|
|
|
|
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
|
|
apply_z(Rx[0], Ry[0], z, curve);
|
|
|
|
mg_uecc_vli_set(result, Rx[0], num_words);
|
|
mg_uecc_vli_set(result + num_words, Ry[0], num_words);
|
|
}
|
|
|
|
static mg_uecc_word_t regularize_k(const mg_uecc_word_t *const k,
|
|
mg_uecc_word_t *k0, mg_uecc_word_t *k1,
|
|
MG_UECC_Curve curve) {
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
bitcount_t num_n_bits = curve->num_n_bits;
|
|
mg_uecc_word_t carry =
|
|
mg_uecc_vli_add(k0, k, curve->n, num_n_words) ||
|
|
(num_n_bits < ((bitcount_t) num_n_words * MG_UECC_WORD_SIZE * 8) &&
|
|
mg_uecc_vli_testBit(k0, num_n_bits));
|
|
mg_uecc_vli_add(k1, k0, curve->n, num_n_words);
|
|
return carry;
|
|
}
|
|
|
|
/* Generates a random integer in the range 0 < random < top.
|
|
Both random and top have num_words words. */
|
|
MG_UECC_VLI_API int mg_uecc_generate_random_int(mg_uecc_word_t *random,
|
|
const mg_uecc_word_t *top,
|
|
wordcount_t num_words) {
|
|
mg_uecc_word_t mask = (mg_uecc_word_t) -1;
|
|
mg_uecc_word_t tries;
|
|
bitcount_t num_bits = mg_uecc_vli_numBits(top, num_words);
|
|
|
|
if (!g_rng_function) {
|
|
return 0;
|
|
}
|
|
|
|
for (tries = 0; tries < MG_UECC_RNG_MAX_TRIES; ++tries) {
|
|
if (!g_rng_function((uint8_t *) random,
|
|
(unsigned int) (num_words * MG_UECC_WORD_SIZE))) {
|
|
return 0;
|
|
}
|
|
random[num_words - 1] &=
|
|
mask >> ((bitcount_t) (num_words * MG_UECC_WORD_SIZE * 8 - num_bits));
|
|
if (!mg_uecc_vli_isZero(random, num_words) &&
|
|
mg_uecc_vli_cmp(top, random, num_words) == 1) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static mg_uecc_word_t EccPoint_compute_public_key(mg_uecc_word_t *result,
|
|
mg_uecc_word_t *private_key,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t tmp1[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tmp2[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t *p2[2] = {tmp1, tmp2};
|
|
mg_uecc_word_t *initial_Z = 0;
|
|
mg_uecc_word_t carry;
|
|
|
|
/* Regularize the bitcount for the private key so that attackers cannot use a
|
|
side channel attack to learn the number of leading zeros. */
|
|
carry = regularize_k(private_key, tmp1, tmp2, curve);
|
|
|
|
/* If an RNG function was specified, try to get a random initial Z value to
|
|
improve protection against side-channel attacks. */
|
|
if (g_rng_function) {
|
|
if (!mg_uecc_generate_random_int(p2[carry], curve->p, curve->num_words)) {
|
|
return 0;
|
|
}
|
|
initial_Z = p2[carry];
|
|
}
|
|
EccPoint_mult(result, curve->G, p2[!carry], initial_Z,
|
|
(bitcount_t) (curve->num_n_bits + 1), curve);
|
|
|
|
if (EccPoint_isZero(result, curve)) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#if MG_UECC_WORD_SIZE == 1
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
|
|
const uint8_t *native) {
|
|
wordcount_t i;
|
|
for (i = 0; i < num_bytes; ++i) {
|
|
bytes[i] = native[(num_bytes - 1) - i];
|
|
}
|
|
}
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_bytesToNative(uint8_t *native,
|
|
const uint8_t *bytes,
|
|
int num_bytes) {
|
|
mg_uecc_vli_nativeToBytes(native, num_bytes, bytes);
|
|
}
|
|
|
|
#else
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
|
|
const mg_uecc_word_t *native) {
|
|
int i;
|
|
for (i = 0; i < num_bytes; ++i) {
|
|
unsigned b = (unsigned) (num_bytes - 1 - i);
|
|
bytes[i] = (uint8_t) (native[b / MG_UECC_WORD_SIZE] >>
|
|
(8 * (b % MG_UECC_WORD_SIZE)));
|
|
}
|
|
}
|
|
|
|
MG_UECC_VLI_API void mg_uecc_vli_bytesToNative(mg_uecc_word_t *native,
|
|
const uint8_t *bytes,
|
|
int num_bytes) {
|
|
int i;
|
|
mg_uecc_vli_clear(native,
|
|
(wordcount_t) ((num_bytes + (MG_UECC_WORD_SIZE - 1)) /
|
|
MG_UECC_WORD_SIZE));
|
|
for (i = 0; i < num_bytes; ++i) {
|
|
unsigned b = (unsigned) (num_bytes - 1 - i);
|
|
native[b / MG_UECC_WORD_SIZE] |= (mg_uecc_word_t) bytes[i]
|
|
<< (8 * (b % MG_UECC_WORD_SIZE));
|
|
}
|
|
}
|
|
|
|
#endif /* MG_UECC_WORD_SIZE */
|
|
|
|
int mg_uecc_make_key(uint8_t *public_key, uint8_t *private_key,
|
|
MG_UECC_Curve curve) {
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
mg_uecc_word_t *_private = (mg_uecc_word_t *) private_key;
|
|
mg_uecc_word_t *_public = (mg_uecc_word_t *) public_key;
|
|
#else
|
|
mg_uecc_word_t _private[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t _public[MG_UECC_MAX_WORDS * 2];
|
|
#endif
|
|
mg_uecc_word_t tries;
|
|
|
|
for (tries = 0; tries < MG_UECC_RNG_MAX_TRIES; ++tries) {
|
|
if (!mg_uecc_generate_random_int(_private, curve->n,
|
|
BITS_TO_WORDS(curve->num_n_bits))) {
|
|
return 0;
|
|
}
|
|
|
|
if (EccPoint_compute_public_key(_public, _private, curve)) {
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN == 0
|
|
mg_uecc_vli_nativeToBytes(private_key, BITS_TO_BYTES(curve->num_n_bits),
|
|
_private);
|
|
mg_uecc_vli_nativeToBytes(public_key, curve->num_bytes, _public);
|
|
mg_uecc_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes,
|
|
_public + curve->num_words);
|
|
#endif
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mg_uecc_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
|
|
uint8_t *secret, MG_UECC_Curve curve) {
|
|
mg_uecc_word_t _public[MG_UECC_MAX_WORDS * 2];
|
|
mg_uecc_word_t _private[MG_UECC_MAX_WORDS];
|
|
|
|
mg_uecc_word_t tmp[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t *p2[2] = {_private, tmp};
|
|
mg_uecc_word_t *initial_Z = 0;
|
|
mg_uecc_word_t carry;
|
|
wordcount_t num_words = curve->num_words;
|
|
wordcount_t num_bytes = curve->num_bytes;
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy((uint8_t *) _private, private_key, num_bytes);
|
|
bcopy((uint8_t *) _public, public_key, num_bytes * 2);
|
|
#else
|
|
mg_uecc_vli_bytesToNative(_private, private_key,
|
|
BITS_TO_BYTES(curve->num_n_bits));
|
|
mg_uecc_vli_bytesToNative(_public, public_key, num_bytes);
|
|
mg_uecc_vli_bytesToNative(_public + num_words, public_key + num_bytes,
|
|
num_bytes);
|
|
#endif
|
|
|
|
/* Regularize the bitcount for the private key so that attackers cannot use a
|
|
side channel attack to learn the number of leading zeros. */
|
|
carry = regularize_k(_private, _private, tmp, curve);
|
|
|
|
/* If an RNG function was specified, try to get a random initial Z value to
|
|
improve protection against side-channel attacks. */
|
|
if (g_rng_function) {
|
|
if (!mg_uecc_generate_random_int(p2[carry], curve->p, num_words)) {
|
|
return 0;
|
|
}
|
|
initial_Z = p2[carry];
|
|
}
|
|
|
|
EccPoint_mult(_public, _public, p2[!carry], initial_Z,
|
|
(bitcount_t) (curve->num_n_bits + 1), curve);
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy((uint8_t *) secret, (uint8_t *) _public, num_bytes);
|
|
#else
|
|
mg_uecc_vli_nativeToBytes(secret, num_bytes, _public);
|
|
#endif
|
|
return !EccPoint_isZero(_public, curve);
|
|
}
|
|
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
void mg_uecc_compress(const uint8_t *public_key, uint8_t *compressed,
|
|
MG_UECC_Curve curve) {
|
|
wordcount_t i;
|
|
for (i = 0; i < curve->num_bytes; ++i) {
|
|
compressed[i + 1] = public_key[i];
|
|
}
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
compressed[0] = 2 + (public_key[curve->num_bytes] & 0x01);
|
|
#else
|
|
compressed[0] = 2 + (public_key[curve->num_bytes * 2 - 1] & 0x01);
|
|
#endif
|
|
}
|
|
|
|
void mg_uecc_decompress(const uint8_t *compressed, uint8_t *public_key,
|
|
MG_UECC_Curve curve) {
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
mg_uecc_word_t *point = (mg_uecc_word_t *) public_key;
|
|
#else
|
|
mg_uecc_word_t point[MG_UECC_MAX_WORDS * 2];
|
|
#endif
|
|
mg_uecc_word_t *y = point + curve->num_words;
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy(public_key, compressed + 1, curve->num_bytes);
|
|
#else
|
|
mg_uecc_vli_bytesToNative(point, compressed + 1, curve->num_bytes);
|
|
#endif
|
|
curve->x_side(y, point, curve);
|
|
curve->mod_sqrt(y, curve);
|
|
|
|
if ((uint8_t) (y[0] & 0x01) != (compressed[0] & 0x01)) {
|
|
mg_uecc_vli_sub(y, curve->p, y, curve->num_words);
|
|
}
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN == 0
|
|
mg_uecc_vli_nativeToBytes(public_key, curve->num_bytes, point);
|
|
mg_uecc_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes, y);
|
|
#endif
|
|
}
|
|
#endif /* MG_UECC_SUPPORT_COMPRESSED_POINT */
|
|
|
|
MG_UECC_VLI_API int mg_uecc_valid_point(const mg_uecc_word_t *point,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t tmp1[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tmp2[MG_UECC_MAX_WORDS];
|
|
wordcount_t num_words = curve->num_words;
|
|
|
|
/* The point at infinity is invalid. */
|
|
if (EccPoint_isZero(point, curve)) {
|
|
return 0;
|
|
}
|
|
|
|
/* x and y must be smaller than p. */
|
|
if (mg_uecc_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
|
|
mg_uecc_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
|
|
return 0;
|
|
}
|
|
|
|
mg_uecc_vli_modSquare_fast(tmp1, point + num_words, curve);
|
|
curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
|
|
|
|
/* Make sure that y^2 == x^3 + ax + b */
|
|
return (int) (mg_uecc_vli_equal(tmp1, tmp2, num_words));
|
|
}
|
|
|
|
int mg_uecc_valid_public_key(const uint8_t *public_key, MG_UECC_Curve curve) {
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
mg_uecc_word_t *_public = (mg_uecc_word_t *) public_key;
|
|
#else
|
|
mg_uecc_word_t _public[MG_UECC_MAX_WORDS * 2];
|
|
#endif
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN == 0
|
|
mg_uecc_vli_bytesToNative(_public, public_key, curve->num_bytes);
|
|
mg_uecc_vli_bytesToNative(_public + curve->num_words,
|
|
public_key + curve->num_bytes, curve->num_bytes);
|
|
#endif
|
|
return mg_uecc_valid_point(_public, curve);
|
|
}
|
|
|
|
int mg_uecc_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
|
|
MG_UECC_Curve curve) {
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
mg_uecc_word_t *_private = (mg_uecc_word_t *) private_key;
|
|
mg_uecc_word_t *_public = (mg_uecc_word_t *) public_key;
|
|
#else
|
|
mg_uecc_word_t _private[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t _public[MG_UECC_MAX_WORDS * 2];
|
|
#endif
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN == 0
|
|
mg_uecc_vli_bytesToNative(_private, private_key,
|
|
BITS_TO_BYTES(curve->num_n_bits));
|
|
#endif
|
|
|
|
/* Make sure the private key is in the range [1, n-1]. */
|
|
if (mg_uecc_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
|
|
return 0;
|
|
}
|
|
|
|
if (mg_uecc_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) !=
|
|
1) {
|
|
return 0;
|
|
}
|
|
|
|
/* Compute public key. */
|
|
if (!EccPoint_compute_public_key(_public, _private, curve)) {
|
|
return 0;
|
|
}
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN == 0
|
|
mg_uecc_vli_nativeToBytes(public_key, curve->num_bytes, _public);
|
|
mg_uecc_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes,
|
|
_public + curve->num_words);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/* -------- ECDSA code -------- */
|
|
|
|
static void bits2int(mg_uecc_word_t *native, const uint8_t *bits,
|
|
unsigned bits_size, MG_UECC_Curve curve) {
|
|
unsigned num_n_bytes = (unsigned) BITS_TO_BYTES(curve->num_n_bits);
|
|
unsigned num_n_words = (unsigned) BITS_TO_WORDS(curve->num_n_bits);
|
|
int shift;
|
|
mg_uecc_word_t carry;
|
|
mg_uecc_word_t *ptr;
|
|
|
|
if (bits_size > num_n_bytes) {
|
|
bits_size = num_n_bytes;
|
|
}
|
|
|
|
mg_uecc_vli_clear(native, (wordcount_t) num_n_words);
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy((uint8_t *) native, bits, bits_size);
|
|
#else
|
|
mg_uecc_vli_bytesToNative(native, bits, (int) bits_size);
|
|
#endif
|
|
if (bits_size * 8 <= (unsigned) curve->num_n_bits) {
|
|
return;
|
|
}
|
|
shift = (int) bits_size * 8 - curve->num_n_bits;
|
|
carry = 0;
|
|
ptr = native + num_n_words;
|
|
while (ptr-- > native) {
|
|
mg_uecc_word_t temp = *ptr;
|
|
*ptr = (temp >> shift) | carry;
|
|
carry = temp << (MG_UECC_WORD_BITS - shift);
|
|
}
|
|
|
|
/* Reduce mod curve_n */
|
|
if (mg_uecc_vli_cmp_unsafe(curve->n, native, (wordcount_t) num_n_words) !=
|
|
1) {
|
|
mg_uecc_vli_sub(native, native, curve->n, (wordcount_t) num_n_words);
|
|
}
|
|
}
|
|
|
|
static int mg_uecc_sign_with_k_internal(const uint8_t *private_key,
|
|
const uint8_t *message_hash,
|
|
unsigned hash_size, mg_uecc_word_t *k,
|
|
uint8_t *signature,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t tmp[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t s[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t *k2[2] = {tmp, s};
|
|
mg_uecc_word_t *initial_Z = 0;
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
mg_uecc_word_t *p = (mg_uecc_word_t *) signature;
|
|
#else
|
|
mg_uecc_word_t p[MG_UECC_MAX_WORDS * 2];
|
|
#endif
|
|
mg_uecc_word_t carry;
|
|
wordcount_t num_words = curve->num_words;
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
bitcount_t num_n_bits = curve->num_n_bits;
|
|
|
|
/* Make sure 0 < k < curve_n */
|
|
if (mg_uecc_vli_isZero(k, num_words) ||
|
|
mg_uecc_vli_cmp(curve->n, k, num_n_words) != 1) {
|
|
return 0;
|
|
}
|
|
|
|
carry = regularize_k(k, tmp, s, curve);
|
|
/* If an RNG function was specified, try to get a random initial Z value to
|
|
improve protection against side-channel attacks. */
|
|
if (g_rng_function) {
|
|
if (!mg_uecc_generate_random_int(k2[carry], curve->p, num_words)) {
|
|
return 0;
|
|
}
|
|
initial_Z = k2[carry];
|
|
}
|
|
EccPoint_mult(p, curve->G, k2[!carry], initial_Z,
|
|
(bitcount_t) (num_n_bits + 1), curve);
|
|
if (mg_uecc_vli_isZero(p, num_words)) {
|
|
return 0;
|
|
}
|
|
|
|
/* If an RNG function was specified, get a random number
|
|
to prevent side channel analysis of k. */
|
|
if (!g_rng_function) {
|
|
mg_uecc_vli_clear(tmp, num_n_words);
|
|
tmp[0] = 1;
|
|
} else if (!mg_uecc_generate_random_int(tmp, curve->n, num_n_words)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Prevent side channel analysis of mg_uecc_vli_modInv() to determine
|
|
bits of k / the private key by premultiplying by a random number */
|
|
mg_uecc_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
|
|
mg_uecc_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
|
|
mg_uecc_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN == 0
|
|
mg_uecc_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
|
|
#endif
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy((uint8_t *) tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
|
|
#else
|
|
mg_uecc_vli_bytesToNative(tmp, private_key,
|
|
BITS_TO_BYTES(curve->num_n_bits)); /* tmp = d */
|
|
#endif
|
|
|
|
s[num_n_words - 1] = 0;
|
|
mg_uecc_vli_set(s, p, num_words);
|
|
mg_uecc_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
|
|
|
|
bits2int(tmp, message_hash, hash_size, curve);
|
|
mg_uecc_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
|
|
mg_uecc_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
|
|
if (mg_uecc_vli_numBits(s, num_n_words) > (bitcount_t) curve->num_bytes * 8) {
|
|
return 0;
|
|
}
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy((uint8_t *) signature + curve->num_bytes, (uint8_t *) s,
|
|
curve->num_bytes);
|
|
#else
|
|
mg_uecc_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
#if 0
|
|
/* For testing - sign with an explicitly specified k value */
|
|
int mg_uecc_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
|
|
unsigned hash_size, const uint8_t *k, uint8_t *signature,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t k2[MG_UECC_MAX_WORDS];
|
|
bits2int(k2, k, (unsigned) BITS_TO_BYTES(curve->num_n_bits), curve);
|
|
return mg_uecc_sign_with_k_internal(private_key, message_hash, hash_size, k2,
|
|
signature, curve);
|
|
}
|
|
#endif
|
|
|
|
int mg_uecc_sign(const uint8_t *private_key, const uint8_t *message_hash,
|
|
unsigned hash_size, uint8_t *signature, MG_UECC_Curve curve) {
|
|
mg_uecc_word_t k[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tries;
|
|
|
|
for (tries = 0; tries < MG_UECC_RNG_MAX_TRIES; ++tries) {
|
|
if (!mg_uecc_generate_random_int(k, curve->n,
|
|
BITS_TO_WORDS(curve->num_n_bits))) {
|
|
return 0;
|
|
}
|
|
|
|
if (mg_uecc_sign_with_k_internal(private_key, message_hash, hash_size, k,
|
|
signature, curve)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always
|
|
the same size as the hash result size. */
|
|
static void HMAC_init(const MG_UECC_HashContext *hash_context,
|
|
const uint8_t *K) {
|
|
uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
|
|
unsigned i;
|
|
for (i = 0; i < hash_context->result_size; ++i) pad[i] = K[i] ^ 0x36;
|
|
for (; i < hash_context->block_size; ++i) pad[i] = 0x36;
|
|
|
|
hash_context->init_hash(hash_context);
|
|
hash_context->update_hash(hash_context, pad, hash_context->block_size);
|
|
}
|
|
|
|
static void HMAC_update(const MG_UECC_HashContext *hash_context,
|
|
const uint8_t *message, unsigned message_size) {
|
|
hash_context->update_hash(hash_context, message, message_size);
|
|
}
|
|
|
|
static void HMAC_finish(const MG_UECC_HashContext *hash_context,
|
|
const uint8_t *K, uint8_t *result) {
|
|
uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
|
|
unsigned i;
|
|
for (i = 0; i < hash_context->result_size; ++i) pad[i] = K[i] ^ 0x5c;
|
|
for (; i < hash_context->block_size; ++i) pad[i] = 0x5c;
|
|
|
|
hash_context->finish_hash(hash_context, result);
|
|
|
|
hash_context->init_hash(hash_context);
|
|
hash_context->update_hash(hash_context, pad, hash_context->block_size);
|
|
hash_context->update_hash(hash_context, result, hash_context->result_size);
|
|
hash_context->finish_hash(hash_context, result);
|
|
}
|
|
|
|
/* V = HMAC_K(V) */
|
|
static void update_V(const MG_UECC_HashContext *hash_context, uint8_t *K,
|
|
uint8_t *V) {
|
|
HMAC_init(hash_context, K);
|
|
HMAC_update(hash_context, V, hash_context->result_size);
|
|
HMAC_finish(hash_context, K, V);
|
|
}
|
|
|
|
/* Deterministic signing, similar to RFC 6979. Differences are:
|
|
* We just use H(m) directly rather than bits2octets(H(m))
|
|
(it is not reduced modulo curve_n).
|
|
* We generate a value for k (aka T) directly rather than converting
|
|
endianness.
|
|
|
|
Layout of hash_context->tmp: <K> | <V> | (1 byte overlapped 0x00 or 0x01) /
|
|
<HMAC pad> */
|
|
int mg_uecc_sign_deterministic(const uint8_t *private_key,
|
|
const uint8_t *message_hash, unsigned hash_size,
|
|
const MG_UECC_HashContext *hash_context,
|
|
uint8_t *signature, MG_UECC_Curve curve) {
|
|
uint8_t *K = hash_context->tmp;
|
|
uint8_t *V = K + hash_context->result_size;
|
|
wordcount_t num_bytes = curve->num_bytes;
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
bitcount_t num_n_bits = curve->num_n_bits;
|
|
mg_uecc_word_t tries;
|
|
unsigned i;
|
|
for (i = 0; i < hash_context->result_size; ++i) {
|
|
V[i] = 0x01;
|
|
K[i] = 0;
|
|
}
|
|
|
|
/* K = HMAC_K(V || 0x00 || int2octets(x) || h(m)) */
|
|
HMAC_init(hash_context, K);
|
|
V[hash_context->result_size] = 0x00;
|
|
HMAC_update(hash_context, V, hash_context->result_size + 1);
|
|
HMAC_update(hash_context, private_key, (unsigned int) num_bytes);
|
|
HMAC_update(hash_context, message_hash, hash_size);
|
|
HMAC_finish(hash_context, K, K);
|
|
|
|
update_V(hash_context, K, V);
|
|
|
|
/* K = HMAC_K(V || 0x01 || int2octets(x) || h(m)) */
|
|
HMAC_init(hash_context, K);
|
|
V[hash_context->result_size] = 0x01;
|
|
HMAC_update(hash_context, V, hash_context->result_size + 1);
|
|
HMAC_update(hash_context, private_key, (unsigned int) num_bytes);
|
|
HMAC_update(hash_context, message_hash, hash_size);
|
|
HMAC_finish(hash_context, K, K);
|
|
|
|
update_V(hash_context, K, V);
|
|
|
|
for (tries = 0; tries < MG_UECC_RNG_MAX_TRIES; ++tries) {
|
|
mg_uecc_word_t T[MG_UECC_MAX_WORDS];
|
|
uint8_t *T_ptr = (uint8_t *) T;
|
|
wordcount_t T_bytes = 0;
|
|
for (;;) {
|
|
update_V(hash_context, K, V);
|
|
for (i = 0; i < hash_context->result_size; ++i) {
|
|
T_ptr[T_bytes++] = V[i];
|
|
if (T_bytes >= num_n_words * MG_UECC_WORD_SIZE) {
|
|
goto filled;
|
|
}
|
|
}
|
|
}
|
|
filled:
|
|
if ((bitcount_t) num_n_words * MG_UECC_WORD_SIZE * 8 > num_n_bits) {
|
|
mg_uecc_word_t mask = (mg_uecc_word_t) -1;
|
|
T[num_n_words - 1] &=
|
|
mask >>
|
|
((bitcount_t) (num_n_words * MG_UECC_WORD_SIZE * 8 - num_n_bits));
|
|
}
|
|
|
|
if (mg_uecc_sign_with_k_internal(private_key, message_hash, hash_size, T,
|
|
signature, curve)) {
|
|
return 1;
|
|
}
|
|
|
|
/* K = HMAC_K(V || 0x00) */
|
|
HMAC_init(hash_context, K);
|
|
V[hash_context->result_size] = 0x00;
|
|
HMAC_update(hash_context, V, hash_context->result_size + 1);
|
|
HMAC_finish(hash_context, K, K);
|
|
|
|
update_V(hash_context, K, V);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bitcount_t smax(bitcount_t a, bitcount_t b) {
|
|
return (a > b ? a : b);
|
|
}
|
|
|
|
int mg_uecc_verify(const uint8_t *public_key, const uint8_t *message_hash,
|
|
unsigned hash_size, const uint8_t *signature,
|
|
MG_UECC_Curve curve) {
|
|
mg_uecc_word_t u1[MG_UECC_MAX_WORDS], u2[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t z[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t sum[MG_UECC_MAX_WORDS * 2];
|
|
mg_uecc_word_t rx[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t ry[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tx[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t ty[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tz[MG_UECC_MAX_WORDS];
|
|
const mg_uecc_word_t *points[4];
|
|
const mg_uecc_word_t *point;
|
|
bitcount_t num_bits;
|
|
bitcount_t i;
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
mg_uecc_word_t *_public = (mg_uecc_word_t *) public_key;
|
|
#else
|
|
mg_uecc_word_t _public[MG_UECC_MAX_WORDS * 2];
|
|
#endif
|
|
mg_uecc_word_t r[MG_UECC_MAX_WORDS], s[MG_UECC_MAX_WORDS];
|
|
wordcount_t num_words = curve->num_words;
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
|
|
|
|
rx[num_n_words - 1] = 0;
|
|
r[num_n_words - 1] = 0;
|
|
s[num_n_words - 1] = 0;
|
|
|
|
#if MG_UECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
bcopy((uint8_t *) r, signature, curve->num_bytes);
|
|
bcopy((uint8_t *) s, signature + curve->num_bytes, curve->num_bytes);
|
|
#else
|
|
mg_uecc_vli_bytesToNative(_public, public_key, curve->num_bytes);
|
|
mg_uecc_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
|
|
curve->num_bytes);
|
|
mg_uecc_vli_bytesToNative(r, signature, curve->num_bytes);
|
|
mg_uecc_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
|
|
#endif
|
|
|
|
/* r, s must not be 0. */
|
|
if (mg_uecc_vli_isZero(r, num_words) || mg_uecc_vli_isZero(s, num_words)) {
|
|
return 0;
|
|
}
|
|
|
|
/* r, s must be < n. */
|
|
if (mg_uecc_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
|
|
mg_uecc_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate u1 and u2. */
|
|
mg_uecc_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
|
|
u1[num_n_words - 1] = 0;
|
|
bits2int(u1, message_hash, hash_size, curve);
|
|
mg_uecc_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
|
|
mg_uecc_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
|
|
|
|
/* Calculate sum = G + Q. */
|
|
mg_uecc_vli_set(sum, _public, num_words);
|
|
mg_uecc_vli_set(sum + num_words, _public + num_words, num_words);
|
|
mg_uecc_vli_set(tx, curve->G, num_words);
|
|
mg_uecc_vli_set(ty, curve->G + num_words, num_words);
|
|
mg_uecc_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
|
|
XYcZ_add(tx, ty, sum, sum + num_words, curve);
|
|
mg_uecc_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
|
|
apply_z(sum, sum + num_words, z, curve);
|
|
|
|
/* Use Shamir's trick to calculate u1*G + u2*Q */
|
|
points[0] = 0;
|
|
points[1] = curve->G;
|
|
points[2] = _public;
|
|
points[3] = sum;
|
|
num_bits = smax(mg_uecc_vli_numBits(u1, num_n_words),
|
|
mg_uecc_vli_numBits(u2, num_n_words));
|
|
point =
|
|
points[(!!mg_uecc_vli_testBit(u1, (bitcount_t) (num_bits - 1))) |
|
|
((!!mg_uecc_vli_testBit(u2, (bitcount_t) (num_bits - 1))) << 1)];
|
|
mg_uecc_vli_set(rx, point, num_words);
|
|
mg_uecc_vli_set(ry, point + num_words, num_words);
|
|
mg_uecc_vli_clear(z, num_words);
|
|
z[0] = 1;
|
|
|
|
for (i = num_bits - 2; i >= 0; --i) {
|
|
mg_uecc_word_t index;
|
|
curve->double_jacobian(rx, ry, z, curve);
|
|
|
|
index = (!!mg_uecc_vli_testBit(u1, i)) |
|
|
(mg_uecc_word_t) ((!!mg_uecc_vli_testBit(u2, i)) << 1);
|
|
point = points[index];
|
|
if (point) {
|
|
mg_uecc_vli_set(tx, point, num_words);
|
|
mg_uecc_vli_set(ty, point + num_words, num_words);
|
|
apply_z(tx, ty, z, curve);
|
|
mg_uecc_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
|
|
XYcZ_add(tx, ty, rx, ry, curve);
|
|
mg_uecc_vli_modMult_fast(z, z, tz, curve);
|
|
}
|
|
}
|
|
|
|
mg_uecc_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
|
|
apply_z(rx, ry, z, curve);
|
|
|
|
/* v = x1 (mod n) */
|
|
if (mg_uecc_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
|
|
mg_uecc_vli_sub(rx, rx, curve->n, num_n_words);
|
|
}
|
|
|
|
/* Accept only if v == r. */
|
|
return (int) (mg_uecc_vli_equal(rx, r, num_words));
|
|
}
|
|
|
|
#if MG_UECC_ENABLE_VLI_API
|
|
|
|
unsigned mg_uecc_curve_num_words(MG_UECC_Curve curve) {
|
|
return curve->num_words;
|
|
}
|
|
|
|
unsigned mg_uecc_curve_num_bytes(MG_UECC_Curve curve) {
|
|
return curve->num_bytes;
|
|
}
|
|
|
|
unsigned mg_uecc_curve_num_bits(MG_UECC_Curve curve) {
|
|
return curve->num_bytes * 8;
|
|
}
|
|
|
|
unsigned mg_uecc_curve_num_n_words(MG_UECC_Curve curve) {
|
|
return BITS_TO_WORDS(curve->num_n_bits);
|
|
}
|
|
|
|
unsigned mg_uecc_curve_num_n_bytes(MG_UECC_Curve curve) {
|
|
return BITS_TO_BYTES(curve->num_n_bits);
|
|
}
|
|
|
|
unsigned mg_uecc_curve_num_n_bits(MG_UECC_Curve curve) {
|
|
return curve->num_n_bits;
|
|
}
|
|
|
|
const mg_uecc_word_t *mg_uecc_curve_p(MG_UECC_Curve curve) {
|
|
return curve->p;
|
|
}
|
|
|
|
const mg_uecc_word_t *mg_uecc_curve_n(MG_UECC_Curve curve) {
|
|
return curve->n;
|
|
}
|
|
|
|
const mg_uecc_word_t *mg_uecc_curve_G(MG_UECC_Curve curve) {
|
|
return curve->G;
|
|
}
|
|
|
|
const mg_uecc_word_t *mg_uecc_curve_b(MG_UECC_Curve curve) {
|
|
return curve->b;
|
|
}
|
|
|
|
#if MG_UECC_SUPPORT_COMPRESSED_POINT
|
|
void mg_uecc_vli_mod_sqrt(mg_uecc_word_t *a, MG_UECC_Curve curve) {
|
|
curve->mod_sqrt(a, curve);
|
|
}
|
|
#endif
|
|
|
|
void mg_uecc_vli_mmod_fast(mg_uecc_word_t *result, mg_uecc_word_t *product,
|
|
MG_UECC_Curve curve) {
|
|
#if (MG_UECC_OPTIMIZATION_LEVEL > 0)
|
|
curve->mmod_fast(result, product);
|
|
#else
|
|
mg_uecc_vli_mmod(result, product, curve->p, curve->num_words);
|
|
#endif
|
|
}
|
|
|
|
void mg_uecc_point_mult(mg_uecc_word_t *result, const mg_uecc_word_t *point,
|
|
const mg_uecc_word_t *scalar, MG_UECC_Curve curve) {
|
|
mg_uecc_word_t tmp1[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t tmp2[MG_UECC_MAX_WORDS];
|
|
mg_uecc_word_t *p2[2] = {tmp1, tmp2};
|
|
mg_uecc_word_t carry = regularize_k(scalar, tmp1, tmp2, curve);
|
|
|
|
EccPoint_mult(result, point, p2[!carry], 0, curve->num_n_bits + 1, curve);
|
|
}
|
|
|
|
#endif /* MG_UECC_ENABLE_VLI_API */
|
|
#endif // MG_TLS_BUILTIN
|
|
// End of uecc BSD-2
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/tls_x25519.c"
|
|
#endif
|
|
/**
|
|
* Adapted from STROBE: https://strobe.sourceforge.io/
|
|
* Copyright (c) 2015-2016 Cryptography Research, Inc.
|
|
* Author: Mike Hamburg
|
|
* License: MIT License
|
|
*/
|
|
|
|
|
|
const uint8_t X25519_BASE_POINT[X25519_BYTES] = {9};
|
|
|
|
#define X25519_WBITS 32
|
|
|
|
typedef uint32_t limb_t;
|
|
typedef uint64_t dlimb_t;
|
|
typedef int64_t sdlimb_t;
|
|
#define LIMB(x) (uint32_t)(x##ull), (uint32_t) ((x##ull) >> 32)
|
|
|
|
#define NLIMBS (256 / X25519_WBITS)
|
|
typedef limb_t fe[NLIMBS];
|
|
|
|
static limb_t umaal(limb_t *carry, limb_t acc, limb_t mand, limb_t mier) {
|
|
dlimb_t tmp = (dlimb_t) mand * mier + acc + *carry;
|
|
*carry = (limb_t) (tmp >> X25519_WBITS);
|
|
return (limb_t) tmp;
|
|
}
|
|
|
|
// These functions are implemented in terms of umaal on ARM
|
|
static limb_t adc(limb_t *carry, limb_t acc, limb_t mand) {
|
|
dlimb_t total = (dlimb_t) *carry + acc + mand;
|
|
*carry = (limb_t) (total >> X25519_WBITS);
|
|
return (limb_t) total;
|
|
}
|
|
|
|
static limb_t adc0(limb_t *carry, limb_t acc) {
|
|
dlimb_t total = (dlimb_t) *carry + acc;
|
|
*carry = (limb_t) (total >> X25519_WBITS);
|
|
return (limb_t) total;
|
|
}
|
|
|
|
// - Precondition: carry is small.
|
|
// - Invariant: result of propagate is < 2^255 + 1 word
|
|
// - In particular, always less than 2p.
|
|
// - Also, output x >= min(x,19)
|
|
static void propagate(fe x, limb_t over) {
|
|
unsigned i;
|
|
limb_t carry;
|
|
over = x[NLIMBS - 1] >> (X25519_WBITS - 1) | over << 1;
|
|
x[NLIMBS - 1] &= ~((limb_t) 1 << (X25519_WBITS - 1));
|
|
|
|
carry = over * 19;
|
|
for (i = 0; i < NLIMBS; i++) {
|
|
x[i] = adc0(&carry, x[i]);
|
|
}
|
|
}
|
|
|
|
static void add(fe out, const fe a, const fe b) {
|
|
unsigned i;
|
|
limb_t carry = 0;
|
|
for (i = 0; i < NLIMBS; i++) {
|
|
out[i] = adc(&carry, a[i], b[i]);
|
|
}
|
|
propagate(out, carry);
|
|
}
|
|
|
|
static void sub(fe out, const fe a, const fe b) {
|
|
unsigned i;
|
|
sdlimb_t carry = -38;
|
|
for (i = 0; i < NLIMBS; i++) {
|
|
carry = carry + a[i] - b[i];
|
|
out[i] = (limb_t) carry;
|
|
carry >>= X25519_WBITS;
|
|
}
|
|
propagate(out, (limb_t) (1 + carry));
|
|
}
|
|
|
|
// `b` can contain less than 8 limbs, thus we use `limb_t *` instead of `fe`
|
|
// to avoid build warnings
|
|
static void mul(fe out, const fe a, const limb_t *b, unsigned nb) {
|
|
limb_t accum[2 * NLIMBS] = {0};
|
|
unsigned i, j;
|
|
|
|
limb_t carry2;
|
|
for (i = 0; i < nb; i++) {
|
|
limb_t mand = b[i];
|
|
carry2 = 0;
|
|
for (j = 0; j < NLIMBS; j++) {
|
|
limb_t tmp; // "a" may be misaligned
|
|
memcpy(&tmp, &a[j], sizeof(tmp)); // So make an aligned copy
|
|
accum[i + j] = umaal(&carry2, accum[i + j], mand, tmp);
|
|
}
|
|
accum[i + j] = carry2;
|
|
}
|
|
|
|
carry2 = 0;
|
|
for (j = 0; j < NLIMBS; j++) {
|
|
out[j] = umaal(&carry2, accum[j], 38, accum[j + NLIMBS]);
|
|
}
|
|
propagate(out, carry2);
|
|
}
|
|
|
|
static void sqr(fe out, const fe a) {
|
|
mul(out, a, a, NLIMBS);
|
|
}
|
|
static void mul1(fe out, const fe a) {
|
|
mul(out, a, out, NLIMBS);
|
|
}
|
|
static void sqr1(fe a) {
|
|
mul1(a, a);
|
|
}
|
|
|
|
static void condswap(limb_t a[2 * NLIMBS], limb_t b[2 * NLIMBS],
|
|
limb_t doswap) {
|
|
unsigned i;
|
|
for (i = 0; i < 2 * NLIMBS; i++) {
|
|
limb_t xor_ab = (a[i] ^ b[i]) & doswap;
|
|
a[i] ^= xor_ab;
|
|
b[i] ^= xor_ab;
|
|
}
|
|
}
|
|
|
|
// Canonicalize a field element x, reducing it to the least residue which is
|
|
// congruent to it mod 2^255-19
|
|
// - Precondition: x < 2^255 + 1 word
|
|
static limb_t canon(fe x) {
|
|
// First, add 19.
|
|
unsigned i;
|
|
limb_t carry0 = 19;
|
|
limb_t res;
|
|
sdlimb_t carry;
|
|
for (i = 0; i < NLIMBS; i++) {
|
|
x[i] = adc0(&carry0, x[i]);
|
|
}
|
|
propagate(x, carry0);
|
|
|
|
// Here, 19 <= x2 < 2^255
|
|
// - This is because we added 19, so before propagate it can't be less
|
|
// than 19. After propagate, it still can't be less than 19, because if
|
|
// propagate does anything it adds 19.
|
|
// - We know that the high bit must be clear, because either the input was ~
|
|
// 2^255 + one word + 19 (in which case it propagates to at most 2 words) or
|
|
// it was < 2^255. So now, if we subtract 19, we will get back to something in
|
|
// [0,2^255-19).
|
|
carry = -19;
|
|
res = 0;
|
|
for (i = 0; i < NLIMBS; i++) {
|
|
carry += x[i];
|
|
res |= x[i] = (limb_t) carry;
|
|
carry >>= X25519_WBITS;
|
|
}
|
|
return (limb_t) (((dlimb_t) res - 1) >> X25519_WBITS);
|
|
}
|
|
|
|
static const limb_t a24[1] = {121665};
|
|
|
|
static void ladder_part1(fe xs[5]) {
|
|
limb_t *x2 = xs[0], *z2 = xs[1], *x3 = xs[2], *z3 = xs[3], *t1 = xs[4];
|
|
add(t1, x2, z2); // t1 = A
|
|
sub(z2, x2, z2); // z2 = B
|
|
add(x2, x3, z3); // x2 = C
|
|
sub(z3, x3, z3); // z3 = D
|
|
mul1(z3, t1); // z3 = DA
|
|
mul1(x2, z2); // x3 = BC
|
|
add(x3, z3, x2); // x3 = DA+CB
|
|
sub(z3, z3, x2); // z3 = DA-CB
|
|
sqr1(t1); // t1 = AA
|
|
sqr1(z2); // z2 = BB
|
|
sub(x2, t1, z2); // x2 = E = AA-BB
|
|
mul(z2, x2, a24, sizeof(a24) / sizeof(a24[0])); // z2 = E*a24
|
|
add(z2, z2, t1); // z2 = E*a24 + AA
|
|
}
|
|
|
|
static void ladder_part2(fe xs[5], const fe x1) {
|
|
limb_t *x2 = xs[0], *z2 = xs[1], *x3 = xs[2], *z3 = xs[3], *t1 = xs[4];
|
|
sqr1(z3); // z3 = (DA-CB)^2
|
|
mul1(z3, x1); // z3 = x1 * (DA-CB)^2
|
|
sqr1(x3); // x3 = (DA+CB)^2
|
|
mul1(z2, x2); // z2 = AA*(E*a24+AA)
|
|
sub(x2, t1, x2); // x2 = BB again
|
|
mul1(x2, t1); // x2 = AA*BB
|
|
}
|
|
|
|
static void x25519_core(fe xs[5], const uint8_t scalar[X25519_BYTES],
|
|
const uint8_t *x1, int clamp) {
|
|
int i;
|
|
limb_t swap = 0;
|
|
limb_t *x2 = xs[0], *x3 = xs[2], *z3 = xs[3];
|
|
memset(xs, 0, 4 * sizeof(fe));
|
|
x2[0] = z3[0] = 1;
|
|
memcpy(x3, x1, sizeof(fe));
|
|
|
|
for (i = 255; i >= 0; i--) {
|
|
uint8_t bytei = scalar[i / 8];
|
|
limb_t doswap;
|
|
if (clamp) {
|
|
if (i / 8 == 0) {
|
|
bytei &= (uint8_t) ~7U;
|
|
} else if (i / 8 == X25519_BYTES - 1) {
|
|
bytei &= 0x7F;
|
|
bytei |= 0x40;
|
|
}
|
|
}
|
|
doswap = 0 - (limb_t) ((bytei >> (i % 8)) & 1);
|
|
condswap(x2, x3, swap ^ doswap);
|
|
swap = doswap;
|
|
|
|
ladder_part1(xs);
|
|
ladder_part2(xs, (const limb_t *) x1);
|
|
}
|
|
condswap(x2, x3, swap);
|
|
}
|
|
|
|
int mg_tls_x25519(uint8_t out[X25519_BYTES], const uint8_t scalar[X25519_BYTES],
|
|
const uint8_t x1[X25519_BYTES], int clamp) {
|
|
int i, ret;
|
|
fe xs[5];
|
|
limb_t *x2, *z2, *z3, *prev;
|
|
static const struct {
|
|
uint8_t a, c, n;
|
|
} steps[13] = {{2, 1, 1}, {2, 1, 1}, {4, 2, 3}, {2, 4, 6}, {3, 1, 1},
|
|
{3, 2, 12}, {4, 3, 25}, {2, 3, 25}, {2, 4, 50}, {3, 2, 125},
|
|
{3, 1, 2}, {3, 1, 2}, {3, 1, 1}};
|
|
x25519_core(xs, scalar, x1, clamp);
|
|
|
|
// Precomputed inversion chain
|
|
x2 = xs[0];
|
|
z2 = xs[1];
|
|
z3 = xs[3];
|
|
|
|
prev = z2;
|
|
for (i = 0; i < 13; i++) {
|
|
int j;
|
|
limb_t *a = xs[steps[i].a];
|
|
for (j = steps[i].n; j > 0; j--) {
|
|
sqr(a, prev);
|
|
prev = a;
|
|
}
|
|
mul1(a, xs[steps[i].c]);
|
|
}
|
|
|
|
// Here prev = z3
|
|
// x2 /= z2
|
|
mul((limb_t *) out, x2, z3, NLIMBS);
|
|
ret = (int) canon((limb_t *) out);
|
|
if (!clamp) ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/url.c"
|
|
#endif
|
|
|
|
|
|
struct url {
|
|
size_t key, user, pass, host, port, uri, end;
|
|
};
|
|
|
|
int mg_url_is_ssl(const char *url) {
|
|
return strncmp(url, "wss:", 4) == 0 || strncmp(url, "https:", 6) == 0 ||
|
|
strncmp(url, "mqtts:", 6) == 0 || strncmp(url, "ssl:", 4) == 0 ||
|
|
strncmp(url, "tls:", 4) == 0 || strncmp(url, "tcps:", 5) == 0;
|
|
}
|
|
|
|
static struct url urlparse(const char *url) {
|
|
size_t i;
|
|
struct url u;
|
|
memset(&u, 0, sizeof(u));
|
|
for (i = 0; url[i] != '\0'; i++) {
|
|
if (url[i] == '/' && i > 0 && u.host == 0 && url[i - 1] == '/') {
|
|
u.host = i + 1;
|
|
u.port = 0;
|
|
} else if (url[i] == ']') {
|
|
u.port = 0; // IPv6 URLs, like http://[::1]/bar
|
|
} else if (url[i] == ':' && u.port == 0 && u.uri == 0) {
|
|
u.port = i + 1;
|
|
} else if (url[i] == '@' && u.user == 0 && u.pass == 0 && u.uri == 0) {
|
|
u.user = u.host;
|
|
u.pass = u.port;
|
|
u.host = i + 1;
|
|
u.port = 0;
|
|
} else if (url[i] == '/' && u.host && u.uri == 0) {
|
|
u.uri = i;
|
|
}
|
|
}
|
|
u.end = i;
|
|
#if 0
|
|
printf("[%s] %d %d %d %d %d\n", url, u.user, u.pass, u.host, u.port, u.uri);
|
|
#endif
|
|
return u;
|
|
}
|
|
|
|
struct mg_str mg_url_host(const char *url) {
|
|
struct url u = urlparse(url);
|
|
size_t n = u.port ? u.port - u.host - 1
|
|
: u.uri ? u.uri - u.host
|
|
: u.end - u.host;
|
|
struct mg_str s = mg_str_n(url + u.host, n);
|
|
return s;
|
|
}
|
|
|
|
const char *mg_url_uri(const char *url) {
|
|
struct url u = urlparse(url);
|
|
return u.uri ? url + u.uri : "/";
|
|
}
|
|
|
|
unsigned short mg_url_port(const char *url) {
|
|
struct url u = urlparse(url);
|
|
unsigned short port = 0;
|
|
if (strncmp(url, "http:", 5) == 0 || strncmp(url, "ws:", 3) == 0) port = 80;
|
|
if (strncmp(url, "wss:", 4) == 0 || strncmp(url, "https:", 6) == 0)
|
|
port = 443;
|
|
if (strncmp(url, "mqtt:", 5) == 0) port = 1883;
|
|
if (strncmp(url, "mqtts:", 6) == 0) port = 8883;
|
|
if (u.port) port = (unsigned short) atoi(url + u.port);
|
|
return port;
|
|
}
|
|
|
|
struct mg_str mg_url_user(const char *url) {
|
|
struct url u = urlparse(url);
|
|
struct mg_str s = mg_str("");
|
|
if (u.user && (u.pass || u.host)) {
|
|
size_t n = u.pass ? u.pass - u.user - 1 : u.host - u.user - 1;
|
|
s = mg_str_n(url + u.user, n);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
struct mg_str mg_url_pass(const char *url) {
|
|
struct url u = urlparse(url);
|
|
struct mg_str s = mg_str_n("", 0UL);
|
|
if (u.pass && u.host) {
|
|
size_t n = u.host - u.pass - 1;
|
|
s = mg_str_n(url + u.pass, n);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/util.c"
|
|
#endif
|
|
|
|
|
|
// Not using memset for zeroing memory, cause it can be dropped by compiler
|
|
// See https://github.com/cesanta/mongoose/pull/1265
|
|
void mg_bzero(volatile unsigned char *buf, size_t len) {
|
|
if (buf != NULL) {
|
|
while (len--) *buf++ = 0;
|
|
}
|
|
}
|
|
|
|
#if MG_ENABLE_CUSTOM_RANDOM
|
|
#else
|
|
void mg_random(void *buf, size_t len) {
|
|
bool done = false;
|
|
unsigned char *p = (unsigned char *) buf;
|
|
#if MG_ARCH == MG_ARCH_ESP32
|
|
while (len--) *p++ = (unsigned char) (esp_random() & 255);
|
|
done = true;
|
|
#elif MG_ARCH == MG_ARCH_WIN32
|
|
#elif MG_ARCH == MG_ARCH_UNIX
|
|
FILE *fp = fopen("/dev/urandom", "rb");
|
|
if (fp != NULL) {
|
|
if (fread(buf, 1, len, fp) == len) done = true;
|
|
fclose(fp);
|
|
}
|
|
#endif
|
|
// If everything above did not work, fallback to a pseudo random generator
|
|
while (!done && len--) *p++ = (unsigned char) (rand() & 255);
|
|
}
|
|
#endif
|
|
|
|
char *mg_random_str(char *buf, size_t len) {
|
|
size_t i;
|
|
mg_random(buf, len);
|
|
for (i = 0; i < len; i++) {
|
|
uint8_t c = ((uint8_t *) buf)[i] % 62U;
|
|
buf[i] = i == len - 1 ? (char) '\0' // 0-terminate last byte
|
|
: c < 26 ? (char) ('a' + c) // lowercase
|
|
: c < 52 ? (char) ('A' + c - 26) // uppercase
|
|
: (char) ('0' + c - 52); // numeric
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
uint32_t mg_ntohl(uint32_t net) {
|
|
uint8_t data[4] = {0, 0, 0, 0};
|
|
memcpy(&data, &net, sizeof(data));
|
|
return (((uint32_t) data[3]) << 0) | (((uint32_t) data[2]) << 8) |
|
|
(((uint32_t) data[1]) << 16) | (((uint32_t) data[0]) << 24);
|
|
}
|
|
|
|
uint16_t mg_ntohs(uint16_t net) {
|
|
uint8_t data[2] = {0, 0};
|
|
memcpy(&data, &net, sizeof(data));
|
|
return (uint16_t) ((uint16_t) data[1] | (((uint16_t) data[0]) << 8));
|
|
}
|
|
|
|
uint32_t mg_crc32(uint32_t crc, const char *buf, size_t len) {
|
|
static const uint32_t crclut[16] = {
|
|
// table for polynomial 0xEDB88320 (reflected)
|
|
0x00000000, 0x1DB71064, 0x3B6E20C8, 0x26D930AC, 0x76DC4190, 0x6B6B51F4,
|
|
0x4DB26158, 0x5005713C, 0xEDB88320, 0xF00F9344, 0xD6D6A3E8, 0xCB61B38C,
|
|
0x9B64C2B0, 0x86D3D2D4, 0xA00AE278, 0xBDBDF21C};
|
|
crc = ~crc;
|
|
while (len--) {
|
|
uint8_t byte = *(uint8_t *) buf++;
|
|
crc = crclut[(crc ^ byte) & 0x0F] ^ (crc >> 4);
|
|
crc = crclut[(crc ^ (byte >> 4)) & 0x0F] ^ (crc >> 4);
|
|
}
|
|
return ~crc;
|
|
}
|
|
|
|
static int isbyte(int n) {
|
|
return n >= 0 && n <= 255;
|
|
}
|
|
|
|
static int parse_net(const char *spec, uint32_t *net, uint32_t *mask) {
|
|
int n, a, b, c, d, slash = 32, len = 0;
|
|
if ((sscanf(spec, "%d.%d.%d.%d/%d%n", &a, &b, &c, &d, &slash, &n) == 5 ||
|
|
sscanf(spec, "%d.%d.%d.%d%n", &a, &b, &c, &d, &n) == 4) &&
|
|
isbyte(a) && isbyte(b) && isbyte(c) && isbyte(d) && slash >= 0 &&
|
|
slash < 33) {
|
|
len = n;
|
|
*net = ((uint32_t) a << 24) | ((uint32_t) b << 16) | ((uint32_t) c << 8) |
|
|
(uint32_t) d;
|
|
*mask = slash ? (uint32_t) (0xffffffffU << (32 - slash)) : (uint32_t) 0;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int mg_check_ip_acl(struct mg_str acl, struct mg_addr *remote_ip) {
|
|
struct mg_str entry;
|
|
int allowed = acl.len == 0 ? '+' : '-'; // If any ACL is set, deny by default
|
|
uint32_t remote_ip4;
|
|
if (remote_ip->is_ip6) {
|
|
return -1; // TODO(): handle IPv6 ACL and addresses
|
|
} else { // IPv4
|
|
memcpy((void *) &remote_ip4, remote_ip->ip, sizeof(remote_ip4));
|
|
while (mg_span(acl, &entry, &acl, ',')) {
|
|
uint32_t net, mask;
|
|
if (entry.buf[0] != '+' && entry.buf[0] != '-') return -1;
|
|
if (parse_net(&entry.buf[1], &net, &mask) == 0) return -2;
|
|
if ((mg_ntohl(remote_ip4) & mask) == net) allowed = entry.buf[0];
|
|
}
|
|
}
|
|
return allowed == '+';
|
|
}
|
|
|
|
bool mg_path_is_sane(const struct mg_str path) {
|
|
const char *s = path.buf;
|
|
size_t n = path.len;
|
|
if (path.buf[0] == '.' && path.buf[1] == '.') return false; // Starts with ..
|
|
for (; s[0] != '\0' && n > 0; s++, n--) {
|
|
if ((s[0] == '/' || s[0] == '\\') && n >= 2) { // Subdir?
|
|
if (s[1] == '.' && s[2] == '.') return false; // Starts with ..
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if MG_ENABLE_CUSTOM_MILLIS
|
|
#else
|
|
uint64_t mg_millis(void) {
|
|
#if MG_ARCH == MG_ARCH_WIN32
|
|
return GetTickCount();
|
|
#elif MG_ARCH == MG_ARCH_RP2040
|
|
return time_us_64() / 1000;
|
|
#elif MG_ARCH == MG_ARCH_ESP8266 || MG_ARCH == MG_ARCH_ESP32 || \
|
|
MG_ARCH == MG_ARCH_FREERTOS
|
|
return xTaskGetTickCount() * portTICK_PERIOD_MS;
|
|
#elif MG_ARCH == MG_ARCH_AZURERTOS
|
|
return tx_time_get() * (1000 /* MS per SEC */ / TX_TIMER_TICKS_PER_SECOND);
|
|
#elif MG_ARCH == MG_ARCH_TIRTOS
|
|
return (uint64_t) Clock_getTicks();
|
|
#elif MG_ARCH == MG_ARCH_ZEPHYR
|
|
return (uint64_t) k_uptime_get();
|
|
#elif MG_ARCH == MG_ARCH_CMSIS_RTOS1
|
|
return (uint64_t) rt_time_get();
|
|
#elif MG_ARCH == MG_ARCH_CMSIS_RTOS2
|
|
return (uint64_t) ((osKernelGetTickCount() * 1000) / osKernelGetTickFreq());
|
|
#elif MG_ARCH == MG_ARCH_RTTHREAD
|
|
return (uint64_t) ((rt_tick_get() * 1000) / RT_TICK_PER_SECOND);
|
|
#elif MG_ARCH == MG_ARCH_UNIX && defined(__APPLE__)
|
|
// Apple CLOCK_MONOTONIC_RAW is equivalent to CLOCK_BOOTTIME on linux
|
|
// Apple CLOCK_UPTIME_RAW is equivalent to CLOCK_MONOTONIC_RAW on linux
|
|
return clock_gettime_nsec_np(CLOCK_UPTIME_RAW) / 1000000;
|
|
#elif MG_ARCH == MG_ARCH_UNIX
|
|
struct timespec ts = {0, 0};
|
|
// See #1615 - prefer monotonic clock
|
|
#if defined(CLOCK_MONOTONIC_RAW)
|
|
// Raw hardware-based time that is not subject to NTP adjustment
|
|
clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
|
|
#elif defined(CLOCK_MONOTONIC)
|
|
// Affected by the incremental adjustments performed by adjtime and NTP
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
#else
|
|
// Affected by discontinuous jumps in the system time and by the incremental
|
|
// adjustments performed by adjtime and NTP
|
|
clock_gettime(CLOCK_REALTIME, &ts);
|
|
#endif
|
|
return ((uint64_t) ts.tv_sec * 1000 + (uint64_t) ts.tv_nsec / 1000000);
|
|
#elif defined(ARDUINO)
|
|
return (uint64_t) millis();
|
|
#else
|
|
return (uint64_t) (time(NULL) * 1000);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/ws.c"
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ws_msg {
|
|
uint8_t flags;
|
|
size_t header_len;
|
|
size_t data_len;
|
|
};
|
|
|
|
size_t mg_ws_vprintf(struct mg_connection *c, int op, const char *fmt,
|
|
va_list *ap) {
|
|
size_t len = c->send.len;
|
|
size_t n = mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
|
|
mg_ws_wrap(c, c->send.len - len, op);
|
|
return n;
|
|
}
|
|
|
|
size_t mg_ws_printf(struct mg_connection *c, int op, const char *fmt, ...) {
|
|
size_t len = 0;
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
len = mg_ws_vprintf(c, op, fmt, &ap);
|
|
va_end(ap);
|
|
return len;
|
|
}
|
|
|
|
static void ws_handshake(struct mg_connection *c, const struct mg_str *wskey,
|
|
const struct mg_str *wsproto, const char *fmt,
|
|
va_list *ap) {
|
|
const char *magic = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
|
|
unsigned char sha[20], b64_sha[30];
|
|
|
|
mg_sha1_ctx sha_ctx;
|
|
mg_sha1_init(&sha_ctx);
|
|
mg_sha1_update(&sha_ctx, (unsigned char *) wskey->buf, wskey->len);
|
|
mg_sha1_update(&sha_ctx, (unsigned char *) magic, 36);
|
|
mg_sha1_final(sha, &sha_ctx);
|
|
mg_base64_encode(sha, sizeof(sha), (char *) b64_sha, sizeof(b64_sha));
|
|
mg_xprintf(mg_pfn_iobuf, &c->send,
|
|
"HTTP/1.1 101 Switching Protocols\r\n"
|
|
"Upgrade: websocket\r\n"
|
|
"Connection: Upgrade\r\n"
|
|
"Sec-WebSocket-Accept: %s\r\n",
|
|
b64_sha);
|
|
if (fmt != NULL) mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
|
|
if (wsproto != NULL) {
|
|
mg_printf(c, "Sec-WebSocket-Protocol: %.*s\r\n", (int) wsproto->len,
|
|
wsproto->buf);
|
|
}
|
|
mg_send(c, "\r\n", 2);
|
|
}
|
|
|
|
static uint32_t be32(const uint8_t *p) {
|
|
return (((uint32_t) p[3]) << 0) | (((uint32_t) p[2]) << 8) |
|
|
(((uint32_t) p[1]) << 16) | (((uint32_t) p[0]) << 24);
|
|
}
|
|
|
|
static size_t ws_process(uint8_t *buf, size_t len, struct ws_msg *msg) {
|
|
size_t i, n = 0, mask_len = 0;
|
|
memset(msg, 0, sizeof(*msg));
|
|
if (len >= 2) {
|
|
n = buf[1] & 0x7f; // Frame length
|
|
mask_len = buf[1] & 128 ? 4 : 0; // last bit is a mask bit
|
|
msg->flags = buf[0];
|
|
if (n < 126 && len >= mask_len) {
|
|
msg->data_len = n;
|
|
msg->header_len = 2 + mask_len;
|
|
} else if (n == 126 && len >= 4 + mask_len) {
|
|
msg->header_len = 4 + mask_len;
|
|
msg->data_len = (((size_t) buf[2]) << 8) | buf[3];
|
|
} else if (len >= 10 + mask_len) {
|
|
msg->header_len = 10 + mask_len;
|
|
msg->data_len =
|
|
(size_t) (((uint64_t) be32(buf + 2) << 32) + be32(buf + 6));
|
|
}
|
|
}
|
|
// Sanity check, and integer overflow protection for the boundary check below
|
|
// data_len should not be larger than 1 Gb
|
|
if (msg->data_len > 1024 * 1024 * 1024) return 0;
|
|
if (msg->header_len + msg->data_len > len) return 0;
|
|
if (mask_len > 0) {
|
|
uint8_t *p = buf + msg->header_len, *m = p - mask_len;
|
|
for (i = 0; i < msg->data_len; i++) p[i] ^= m[i & 3];
|
|
}
|
|
return msg->header_len + msg->data_len;
|
|
}
|
|
|
|
static size_t mkhdr(size_t len, int op, bool is_client, uint8_t *buf) {
|
|
size_t n = 0;
|
|
buf[0] = (uint8_t) (op | 128);
|
|
if (len < 126) {
|
|
buf[1] = (unsigned char) len;
|
|
n = 2;
|
|
} else if (len < 65536) {
|
|
uint16_t tmp = mg_htons((uint16_t) len);
|
|
buf[1] = 126;
|
|
memcpy(&buf[2], &tmp, sizeof(tmp));
|
|
n = 4;
|
|
} else {
|
|
uint32_t tmp;
|
|
buf[1] = 127;
|
|
tmp = mg_htonl((uint32_t) (((uint64_t) len) >> 32));
|
|
memcpy(&buf[2], &tmp, sizeof(tmp));
|
|
tmp = mg_htonl((uint32_t) (len & 0xffffffffU));
|
|
memcpy(&buf[6], &tmp, sizeof(tmp));
|
|
n = 10;
|
|
}
|
|
if (is_client) {
|
|
buf[1] |= 1 << 7; // Set masking flag
|
|
mg_random(&buf[n], 4);
|
|
n += 4;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static void mg_ws_mask(struct mg_connection *c, size_t len) {
|
|
if (c->is_client && c->send.buf != NULL) {
|
|
size_t i;
|
|
uint8_t *p = c->send.buf + c->send.len - len, *mask = p - 4;
|
|
for (i = 0; i < len; i++) p[i] ^= mask[i & 3];
|
|
}
|
|
}
|
|
|
|
size_t mg_ws_send(struct mg_connection *c, const void *buf, size_t len,
|
|
int op) {
|
|
uint8_t header[14];
|
|
size_t header_len = mkhdr(len, op, c->is_client, header);
|
|
mg_send(c, header, header_len);
|
|
MG_VERBOSE(("WS out: %d [%.*s]", (int) len, (int) len, buf));
|
|
mg_send(c, buf, len);
|
|
mg_ws_mask(c, len);
|
|
return header_len + len;
|
|
}
|
|
|
|
static bool mg_ws_client_handshake(struct mg_connection *c) {
|
|
int n = mg_http_get_request_len(c->recv.buf, c->recv.len);
|
|
if (n < 0) {
|
|
mg_error(c, "not http"); // Some just, not an HTTP request
|
|
} else if (n > 0) {
|
|
if (n < 15 || memcmp(c->recv.buf + 9, "101", 3) != 0) {
|
|
mg_error(c, "ws handshake error");
|
|
} else {
|
|
struct mg_http_message hm;
|
|
if (mg_http_parse((char *) c->recv.buf, c->recv.len, &hm)) {
|
|
c->is_websocket = 1;
|
|
mg_call(c, MG_EV_WS_OPEN, &hm);
|
|
} else {
|
|
mg_error(c, "ws handshake error");
|
|
}
|
|
}
|
|
mg_iobuf_del(&c->recv, 0, (size_t) n);
|
|
} else {
|
|
return true; // Request is not yet received, quit event handler
|
|
}
|
|
return false; // Continue event handler
|
|
}
|
|
|
|
static void mg_ws_cb(struct mg_connection *c, int ev, void *ev_data) {
|
|
struct ws_msg msg;
|
|
size_t ofs = (size_t) c->pfn_data;
|
|
|
|
// assert(ofs < c->recv.len);
|
|
if (ev == MG_EV_READ) {
|
|
if (c->is_client && !c->is_websocket && mg_ws_client_handshake(c)) return;
|
|
|
|
while (ws_process(c->recv.buf + ofs, c->recv.len - ofs, &msg) > 0) {
|
|
char *s = (char *) c->recv.buf + ofs + msg.header_len;
|
|
struct mg_ws_message m = {{s, msg.data_len}, msg.flags};
|
|
size_t len = msg.header_len + msg.data_len;
|
|
uint8_t final = msg.flags & 128, op = msg.flags & 15;
|
|
// MG_VERBOSE ("fin %d op %d len %d [%.*s]", final, op,
|
|
// (int) m.data.len, (int) m.data.len, m.data.buf));
|
|
switch (op) {
|
|
case WEBSOCKET_OP_CONTINUE:
|
|
mg_call(c, MG_EV_WS_CTL, &m);
|
|
break;
|
|
case WEBSOCKET_OP_PING:
|
|
MG_DEBUG(("%s", "WS PONG"));
|
|
mg_ws_send(c, s, msg.data_len, WEBSOCKET_OP_PONG);
|
|
mg_call(c, MG_EV_WS_CTL, &m);
|
|
break;
|
|
case WEBSOCKET_OP_PONG:
|
|
mg_call(c, MG_EV_WS_CTL, &m);
|
|
break;
|
|
case WEBSOCKET_OP_TEXT:
|
|
case WEBSOCKET_OP_BINARY:
|
|
if (final) mg_call(c, MG_EV_WS_MSG, &m);
|
|
break;
|
|
case WEBSOCKET_OP_CLOSE:
|
|
MG_DEBUG(("%lu WS CLOSE", c->id));
|
|
mg_call(c, MG_EV_WS_CTL, &m);
|
|
// Echo the payload of the received CLOSE message back to the sender
|
|
mg_ws_send(c, m.data.buf, m.data.len, WEBSOCKET_OP_CLOSE);
|
|
c->is_draining = 1;
|
|
break;
|
|
default:
|
|
// Per RFC6455, close conn when an unknown op is recvd
|
|
mg_error(c, "unknown WS op %d", op);
|
|
break;
|
|
}
|
|
|
|
// Handle fragmented frames: strip header, keep in c->recv
|
|
if (final == 0 || op == 0) {
|
|
if (op) ofs++, len--, msg.header_len--; // First frame
|
|
mg_iobuf_del(&c->recv, ofs, msg.header_len); // Strip header
|
|
len -= msg.header_len;
|
|
ofs += len;
|
|
c->pfn_data = (void *) ofs;
|
|
// MG_INFO(("FRAG %d [%.*s]", (int) ofs, (int) ofs, c->recv.buf));
|
|
}
|
|
// Remove non-fragmented frame
|
|
if (final && op) mg_iobuf_del(&c->recv, ofs, len);
|
|
// Last chunk of the fragmented frame
|
|
if (final && !op) {
|
|
m.flags = c->recv.buf[0];
|
|
m.data = mg_str_n((char *) &c->recv.buf[1], (size_t) (ofs - 1));
|
|
mg_call(c, MG_EV_WS_MSG, &m);
|
|
mg_iobuf_del(&c->recv, 0, ofs);
|
|
ofs = 0;
|
|
c->pfn_data = NULL;
|
|
}
|
|
}
|
|
}
|
|
(void) ev_data;
|
|
}
|
|
|
|
struct mg_connection *mg_ws_connect(struct mg_mgr *mgr, const char *url,
|
|
mg_event_handler_t fn, void *fn_data,
|
|
const char *fmt, ...) {
|
|
struct mg_connection *c = mg_connect(mgr, url, fn, fn_data);
|
|
if (c != NULL) {
|
|
char nonce[16], key[30];
|
|
struct mg_str host = mg_url_host(url);
|
|
mg_random(nonce, sizeof(nonce));
|
|
mg_base64_encode((unsigned char *) nonce, sizeof(nonce), key, sizeof(key));
|
|
mg_xprintf(mg_pfn_iobuf, &c->send,
|
|
"GET %s HTTP/1.1\r\n"
|
|
"Upgrade: websocket\r\n"
|
|
"Host: %.*s\r\n"
|
|
"Connection: Upgrade\r\n"
|
|
"Sec-WebSocket-Version: 13\r\n"
|
|
"Sec-WebSocket-Key: %s\r\n",
|
|
mg_url_uri(url), (int) host.len, host.buf, key);
|
|
if (fmt != NULL) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, &ap);
|
|
va_end(ap);
|
|
}
|
|
mg_xprintf(mg_pfn_iobuf, &c->send, "\r\n");
|
|
c->pfn = mg_ws_cb;
|
|
c->pfn_data = NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
void mg_ws_upgrade(struct mg_connection *c, struct mg_http_message *hm,
|
|
const char *fmt, ...) {
|
|
struct mg_str *wskey = mg_http_get_header(hm, "Sec-WebSocket-Key");
|
|
c->pfn = mg_ws_cb;
|
|
c->pfn_data = NULL;
|
|
if (wskey == NULL) {
|
|
mg_http_reply(c, 426, "", "WS upgrade expected\n");
|
|
c->is_draining = 1;
|
|
} else {
|
|
struct mg_str *wsproto = mg_http_get_header(hm, "Sec-WebSocket-Protocol");
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
ws_handshake(c, wskey, wsproto, fmt, &ap);
|
|
va_end(ap);
|
|
c->is_websocket = 1;
|
|
c->is_resp = 0;
|
|
mg_call(c, MG_EV_WS_OPEN, hm);
|
|
}
|
|
}
|
|
|
|
size_t mg_ws_wrap(struct mg_connection *c, size_t len, int op) {
|
|
uint8_t header[14], *p;
|
|
size_t header_len = mkhdr(len, op, c->is_client, header);
|
|
|
|
// NOTE: order of operations is important!
|
|
mg_iobuf_add(&c->send, c->send.len, NULL, header_len);
|
|
p = &c->send.buf[c->send.len - len]; // p points to data
|
|
memmove(p, p - header_len, len); // Shift data
|
|
memcpy(p - header_len, header, header_len); // Prepend header
|
|
mg_ws_mask(c, len); // Mask data
|
|
|
|
return c->send.len;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/cmsis.c"
|
|
#endif
|
|
// https://arm-software.github.io/CMSIS_5/Driver/html/index.html
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_CMSIS) && MG_ENABLE_DRIVER_CMSIS
|
|
|
|
|
|
|
|
|
|
|
|
extern ARM_DRIVER_ETH_MAC Driver_ETH_MAC0;
|
|
extern ARM_DRIVER_ETH_PHY Driver_ETH_PHY0;
|
|
|
|
static struct mg_tcpip_if *s_ifp;
|
|
|
|
static void mac_cb(uint32_t);
|
|
static bool cmsis_init(struct mg_tcpip_if *);
|
|
static bool cmsis_up(struct mg_tcpip_if *);
|
|
static size_t cmsis_tx(const void *, size_t, struct mg_tcpip_if *);
|
|
static size_t cmsis_rx(void *, size_t, struct mg_tcpip_if *);
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_cmsis = {cmsis_init, cmsis_tx, NULL,
|
|
cmsis_up};
|
|
|
|
static bool cmsis_init(struct mg_tcpip_if *ifp) {
|
|
ARM_ETH_MAC_ADDR addr;
|
|
s_ifp = ifp;
|
|
|
|
ARM_DRIVER_ETH_MAC *mac = &Driver_ETH_MAC0;
|
|
ARM_DRIVER_ETH_PHY *phy = &Driver_ETH_PHY0;
|
|
ARM_ETH_MAC_CAPABILITIES cap = mac->GetCapabilities();
|
|
if (mac->Initialize(mac_cb) != ARM_DRIVER_OK) return false;
|
|
if (phy->Initialize(mac->PHY_Read, mac->PHY_Write) != ARM_DRIVER_OK)
|
|
return false;
|
|
if (cap.event_rx_frame == 0) // polled mode driver
|
|
mg_tcpip_driver_cmsis.rx = cmsis_rx;
|
|
mac->PowerControl(ARM_POWER_FULL);
|
|
if (cap.mac_address) { // driver provides MAC address
|
|
mac->GetMacAddress(&addr);
|
|
memcpy(ifp->mac, &addr, sizeof(ifp->mac));
|
|
} else { // we provide MAC address
|
|
memcpy(&addr, ifp->mac, sizeof(addr));
|
|
mac->SetMacAddress(&addr);
|
|
}
|
|
phy->PowerControl(ARM_POWER_FULL);
|
|
phy->SetInterface(cap.media_interface);
|
|
phy->SetMode(ARM_ETH_PHY_AUTO_NEGOTIATE);
|
|
return true;
|
|
}
|
|
|
|
static size_t cmsis_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) {
|
|
ARM_DRIVER_ETH_MAC *mac = &Driver_ETH_MAC0;
|
|
if (mac->SendFrame(buf, (uint32_t) len, 0) != ARM_DRIVER_OK) {
|
|
ifp->nerr++;
|
|
return 0;
|
|
}
|
|
ifp->nsent++;
|
|
return len;
|
|
}
|
|
|
|
static bool cmsis_up(struct mg_tcpip_if *ifp) {
|
|
ARM_DRIVER_ETH_PHY *phy = &Driver_ETH_PHY0;
|
|
ARM_DRIVER_ETH_MAC *mac = &Driver_ETH_MAC0;
|
|
bool up = (phy->GetLinkState() == ARM_ETH_LINK_UP) ? 1 : 0; // link state
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // just went up
|
|
ARM_ETH_LINK_INFO st = phy->GetLinkInfo();
|
|
mac->Control(ARM_ETH_MAC_CONFIGURE,
|
|
(st.speed << ARM_ETH_MAC_SPEED_Pos) |
|
|
(st.duplex << ARM_ETH_MAC_DUPLEX_Pos) |
|
|
ARM_ETH_MAC_ADDRESS_BROADCAST);
|
|
MG_DEBUG(("Link is %uM %s-duplex",
|
|
(st.speed == 2) ? 1000
|
|
: st.speed ? 100
|
|
: 10,
|
|
st.duplex ? "full" : "half"));
|
|
mac->Control(ARM_ETH_MAC_CONTROL_TX, 1);
|
|
mac->Control(ARM_ETH_MAC_CONTROL_RX, 1);
|
|
} else if ((ifp->state != MG_TCPIP_STATE_DOWN) && !up) { // just went down
|
|
mac->Control(ARM_ETH_MAC_FLUSH,
|
|
ARM_ETH_MAC_FLUSH_TX | ARM_ETH_MAC_FLUSH_RX);
|
|
mac->Control(ARM_ETH_MAC_CONTROL_TX, 0);
|
|
mac->Control(ARM_ETH_MAC_CONTROL_RX, 0);
|
|
}
|
|
return up;
|
|
}
|
|
|
|
static void mac_cb(uint32_t ev) {
|
|
if ((ev & ARM_ETH_MAC_EVENT_RX_FRAME) == 0) return;
|
|
ARM_DRIVER_ETH_MAC *mac = &Driver_ETH_MAC0;
|
|
uint32_t len = mac->GetRxFrameSize(); // CRC already stripped
|
|
if (len >= 60 && len <= 1518) { // proper frame
|
|
char *p;
|
|
if (mg_queue_book(&s_ifp->recv_queue, &p, len) >= len) { // have room
|
|
if ((len = mac->ReadFrame((uint8_t *) p, len)) > 0) { // copy succeeds
|
|
mg_queue_add(&s_ifp->recv_queue, len);
|
|
s_ifp->nrecv++;
|
|
}
|
|
return;
|
|
}
|
|
s_ifp->ndrop++;
|
|
}
|
|
mac->ReadFrame(NULL, 0); // otherwise, discard
|
|
}
|
|
|
|
static size_t cmsis_rx(void *buf, size_t buflen, struct mg_tcpip_if *ifp) {
|
|
ARM_DRIVER_ETH_MAC *mac = &Driver_ETH_MAC0;
|
|
uint32_t len = mac->GetRxFrameSize(); // CRC already stripped
|
|
if (len >= 60 && len <= 1518 &&
|
|
((len = mac->ReadFrame(buf, (uint32_t) buflen)) > 0))
|
|
return len;
|
|
if (len > 0) mac->ReadFrame(NULL, 0); // discard bad frames
|
|
(void) ifp;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/imxrt.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_IMXRT) && MG_ENABLE_DRIVER_IMXRT
|
|
struct imxrt_enet {
|
|
volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3],
|
|
ECR, RESERVED3[6], MMFR, MSCR, RESERVED4[7], MIBC, RESERVED5[7], RCR,
|
|
RESERVED6[15], TCR, RESERVED7[7], PALR, PAUR, OPD, TXIC0, TXIC1, TXIC2,
|
|
RESERVED8, RXIC0, RXIC1, RXIC2, RESERVED9[3], IAUR, IALR, GAUR, GALR,
|
|
RESERVED10[7], TFWR, RESERVED11[14], RDSR, TDSR, MRBR[2], RSFL, RSEM,
|
|
RAEM, RAFL, TSEM, TAEM, TAFL, TIPG, FTRL, RESERVED12[3], TACC, RACC,
|
|
RESERVED13[15], RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
|
|
RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
|
|
RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
|
|
RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2048, RMON_T_GTE2048,
|
|
RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL,
|
|
IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR,
|
|
IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RESERVED14[3], RMON_R_PACKETS,
|
|
RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE,
|
|
RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RESERVED15, RMON_R_P64,
|
|
RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023,
|
|
RMON_R_P1024TO2047, RMON_R_GTE2048, RMON_R_OCTETS, IEEE_R_DROP,
|
|
IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC,
|
|
IEEE_R_OCTETS_OK, RESERVED16[71], ATCR, ATVR, ATOFF, ATPER, ATCOR, ATINC,
|
|
ATSTMP, RESERVED17[122], TGSR, TCSR0, TCCR0, TCSR1, TCCR1, TCSR2, TCCR2,
|
|
TCSR3;
|
|
};
|
|
|
|
#undef ENET
|
|
#if defined(MG_DRIVER_IMXRT_RT11) && MG_DRIVER_IMXRT_RT11
|
|
#define ENET ((struct imxrt_enet *) (uintptr_t) 0x40424000U)
|
|
#define ETH_DESC_CNT 5 // Descriptors count
|
|
#else
|
|
#define ENET ((struct imxrt_enet *) (uintptr_t) 0x402D8000U)
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#endif
|
|
|
|
#define ETH_PKT_SIZE 1536 // Max frame size, 64-bit aligned
|
|
|
|
struct enet_desc {
|
|
uint16_t length; // Data length
|
|
uint16_t control; // Control and status
|
|
uint32_t *buffer; // Data ptr
|
|
};
|
|
|
|
// TODO(): handle these in a portable compiler-independent CMSIS-friendly way
|
|
#define MG_64BYTE_ALIGNED __attribute__((aligned((64U))))
|
|
|
|
// Descriptors: in non-cached area (TODO(scaprile)), (37.5.1.22.2 37.5.1.23.2)
|
|
// Buffers: 64-byte aligned (37.3.14)
|
|
static volatile struct enet_desc s_rxdesc[ETH_DESC_CNT] MG_64BYTE_ALIGNED;
|
|
static volatile struct enet_desc s_txdesc[ETH_DESC_CNT] MG_64BYTE_ALIGNED;
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE] MG_64BYTE_ALIGNED;
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE] MG_64BYTE_ALIGNED;
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
|
|
static uint16_t enet_read_phy(uint8_t addr, uint8_t reg) {
|
|
ENET->EIR |= MG_BIT(23); // MII interrupt clear
|
|
ENET->MMFR = (1 << 30) | (2 << 28) | (addr << 23) | (reg << 18) | (2 << 16);
|
|
while ((ENET->EIR & MG_BIT(23)) == 0) (void) 0;
|
|
return ENET->MMFR & 0xffff;
|
|
}
|
|
|
|
static void enet_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
ENET->EIR |= MG_BIT(23); // MII interrupt clear
|
|
ENET->MMFR =
|
|
(1 << 30) | (1 << 28) | (addr << 23) | (reg << 18) | (2 << 16) | val;
|
|
while ((ENET->EIR & MG_BIT(23)) == 0) (void) 0;
|
|
}
|
|
|
|
// MDC clock is generated from IPS Bus clock (ipg_clk); as per 802.3,
|
|
// it must not exceed 2.5MHz
|
|
// The PHY receives the PLL6-generated 50MHz clock
|
|
static bool mg_tcpip_driver_imxrt_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_imxrt_data *d =
|
|
(struct mg_tcpip_driver_imxrt_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
|
|
// Init RX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i].control = MG_BIT(15); // Own (E)
|
|
s_rxdesc[i].buffer = (uint32_t *) s_rxbuf[i]; // Point to data buffer
|
|
}
|
|
s_rxdesc[ETH_DESC_CNT - 1].control |= MG_BIT(13); // Wrap last descriptor
|
|
|
|
// Init TX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
// s_txdesc[i].control = MG_BIT(10); // Own (TC)
|
|
s_txdesc[i].buffer = (uint32_t *) s_txbuf[i];
|
|
}
|
|
s_txdesc[ETH_DESC_CNT - 1].control |= MG_BIT(13); // Wrap last descriptor
|
|
|
|
ENET->ECR = MG_BIT(0); // Software reset, disable
|
|
while ((ENET->ECR & MG_BIT(0))) (void) 0; // Wait until done
|
|
|
|
// Set MDC clock divider. If user told us the value, use it.
|
|
// TODO(): Otherwise, guess (currently assuming max freq)
|
|
int cr = (d == NULL || d->mdc_cr < 0) ? 24 : d->mdc_cr;
|
|
ENET->MSCR = (1 << 8) | ((cr & 0x3f) << 1); // HOLDTIME 2 clks
|
|
struct mg_phy phy = {enet_read_phy, enet_write_phy};
|
|
mg_phy_init(&phy, d->phy_addr, MG_PHY_LEDS_ACTIVE_HIGH); // MAC clocks PHY
|
|
// Select RMII mode, 100M, keep CRC, set max rx length, disable loop
|
|
ENET->RCR = (1518 << 16) | MG_BIT(8) | MG_BIT(2);
|
|
// ENET->RCR |= MG_BIT(3); // Receive all
|
|
ENET->TCR = MG_BIT(2); // Full-duplex
|
|
ENET->RDSR = (uint32_t) (uintptr_t) s_rxdesc;
|
|
ENET->TDSR = (uint32_t) (uintptr_t) s_txdesc;
|
|
ENET->MRBR[0] = ETH_PKT_SIZE; // Same size for RX/TX buffers
|
|
// MAC address filtering (bytes in reversed order)
|
|
ENET->PAUR = ((uint32_t) ifp->mac[4] << 24U) | (uint32_t) ifp->mac[5] << 16U;
|
|
ENET->PALR = (uint32_t) (ifp->mac[0] << 24U) |
|
|
((uint32_t) ifp->mac[1] << 16U) |
|
|
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
|
|
ENET->ECR = MG_BIT(8) | MG_BIT(1); // Little-endian CPU, Enable
|
|
ENET->EIMR = MG_BIT(25); // Set interrupt mask
|
|
ENET->RDAR = MG_BIT(24); // Receive Descriptors have changed
|
|
ENET->TDAR = MG_BIT(24); // Transmit Descriptors have changed
|
|
// ENET->OPD = 0x10014;
|
|
return true;
|
|
}
|
|
|
|
// Transmit frame
|
|
static size_t mg_tcpip_driver_imxrt_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
static int s_txno; // Current descriptor index
|
|
if (len > sizeof(s_txbuf[ETH_DESC_CNT])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = (size_t) -1; // fail
|
|
} else if ((s_txdesc[s_txno].control & MG_BIT(15))) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No descriptors available"));
|
|
len = 0; // retry later
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len); // Copy data
|
|
s_txdesc[s_txno].length = (uint16_t) len; // Set data len
|
|
// Table 37-34, R, L, TC (Ready, last, transmit CRC after frame
|
|
s_txdesc[s_txno].control |=
|
|
(uint16_t) (MG_BIT(15) | MG_BIT(11) | MG_BIT(10));
|
|
ENET->TDAR = MG_BIT(24); // Descriptor ring updated
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
(void) ifp;
|
|
return len;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_imxrt_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_imxrt_data *d =
|
|
(struct mg_tcpip_driver_imxrt_data *) ifp->driver_data;
|
|
uint8_t speed = MG_PHY_SPEED_10M;
|
|
bool up = false, full_duplex = false;
|
|
struct mg_phy phy = {enet_read_phy, enet_write_phy};
|
|
up = mg_phy_up(&phy, d->phy_addr, &full_duplex, &speed);
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
// tmp = reg with flags set to the most likely situation: 100M full-duplex
|
|
// if(link is slow or half) set flags otherwise
|
|
// reg = tmp
|
|
uint32_t tcr = ENET->TCR | MG_BIT(2); // Full-duplex
|
|
uint32_t rcr = ENET->RCR & ~MG_BIT(9); // 100M
|
|
if (speed == MG_PHY_SPEED_10M) rcr |= MG_BIT(9); // 10M
|
|
if (full_duplex == false) tcr &= ~MG_BIT(2); // Half-duplex
|
|
ENET->TCR = tcr; // IRQ handler does not fiddle with these registers
|
|
ENET->RCR = rcr;
|
|
MG_DEBUG(("Link is %uM %s-duplex", rcr & MG_BIT(9) ? 10 : 100,
|
|
tcr & MG_BIT(2) ? "full" : "half"));
|
|
}
|
|
return up;
|
|
}
|
|
|
|
void ENET_IRQHandler(void);
|
|
static uint32_t s_rxno;
|
|
void ENET_IRQHandler(void) {
|
|
ENET->EIR = MG_BIT(25); // Ack IRQ
|
|
// Frame received, loop
|
|
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
|
|
uint32_t r = s_rxdesc[s_rxno].control;
|
|
if (r & MG_BIT(15)) break; // exit when done
|
|
// skip partial/errored frames (Table 37-32)
|
|
if ((r & MG_BIT(11)) &&
|
|
!(r & (MG_BIT(5) | MG_BIT(4) | MG_BIT(2) | MG_BIT(1) | MG_BIT(0)))) {
|
|
size_t len = s_rxdesc[s_rxno].length;
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp);
|
|
}
|
|
s_rxdesc[s_rxno].control |= MG_BIT(15);
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
ENET->RDAR = MG_BIT(24); // Receive Descriptors have changed
|
|
// If b24 == 0, descriptors were exhausted and probably frames were dropped
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_imxrt = {mg_tcpip_driver_imxrt_init,
|
|
mg_tcpip_driver_imxrt_tx, NULL,
|
|
mg_tcpip_driver_imxrt_up};
|
|
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/phy.c"
|
|
#endif
|
|
|
|
|
|
enum { // ID1 ID2
|
|
MG_PHY_KSZ8x = 0x22, // 0022 1561 - KSZ8081RNB
|
|
MG_PHY_DP83x = 0x2000, // 2000 a140 - TI DP83825I
|
|
MG_PHY_DP83867 = 0xa231, // 2000 a231 - TI DP83867I
|
|
MG_PHY_LAN87x = 0x7, // 0007 c0fx - LAN8720
|
|
MG_PHY_RTL8201 = 0x1C // 001c c816 - RTL8201
|
|
};
|
|
|
|
enum {
|
|
MG_PHY_REG_BCR = 0,
|
|
MG_PHY_REG_BSR = 1,
|
|
MG_PHY_REG_ID1 = 2,
|
|
MG_PHY_REG_ID2 = 3,
|
|
MG_PHY_DP83x_REG_PHYSTS = 16,
|
|
MG_PHY_DP83867_REG_PHYSTS = 17,
|
|
MG_PHY_DP83x_REG_RCSR = 23,
|
|
MG_PHY_DP83x_REG_LEDCR = 24,
|
|
MG_PHY_KSZ8x_REG_PC1R = 30,
|
|
MG_PHY_KSZ8x_REG_PC2R = 31,
|
|
MG_PHY_LAN87x_REG_SCSR = 31,
|
|
MG_PHY_RTL8201_REG_RMSR = 16, // in page 7
|
|
MG_PHY_RTL8201_REG_PAGESEL = 31
|
|
};
|
|
|
|
static const char *mg_phy_id_to_str(uint16_t id1, uint16_t id2) {
|
|
switch (id1) {
|
|
case MG_PHY_DP83x:
|
|
switch (id2) {
|
|
case MG_PHY_DP83867:
|
|
return "DP83867";
|
|
default:
|
|
return "DP83x";
|
|
}
|
|
case MG_PHY_KSZ8x:
|
|
return "KSZ8x";
|
|
case MG_PHY_LAN87x:
|
|
return "LAN87x";
|
|
case MG_PHY_RTL8201:
|
|
return "RTL8201";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
(void) id2;
|
|
}
|
|
|
|
static void mg_phy_set_clk_out(struct mg_phy *phy, uint8_t phy_addr) {
|
|
uint16_t id1, id2;
|
|
id1 = phy->read_reg(phy_addr, MG_PHY_REG_ID1);
|
|
id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
|
|
|
|
if (id1 == MG_PHY_DP83x && id2 == MG_PHY_DP83867) {
|
|
// write 0x10d to IO_MUX_CFG (0x0170)
|
|
phy->write_reg(phy_addr, 0x0d, 0x1f);
|
|
phy->write_reg(phy_addr, 0x0e, 0x170);
|
|
phy->write_reg(phy_addr, 0x0d, 0x401f);
|
|
phy->write_reg(phy_addr, 0x0e, 0x10d);
|
|
}
|
|
}
|
|
|
|
void mg_phy_init(struct mg_phy *phy, uint8_t phy_addr, uint8_t config) {
|
|
uint16_t id1, id2;
|
|
phy->write_reg(phy_addr, MG_PHY_REG_BCR, MG_BIT(15)); // Reset PHY
|
|
phy->write_reg(phy_addr, MG_PHY_REG_BCR, MG_BIT(12)); // Autonegotiation
|
|
|
|
id1 = phy->read_reg(phy_addr, MG_PHY_REG_ID1);
|
|
id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
|
|
MG_INFO(("PHY ID: %#04x %#04x (%s)", id1, id2, mg_phy_id_to_str(id1, id2)));
|
|
|
|
if (id1 == MG_PHY_DP83x && id2 == MG_PHY_DP83867) {
|
|
mg_phy_set_clk_out(phy, phy_addr);
|
|
}
|
|
|
|
if (config & MG_PHY_CLOCKS_MAC) {
|
|
// Use PHY crystal oscillator (preserve defaults)
|
|
// nothing to do
|
|
} else { // MAC clocks PHY, PHY has no xtal
|
|
// Enable 50 MHz external ref clock at XI (preserve defaults)
|
|
if (id1 == MG_PHY_DP83x && id2 != MG_PHY_DP83867) {
|
|
phy->write_reg(phy_addr, MG_PHY_DP83x_REG_RCSR, MG_BIT(7) | MG_BIT(0));
|
|
} else if (id1 == MG_PHY_KSZ8x) {
|
|
phy->write_reg(phy_addr, MG_PHY_KSZ8x_REG_PC2R,
|
|
MG_BIT(15) | MG_BIT(8) | MG_BIT(7));
|
|
} else if (id1 == MG_PHY_LAN87x) {
|
|
// nothing to do
|
|
} else if (id1 == MG_PHY_RTL8201) {
|
|
// assume PHY has been hardware strapped properly
|
|
#if 0
|
|
phy->write_reg(phy_addr, MG_PHY_RTL8201_REG_PAGESEL, 7); // Select page 7
|
|
phy->write_reg(phy_addr, MG_PHY_RTL8201_REG_RMSR, 0x1ffa);
|
|
phy->write_reg(phy_addr, MG_PHY_RTL8201_REG_PAGESEL, 0); // Select page 0
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (config & MG_PHY_LEDS_ACTIVE_HIGH && id1 == MG_PHY_DP83x) {
|
|
phy->write_reg(phy_addr, MG_PHY_DP83x_REG_LEDCR,
|
|
MG_BIT(9) | MG_BIT(7)); // LED status, active high
|
|
} // Other PHYs do not support this feature
|
|
}
|
|
|
|
bool mg_phy_up(struct mg_phy *phy, uint8_t phy_addr, bool *full_duplex,
|
|
uint8_t *speed) {
|
|
bool up = false;
|
|
uint16_t bsr = phy->read_reg(phy_addr, MG_PHY_REG_BSR);
|
|
if ((bsr & MG_BIT(5)) && !(bsr & MG_BIT(2))) // some PHYs latch down events
|
|
bsr = phy->read_reg(phy_addr, MG_PHY_REG_BSR); // read again
|
|
up = bsr & MG_BIT(2);
|
|
if (up && full_duplex != NULL && speed != NULL) {
|
|
uint16_t id1 = phy->read_reg(phy_addr, MG_PHY_REG_ID1);
|
|
if (id1 == MG_PHY_DP83x) {
|
|
uint16_t id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
|
|
if (id2 == MG_PHY_DP83867) {
|
|
uint16_t physts = phy->read_reg(phy_addr, MG_PHY_DP83867_REG_PHYSTS);
|
|
*full_duplex = physts & MG_BIT(13);
|
|
*speed = (physts & MG_BIT(15)) ? MG_PHY_SPEED_1000M
|
|
: (physts & MG_BIT(14)) ? MG_PHY_SPEED_100M
|
|
: MG_PHY_SPEED_10M;
|
|
} else {
|
|
uint16_t physts = phy->read_reg(phy_addr, MG_PHY_DP83x_REG_PHYSTS);
|
|
*full_duplex = physts & MG_BIT(2);
|
|
*speed = (physts & MG_BIT(1)) ? MG_PHY_SPEED_10M : MG_PHY_SPEED_100M;
|
|
}
|
|
} else if (id1 == MG_PHY_KSZ8x) {
|
|
uint16_t pc1r = phy->read_reg(phy_addr, MG_PHY_KSZ8x_REG_PC1R);
|
|
*full_duplex = pc1r & MG_BIT(2);
|
|
*speed = (pc1r & 3) == 1 ? MG_PHY_SPEED_10M : MG_PHY_SPEED_100M;
|
|
} else if (id1 == MG_PHY_LAN87x) {
|
|
uint16_t scsr = phy->read_reg(phy_addr, MG_PHY_LAN87x_REG_SCSR);
|
|
*full_duplex = scsr & MG_BIT(4);
|
|
*speed = (scsr & MG_BIT(3)) ? MG_PHY_SPEED_100M : MG_PHY_SPEED_10M;
|
|
} else if (id1 == MG_PHY_RTL8201) {
|
|
uint16_t bcr = phy->read_reg(phy_addr, MG_PHY_REG_BCR);
|
|
if (bcr & MG_BIT(15)) return 0; // still resetting
|
|
*full_duplex = bcr & MG_BIT(8);
|
|
*speed = (bcr & MG_BIT(13)) ? MG_PHY_SPEED_100M : MG_PHY_SPEED_10M;
|
|
}
|
|
}
|
|
return up;
|
|
}
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/ra.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_RA) && MG_ENABLE_DRIVER_RA
|
|
struct ra_etherc {
|
|
volatile uint32_t ECMR, RESERVED, RFLR, RESERVED1, ECSR, RESERVED2, ECSIPR,
|
|
RESERVED3, PIR, RESERVED4, PSR, RESERVED5[5], RDMLR, RESERVED6[3], IPGR,
|
|
APR, MPR, RESERVED7, RFCF, TPAUSER, TPAUSECR, BCFRR, RESERVED8[20], MAHR,
|
|
RESERVED9, MALR, RESERVED10, TROCR, CDCR, LCCR, CNDCR, RESERVED11, CEFCR,
|
|
FRECR, TSFRCR, TLFRCR, RFCR, MAFCR;
|
|
};
|
|
|
|
struct ra_edmac {
|
|
volatile uint32_t EDMR, RESERVED, EDTRR, RESERVED1, EDRRR, RESERVED2, TDLAR,
|
|
RESERVED3, RDLAR, RESERVED4, EESR, RESERVED5, EESIPR, RESERVED6, TRSCER,
|
|
RESERVED7, RMFCR, RESERVED8, TFTR, RESERVED9, FDR, RESERVED10, RMCR,
|
|
RESERVED11[2], TFUCR, RFOCR, IOSR, FCFTR, RESERVED12, RPADIR, TRIMD,
|
|
RESERVED13[18], RBWAR, RDFAR, RESERVED14, TBRAR, TDFAR;
|
|
};
|
|
|
|
#undef ETHERC
|
|
#define ETHERC ((struct ra_etherc *) (uintptr_t) 0x40114100U)
|
|
#undef EDMAC
|
|
#define EDMAC ((struct ra_edmac *) (uintptr_t) 0x40114000U)
|
|
#undef RASYSC
|
|
#define RASYSC ((uint32_t *) (uintptr_t) 0x4001E000U)
|
|
#undef ICU_IELSR
|
|
#define ICU_IELSR ((uint32_t *) (uintptr_t) 0x40006300U)
|
|
|
|
#define ETH_PKT_SIZE 1536 // Max frame size, multiple of 32
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
|
|
// TODO(): handle these in a portable compiler-independent CMSIS-friendly way
|
|
#define MG_16BYTE_ALIGNED __attribute__((aligned((16U))))
|
|
#define MG_32BYTE_ALIGNED __attribute__((aligned((32U))))
|
|
|
|
// Descriptors: 16-byte aligned
|
|
// Buffers: 32-byte aligned (27.3.1)
|
|
static volatile uint32_t s_rxdesc[ETH_DESC_CNT][4] MG_16BYTE_ALIGNED;
|
|
static volatile uint32_t s_txdesc[ETH_DESC_CNT][4] MG_16BYTE_ALIGNED;
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE] MG_32BYTE_ALIGNED;
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE] MG_32BYTE_ALIGNED;
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
|
|
// fastest is 3 cycles (SUB + BNE) on a 3-stage pipeline or equivalent
|
|
static inline void raspin(volatile uint32_t count) {
|
|
while (count--) (void) 0;
|
|
}
|
|
// count to get the 200ns SMC semi-cycle period (2.5MHz) calling raspin():
|
|
// SYS_FREQUENCY * 200ns / 3 = SYS_FREQUENCY / 15000000
|
|
static uint32_t s_smispin;
|
|
|
|
// Bit-banged SMI
|
|
static void smi_preamble(void) {
|
|
unsigned int i = 32;
|
|
uint32_t pir = MG_BIT(1) | MG_BIT(2); // write, mdio = 1, mdc = 0
|
|
ETHERC->PIR = pir;
|
|
while (i--) {
|
|
pir &= ~MG_BIT(0); // mdc = 0
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
pir |= MG_BIT(0); // mdc = 1
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
}
|
|
}
|
|
static void smi_wr(uint16_t header, uint16_t data) {
|
|
uint32_t word = (header << 16) | data;
|
|
smi_preamble();
|
|
unsigned int i = 32;
|
|
while (i--) {
|
|
uint32_t pir = MG_BIT(1) |
|
|
(word & 0x80000000 ? MG_BIT(2) : 0); // write, mdc = 0, data
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
pir |= MG_BIT(0); // mdc = 1
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
word <<= 1;
|
|
}
|
|
}
|
|
static uint16_t smi_rd(uint16_t header) {
|
|
smi_preamble();
|
|
unsigned int i = 16; // 2 LSb as turnaround
|
|
uint32_t pir;
|
|
while (i--) {
|
|
pir = (i > 1 ? MG_BIT(1) : 0) |
|
|
(header & 0x8000
|
|
? MG_BIT(2)
|
|
: 0); // mdc = 0, header, set read direction at turnaround
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
pir |= MG_BIT(0); // mdc = 1
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
header <<= 1;
|
|
}
|
|
i = 16;
|
|
uint16_t data = 0;
|
|
while (i--) {
|
|
data <<= 1;
|
|
pir = 0; // read, mdc = 0
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin / 2); // 1/4 clock period, 300ns max access time
|
|
data |= (uint16_t)(ETHERC->PIR & MG_BIT(3) ? 1 : 0); // read mdio
|
|
raspin(s_smispin / 2); // 1/4 clock period
|
|
pir |= MG_BIT(0); // mdc = 1
|
|
ETHERC->PIR = pir;
|
|
raspin(s_smispin);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
static uint16_t raeth_read_phy(uint8_t addr, uint8_t reg) {
|
|
return smi_rd((uint16_t)((1 << 14) | (2 << 12) | (addr << 7) | (reg << 2) | (2 << 0)));
|
|
}
|
|
|
|
static void raeth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
smi_wr((uint16_t)((1 << 14) | (1 << 12) | (addr << 7) | (reg << 2) | (2 << 0)), val);
|
|
}
|
|
|
|
// MDC clock is generated manually; as per 802.3, it must not exceed 2.5MHz
|
|
static bool mg_tcpip_driver_ra_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_ra_data *d =
|
|
(struct mg_tcpip_driver_ra_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
|
|
// Init SMI clock timing. If user told us the clock value, use it.
|
|
// TODO(): Otherwise, guess
|
|
s_smispin = d->clock / 15000000;
|
|
|
|
// Init RX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i][0] = MG_BIT(31); // RACT
|
|
s_rxdesc[i][1] = ETH_PKT_SIZE << 16; // RBL
|
|
s_rxdesc[i][2] = (uint32_t) s_rxbuf[i]; // Point to data buffer
|
|
}
|
|
s_rxdesc[ETH_DESC_CNT - 1][0] |= MG_BIT(30); // Wrap last descriptor
|
|
|
|
// Init TX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
// TACT = 0
|
|
s_txdesc[i][2] = (uint32_t) s_txbuf[i];
|
|
}
|
|
s_txdesc[ETH_DESC_CNT - 1][0] |= MG_BIT(30); // Wrap last descriptor
|
|
|
|
EDMAC->EDMR = MG_BIT(0); // Software reset, wait 64 PCLKA clocks (27.2.1)
|
|
uint32_t sckdivcr = RASYSC[8]; // get divisors from SCKDIVCR (8.2.2)
|
|
uint32_t ick = 1 << ((sckdivcr >> 24) & 7); // sys_clock div
|
|
uint32_t pcka = 1 << ((sckdivcr >> 12) & 7); // pclka div
|
|
raspin((64U * pcka) / (3U * ick));
|
|
EDMAC->EDMR = MG_BIT(6); // Initialize, little-endian (27.2.1)
|
|
|
|
MG_DEBUG(("PHY addr: %d, smispin: %d", d->phy_addr, s_smispin));
|
|
struct mg_phy phy = {raeth_read_phy, raeth_write_phy};
|
|
mg_phy_init(&phy, d->phy_addr, 0); // MAC clocks PHY
|
|
|
|
// Select RMII mode,
|
|
ETHERC->ECMR = MG_BIT(2) | MG_BIT(1); // 100M, Full-duplex, CRC
|
|
// ETHERC->ECMR |= MG_BIT(0); // Receive all
|
|
ETHERC->RFLR = 1518; // Set max rx length
|
|
|
|
EDMAC->RDLAR = (uint32_t) (uintptr_t) s_rxdesc;
|
|
EDMAC->TDLAR = (uint32_t) (uintptr_t) s_txdesc;
|
|
// MAC address filtering (bytes in reversed order)
|
|
ETHERC->MAHR = (uint32_t) (ifp->mac[0] << 24U) |
|
|
((uint32_t) ifp->mac[1] << 16U) |
|
|
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
|
|
ETHERC->MALR = ((uint32_t) ifp->mac[4] << 8U) | ifp->mac[5];
|
|
|
|
EDMAC->TFTR = 0; // Store and forward (27.2.10)
|
|
EDMAC->FDR = 0x070f; // (27.2.11)
|
|
EDMAC->RMCR = MG_BIT(0); // (27.2.12)
|
|
ETHERC->ECMR |= MG_BIT(6) | MG_BIT(5); // TE RE
|
|
EDMAC->EESIPR = MG_BIT(18); // Enable Rx IRQ
|
|
EDMAC->EDRRR = MG_BIT(0); // Receive Descriptors have changed
|
|
EDMAC->EDTRR = MG_BIT(0); // Transmit Descriptors have changed
|
|
return true;
|
|
}
|
|
|
|
// Transmit frame
|
|
static size_t mg_tcpip_driver_ra_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
static int s_txno; // Current descriptor index
|
|
if (len > sizeof(s_txbuf[ETH_DESC_CNT])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = (size_t) -1; // fail
|
|
} else if ((s_txdesc[s_txno][0] & MG_BIT(31))) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No descriptors available"));
|
|
len = 0; // retry later
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len); // Copy data
|
|
s_txdesc[s_txno][1] = len << 16; // Set data len
|
|
s_txdesc[s_txno][0] |= MG_BIT(31) | 3 << 28; // (27.3.1.1) mark valid
|
|
EDMAC->EDTRR = MG_BIT(0); // Transmit request
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_ra_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_ra_data *d =
|
|
(struct mg_tcpip_driver_ra_data *) ifp->driver_data;
|
|
uint8_t speed = MG_PHY_SPEED_10M;
|
|
bool up = false, full_duplex = false;
|
|
struct mg_phy phy = {raeth_read_phy, raeth_write_phy};
|
|
up = mg_phy_up(&phy, d->phy_addr, &full_duplex, &speed);
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
// tmp = reg with flags set to the most likely situation: 100M full-duplex
|
|
// if(link is slow or half) set flags otherwise
|
|
// reg = tmp
|
|
uint32_t ecmr = ETHERC->ECMR | MG_BIT(2) | MG_BIT(1); // 100M Full-duplex
|
|
if (speed == MG_PHY_SPEED_10M) ecmr &= ~MG_BIT(2); // 10M
|
|
if (full_duplex == false) ecmr &= ~MG_BIT(1); // Half-duplex
|
|
ETHERC->ECMR = ecmr; // IRQ handler does not fiddle with these registers
|
|
MG_DEBUG(("Link is %uM %s-duplex", ecmr & MG_BIT(2) ? 100 : 10,
|
|
ecmr & MG_BIT(1) ? "full" : "half"));
|
|
}
|
|
return up;
|
|
}
|
|
|
|
void EDMAC_IRQHandler(void);
|
|
static uint32_t s_rxno;
|
|
void EDMAC_IRQHandler(void) {
|
|
struct mg_tcpip_driver_ra_data *d =
|
|
(struct mg_tcpip_driver_ra_data *) s_ifp->driver_data;
|
|
EDMAC->EESR = MG_BIT(18); // Ack IRQ in EDMAC 1st
|
|
ICU_IELSR[d->irqno] &= ~MG_BIT(16); // Ack IRQ in ICU last
|
|
// Frame received, loop
|
|
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
|
|
uint32_t r = s_rxdesc[s_rxno][0];
|
|
if (r & MG_BIT(31)) break; // exit when done
|
|
// skip partial/errored frames (27.3.1.2)
|
|
if ((r & (MG_BIT(29) | MG_BIT(28)) && !(r & MG_BIT(27)))) {
|
|
size_t len = s_rxdesc[s_rxno][1] & 0xffff;
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp); // CRC already stripped
|
|
}
|
|
s_rxdesc[s_rxno][0] |= MG_BIT(31);
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
EDMAC->EDRRR = MG_BIT(0); // Receive Descriptors have changed
|
|
// If b0 == 0, descriptors were exhausted and probably frames were dropped,
|
|
// (27.2.9 RMFCR counts them)
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_ra = {mg_tcpip_driver_ra_init,
|
|
mg_tcpip_driver_ra_tx, NULL,
|
|
mg_tcpip_driver_ra_up};
|
|
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/same54.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_SAME54) && MG_ENABLE_DRIVER_SAME54
|
|
|
|
#include <sam.h>
|
|
|
|
#define ETH_PKT_SIZE 1536 // Max frame size
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#define ETH_DS 2 // Descriptor size (words)
|
|
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
|
|
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
|
|
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
|
|
static uint8_t s_txno; // Current TX descriptor
|
|
static uint8_t s_rxno; // Current RX descriptor
|
|
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
enum { MG_PHY_ADDR = 0, MG_PHYREG_BCR = 0, MG_PHYREG_BSR = 1 };
|
|
|
|
#define MG_PHYREGBIT_BCR_DUPLEX_MODE MG_BIT(8)
|
|
#define MG_PHYREGBIT_BCR_SPEED MG_BIT(13)
|
|
#define MG_PHYREGBIT_BSR_LINK_STATUS MG_BIT(2)
|
|
|
|
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
|
|
GMAC_REGS->GMAC_MAN = GMAC_MAN_CLTTO_Msk |
|
|
GMAC_MAN_OP(2) | // Setting the read operation
|
|
GMAC_MAN_WTN(2) | GMAC_MAN_PHYA(addr) | // PHY address
|
|
GMAC_MAN_REGA(reg); // Setting the register
|
|
while (!(GMAC_REGS->GMAC_NSR & GMAC_NSR_IDLE_Msk)) (void) 0;
|
|
return GMAC_REGS->GMAC_MAN & GMAC_MAN_DATA_Msk; // Getting the read value
|
|
}
|
|
|
|
#if 0
|
|
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
GMAC_REGS->GMAC_MAN = GMAC_MAN_CLTTO_Msk | GMAC_MAN_OP(1) | // Setting the write operation
|
|
GMAC_MAN_WTN(2) | GMAC_MAN_PHYA(addr) | // PHY address
|
|
GMAC_MAN_REGA(reg) | GMAC_MAN_DATA(val); // Setting the register
|
|
while (!(GMAC_REGS->GMAC_NSR & GMAC_NSR_IDLE_Msk)); // Waiting until the write op is complete
|
|
}
|
|
#endif
|
|
|
|
int get_clock_rate(struct mg_tcpip_driver_same54_data *d) {
|
|
if (d && d->mdc_cr >= 0 && d->mdc_cr <= 5) {
|
|
return d->mdc_cr;
|
|
} else {
|
|
// get MCLK from GCLK_GENERATOR 0
|
|
uint32_t div = 512;
|
|
uint32_t mclk;
|
|
if (!(GCLK_REGS->GCLK_GENCTRL[0] & GCLK_GENCTRL_DIVSEL_Msk)) {
|
|
div = ((GCLK_REGS->GCLK_GENCTRL[0] & 0x00FF0000) >> 16);
|
|
if (div == 0) div = 1;
|
|
}
|
|
switch (GCLK_REGS->GCLK_GENCTRL[0] & GCLK_GENCTRL_SRC_Msk) {
|
|
case GCLK_GENCTRL_SRC_XOSC0_Val:
|
|
mclk = 32000000UL; /* 32MHz */
|
|
break;
|
|
case GCLK_GENCTRL_SRC_XOSC1_Val:
|
|
mclk = 32000000UL; /* 32MHz */
|
|
break;
|
|
case GCLK_GENCTRL_SRC_OSCULP32K_Val:
|
|
mclk = 32000UL;
|
|
break;
|
|
case GCLK_GENCTRL_SRC_XOSC32K_Val:
|
|
mclk = 32000UL;
|
|
break;
|
|
case GCLK_GENCTRL_SRC_DFLL_Val:
|
|
mclk = 48000000UL; /* 48MHz */
|
|
break;
|
|
case GCLK_GENCTRL_SRC_DPLL0_Val:
|
|
mclk = 200000000UL; /* 200MHz */
|
|
break;
|
|
case GCLK_GENCTRL_SRC_DPLL1_Val:
|
|
mclk = 200000000UL; /* 200MHz */
|
|
break;
|
|
default:
|
|
mclk = 200000000UL; /* 200MHz */
|
|
}
|
|
|
|
mclk /= div;
|
|
uint8_t crs[] = {0, 1, 2, 3, 4, 5}; // GMAC->NCFGR::CLK values
|
|
uint8_t dividers[] = {8, 16, 32, 48, 64, 96}; // Respective CLK dividers
|
|
for (int i = 0; i < 6; i++) {
|
|
if (mclk / dividers[i] <= 2375000UL /* 2.5MHz - 5% */) {
|
|
return crs[i];
|
|
}
|
|
}
|
|
|
|
return 5;
|
|
}
|
|
}
|
|
|
|
static bool mg_tcpip_driver_same54_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_same54_data *d =
|
|
(struct mg_tcpip_driver_same54_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
|
|
MCLK_REGS->MCLK_APBCMASK |= MCLK_APBCMASK_GMAC_Msk;
|
|
MCLK_REGS->MCLK_AHBMASK |= MCLK_AHBMASK_GMAC_Msk;
|
|
GMAC_REGS->GMAC_NCFGR = GMAC_NCFGR_CLK(get_clock_rate(d)); // Set MDC divider
|
|
GMAC_REGS->GMAC_NCR = 0; // Disable RX & TX
|
|
GMAC_REGS->GMAC_NCR |= GMAC_NCR_MPE_Msk; // Enable MDC & MDIO
|
|
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) { // Init TX descriptors
|
|
s_txdesc[i][0] = (uint32_t) s_txbuf[i]; // Point to data buffer
|
|
s_txdesc[i][1] = MG_BIT(31); // OWN bit
|
|
}
|
|
s_txdesc[ETH_DESC_CNT - 1][1] |= MG_BIT(30); // Last tx descriptor - wrap
|
|
|
|
GMAC_REGS->GMAC_DCFGR = GMAC_DCFGR_DRBS(0x18) // DMA recv buf 1536
|
|
| GMAC_DCFGR_RXBMS(GMAC_DCFGR_RXBMS_FULL_Val) |
|
|
GMAC_DCFGR_TXPBMS(1); // See #2487
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) { // Init RX descriptors
|
|
s_rxdesc[i][0] = (uint32_t) s_rxbuf[i]; // Address of the data buffer
|
|
s_rxdesc[i][1] = 0; // Clear status
|
|
}
|
|
s_rxdesc[ETH_DESC_CNT - 1][0] |= MG_BIT(1); // Last rx descriptor - wrap
|
|
|
|
GMAC_REGS->GMAC_TBQB = (uint32_t) s_txdesc; // about the descriptor addresses
|
|
GMAC_REGS->GMAC_RBQB = (uint32_t) s_rxdesc; // Let the controller know
|
|
|
|
GMAC_REGS->SA[0].GMAC_SAB =
|
|
MG_U32(ifp->mac[3], ifp->mac[2], ifp->mac[1], ifp->mac[0]);
|
|
GMAC_REGS->SA[0].GMAC_SAT = MG_U32(0, 0, ifp->mac[5], ifp->mac[4]);
|
|
|
|
GMAC_REGS->GMAC_UR &= ~GMAC_UR_MII_Msk; // Disable MII, use RMII
|
|
GMAC_REGS->GMAC_NCFGR |= GMAC_NCFGR_MAXFS_Msk | GMAC_NCFGR_MTIHEN_Msk |
|
|
GMAC_NCFGR_EFRHD_Msk | GMAC_NCFGR_CAF_Msk;
|
|
GMAC_REGS->GMAC_TSR = GMAC_TSR_HRESP_Msk | GMAC_TSR_UND_Msk |
|
|
GMAC_TSR_TXCOMP_Msk | GMAC_TSR_TFC_Msk |
|
|
GMAC_TSR_TXGO_Msk | GMAC_TSR_RLE_Msk |
|
|
GMAC_TSR_COL_Msk | GMAC_TSR_UBR_Msk;
|
|
GMAC_REGS->GMAC_RSR = GMAC_RSR_HNO_Msk | GMAC_RSR_RXOVR_Msk |
|
|
GMAC_RSR_REC_Msk | GMAC_RSR_BNA_Msk;
|
|
GMAC_REGS->GMAC_IDR = ~0U; // Disable interrupts, then enable required
|
|
GMAC_REGS->GMAC_IER = GMAC_IER_HRESP_Msk | GMAC_IER_ROVR_Msk |
|
|
GMAC_IER_TCOMP_Msk | GMAC_IER_TFC_Msk |
|
|
GMAC_IER_RLEX_Msk | GMAC_IER_TUR_Msk |
|
|
GMAC_IER_RXUBR_Msk | GMAC_IER_RCOMP_Msk;
|
|
GMAC_REGS->GMAC_NCR |= GMAC_NCR_TXEN_Msk | GMAC_NCR_RXEN_Msk;
|
|
NVIC_EnableIRQ(GMAC_IRQn);
|
|
|
|
return true;
|
|
}
|
|
|
|
static size_t mg_tcpip_driver_same54_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
if (len > sizeof(s_txbuf[s_txno])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = 0; // Frame is too big
|
|
} else if ((s_txdesc[s_txno][1] & MG_BIT(31)) == 0) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No free descriptors"));
|
|
len = 0; // All descriptors are busy, fail
|
|
} else {
|
|
uint32_t status = len | MG_BIT(15); // Frame length, last chunk
|
|
if (s_txno == ETH_DESC_CNT - 1) status |= MG_BIT(30); // wrap
|
|
memcpy(s_txbuf[s_txno], buf, len); // Copy data
|
|
s_txdesc[s_txno][1] = status;
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
__DSB(); // Ensure descriptors have been written
|
|
GMAC_REGS->GMAC_NCR |= GMAC_NCR_TSTART_Msk; // Enable transmission
|
|
return len;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_same54_up(struct mg_tcpip_if *ifp) {
|
|
uint16_t bsr = eth_read_phy(MG_PHY_ADDR, MG_PHYREG_BSR);
|
|
bool up = bsr & MG_PHYREGBIT_BSR_LINK_STATUS ? 1 : 0;
|
|
|
|
// If PHY is ready, update NCFGR accordingly
|
|
if (ifp->state == MG_TCPIP_STATE_DOWN && up) {
|
|
uint16_t bcr = eth_read_phy(MG_PHY_ADDR, MG_PHYREG_BCR);
|
|
bool fd = bcr & MG_PHYREGBIT_BCR_DUPLEX_MODE ? 1 : 0;
|
|
bool spd = bcr & MG_PHYREGBIT_BCR_SPEED ? 1 : 0;
|
|
GMAC_REGS->GMAC_NCFGR = (GMAC_REGS->GMAC_NCFGR &
|
|
~(GMAC_NCFGR_SPD_Msk | MG_PHYREGBIT_BCR_SPEED)) |
|
|
GMAC_NCFGR_SPD(spd) | GMAC_NCFGR_FD(fd);
|
|
}
|
|
|
|
return up;
|
|
}
|
|
|
|
void GMAC_Handler(void);
|
|
void GMAC_Handler(void) {
|
|
uint32_t isr = GMAC_REGS->GMAC_ISR;
|
|
uint32_t rsr = GMAC_REGS->GMAC_RSR;
|
|
uint32_t tsr = GMAC_REGS->GMAC_TSR;
|
|
if (isr & GMAC_ISR_RCOMP_Msk) {
|
|
if (rsr & GMAC_ISR_RCOMP_Msk) {
|
|
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
|
|
if ((s_rxdesc[s_rxno][0] & MG_BIT(0)) == 0) break;
|
|
size_t len = s_rxdesc[s_rxno][1] & (MG_BIT(13) - 1);
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
|
|
s_rxdesc[s_rxno][0] &= ~MG_BIT(0); // Disown
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((tsr & (GMAC_TSR_HRESP_Msk | GMAC_TSR_UND_Msk | GMAC_TSR_TXCOMP_Msk |
|
|
GMAC_TSR_TFC_Msk | GMAC_TSR_TXGO_Msk | GMAC_TSR_RLE_Msk |
|
|
GMAC_TSR_COL_Msk | GMAC_TSR_UBR_Msk)) != 0) {
|
|
// MG_INFO((" --> %#x %#x", s_txdesc[s_txno][1], tsr));
|
|
if (!(s_txdesc[s_txno][1] & MG_BIT(31))) s_txdesc[s_txno][1] |= MG_BIT(31);
|
|
}
|
|
|
|
GMAC_REGS->GMAC_RSR = rsr;
|
|
GMAC_REGS->GMAC_TSR = tsr;
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_same54 = {
|
|
mg_tcpip_driver_same54_init, mg_tcpip_driver_same54_tx, NULL,
|
|
mg_tcpip_driver_same54_up};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/stm32f.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_STM32F) && \
|
|
MG_ENABLE_DRIVER_STM32F
|
|
struct stm32f_eth {
|
|
volatile uint32_t MACCR, MACFFR, MACHTHR, MACHTLR, MACMIIAR, MACMIIDR, MACFCR,
|
|
MACVLANTR, RESERVED0[2], MACRWUFFR, MACPMTCSR, RESERVED1, MACDBGR, MACSR,
|
|
MACIMR, MACA0HR, MACA0LR, MACA1HR, MACA1LR, MACA2HR, MACA2LR, MACA3HR,
|
|
MACA3LR, RESERVED2[40], MMCCR, MMCRIR, MMCTIR, MMCRIMR, MMCTIMR,
|
|
RESERVED3[14], MMCTGFSCCR, MMCTGFMSCCR, RESERVED4[5], MMCTGFCR,
|
|
RESERVED5[10], MMCRFCECR, MMCRFAECR, RESERVED6[10], MMCRGUFCR,
|
|
RESERVED7[334], PTPTSCR, PTPSSIR, PTPTSHR, PTPTSLR, PTPTSHUR, PTPTSLUR,
|
|
PTPTSAR, PTPTTHR, PTPTTLR, RESERVED8, PTPTSSR, PTPPPSCR, RESERVED9[564],
|
|
DMABMR, DMATPDR, DMARPDR, DMARDLAR, DMATDLAR, DMASR, DMAOMR, DMAIER,
|
|
DMAMFBOCR, DMARSWTR, RESERVED10[8], DMACHTDR, DMACHRDR, DMACHTBAR,
|
|
DMACHRBAR;
|
|
};
|
|
#undef ETH
|
|
#define ETH ((struct stm32f_eth *) (uintptr_t) 0x40028000)
|
|
|
|
#define ETH_PKT_SIZE 1540 // Max frame size
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#define ETH_DS 4 // Descriptor size (words)
|
|
|
|
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
|
|
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers
|
|
static uint8_t s_txno; // Current TX descriptor
|
|
static uint8_t s_rxno; // Current RX descriptor
|
|
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
|
|
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
|
|
ETH->MACMIIAR &= (7 << 2);
|
|
ETH->MACMIIAR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6);
|
|
ETH->MACMIIAR |= MG_BIT(0);
|
|
while (ETH->MACMIIAR & MG_BIT(0)) (void) 0;
|
|
return ETH->MACMIIDR & 0xffff;
|
|
}
|
|
|
|
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
ETH->MACMIIDR = val;
|
|
ETH->MACMIIAR &= (7 << 2);
|
|
ETH->MACMIIAR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | MG_BIT(1);
|
|
ETH->MACMIIAR |= MG_BIT(0);
|
|
while (ETH->MACMIIAR & MG_BIT(0)) (void) 0;
|
|
}
|
|
|
|
static uint32_t get_hclk(void) {
|
|
struct rcc {
|
|
volatile uint32_t CR, PLLCFGR, CFGR;
|
|
} *rcc = (struct rcc *) 0x40023800;
|
|
uint32_t clk = 0, hsi = 16000000 /* 16 MHz */, hse = 8000000 /* 8MHz */;
|
|
|
|
if (rcc->CFGR & (1 << 2)) {
|
|
clk = hse;
|
|
} else if (rcc->CFGR & (1 << 3)) {
|
|
uint32_t vco, m, n, p;
|
|
m = (rcc->PLLCFGR & (0x3f << 0)) >> 0;
|
|
n = (rcc->PLLCFGR & (0x1ff << 6)) >> 6;
|
|
p = (((rcc->PLLCFGR & (3 << 16)) >> 16) + 1) * 2;
|
|
clk = (rcc->PLLCFGR & (1 << 22)) ? hse : hsi;
|
|
vco = (uint32_t) ((uint64_t) clk * n / m);
|
|
clk = vco / p;
|
|
} else {
|
|
clk = hsi;
|
|
}
|
|
uint32_t hpre = (rcc->CFGR & (15 << 4)) >> 4;
|
|
if (hpre < 8) return clk;
|
|
|
|
uint8_t ahbptab[8] = {1, 2, 3, 4, 6, 7, 8, 9}; // log2(div)
|
|
return ((uint32_t) clk) >> ahbptab[hpre - 8];
|
|
}
|
|
|
|
// Guess CR from HCLK. MDC clock is generated from HCLK (AHB); as per 802.3,
|
|
// it must not exceed 2.5MHz As the AHB clock can be (and usually is) derived
|
|
// from the HSI (internal RC), and it can go above specs, the datasheets
|
|
// specify a range of frequencies and activate one of a series of dividers to
|
|
// keep the MDC clock safely below 2.5MHz. We guess a divider setting based on
|
|
// HCLK with a +5% drift. If the user uses a different clock from our
|
|
// defaults, needs to set the macros on top Valid for STM32F74xxx/75xxx
|
|
// (38.8.1) and STM32F42xxx/43xxx (33.8.1) (both 4.5% worst case drift)
|
|
static int guess_mdc_cr(void) {
|
|
uint8_t crs[] = {2, 3, 0, 1, 4, 5}; // ETH->MACMIIAR::CR values
|
|
uint8_t div[] = {16, 26, 42, 62, 102, 124}; // Respective HCLK dividers
|
|
uint32_t hclk = get_hclk(); // Guess system HCLK
|
|
int result = -1; // Invalid CR value
|
|
if (hclk < 25000000) {
|
|
MG_ERROR(("HCLK too low"));
|
|
} else {
|
|
for (int i = 0; i < 6; i++) {
|
|
if (hclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) {
|
|
result = crs[i];
|
|
break;
|
|
}
|
|
}
|
|
if (result < 0) MG_ERROR(("HCLK too high"));
|
|
}
|
|
MG_DEBUG(("HCLK: %u, CR: %d", hclk, result));
|
|
return result;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_stm32f_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_stm32f_data *d =
|
|
(struct mg_tcpip_driver_stm32f_data *) ifp->driver_data;
|
|
uint8_t phy_addr = d == NULL ? 0 : d->phy_addr;
|
|
s_ifp = ifp;
|
|
|
|
// Init RX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i][0] = MG_BIT(31); // Own
|
|
s_rxdesc[i][1] = sizeof(s_rxbuf[i]) | MG_BIT(14); // 2nd address chained
|
|
s_rxdesc[i][2] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer
|
|
s_rxdesc[i][3] =
|
|
(uint32_t) (uintptr_t) s_rxdesc[(i + 1) % ETH_DESC_CNT]; // Chain
|
|
}
|
|
|
|
// Init TX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_txdesc[i][2] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer
|
|
s_txdesc[i][3] =
|
|
(uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain
|
|
}
|
|
|
|
ETH->DMABMR |= MG_BIT(0); // Software reset
|
|
while ((ETH->DMABMR & MG_BIT(0)) != 0) (void) 0; // Wait until done
|
|
|
|
// Set MDC clock divider. If user told us the value, use it. Otherwise, guess
|
|
int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr;
|
|
ETH->MACMIIAR = ((uint32_t) cr & 7) << 2;
|
|
|
|
// NOTE(cpq): we do not use extended descriptor bit 7, and do not use
|
|
// hardware checksum. Therefore, descriptor size is 4, not 8
|
|
// ETH->DMABMR = MG_BIT(13) | MG_BIT(16) | MG_BIT(22) | MG_BIT(23) |
|
|
// MG_BIT(25);
|
|
ETH->MACIMR = MG_BIT(3) | MG_BIT(9); // Mask timestamp & PMT IT
|
|
ETH->MACFCR = MG_BIT(7); // Disable zero quarta pause
|
|
// ETH->MACFFR = MG_BIT(31); // Receive all
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
mg_phy_init(&phy, phy_addr, MG_PHY_CLOCKS_MAC);
|
|
ETH->DMARDLAR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors
|
|
ETH->DMATDLAR = (uint32_t) (uintptr_t) s_txdesc; // RX descriptors
|
|
ETH->DMAIER = MG_BIT(6) | MG_BIT(16); // RIE, NISE
|
|
ETH->MACCR =
|
|
MG_BIT(2) | MG_BIT(3) | MG_BIT(11) | MG_BIT(14); // RE, TE, Duplex, Fast
|
|
ETH->DMAOMR =
|
|
MG_BIT(1) | MG_BIT(13) | MG_BIT(21) | MG_BIT(25); // SR, ST, TSF, RSF
|
|
|
|
// MAC address filtering
|
|
ETH->MACA0HR = ((uint32_t) ifp->mac[5] << 8U) | ifp->mac[4];
|
|
ETH->MACA0LR = (uint32_t) (ifp->mac[3] << 24) |
|
|
((uint32_t) ifp->mac[2] << 16) |
|
|
((uint32_t) ifp->mac[1] << 8) | ifp->mac[0];
|
|
return true;
|
|
}
|
|
|
|
static size_t mg_tcpip_driver_stm32f_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
if (len > sizeof(s_txbuf[s_txno])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = 0; // Frame is too big
|
|
} else if ((s_txdesc[s_txno][0] & MG_BIT(31))) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No free descriptors"));
|
|
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR);
|
|
len = 0; // All descriptors are busy, fail
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len); // Copy data
|
|
s_txdesc[s_txno][1] = (uint32_t) len; // Set data len
|
|
s_txdesc[s_txno][0] = MG_BIT(20) | MG_BIT(28) | MG_BIT(29); // Chain,FS,LS
|
|
s_txdesc[s_txno][0] |= MG_BIT(31); // Set OWN bit - let DMA take over
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
MG_DSB(); // ensure descriptors have been written
|
|
ETH->DMASR = MG_BIT(2) | MG_BIT(5); // Clear any prior TBUS/TUS
|
|
ETH->DMATPDR = 0; // and resume
|
|
return len;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_stm32f_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_stm32f_data *d =
|
|
(struct mg_tcpip_driver_stm32f_data *) ifp->driver_data;
|
|
uint8_t phy_addr = d == NULL ? 0 : d->phy_addr;
|
|
uint8_t speed = MG_PHY_SPEED_10M;
|
|
bool up = false, full_duplex = false;
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
up = mg_phy_up(&phy, phy_addr, &full_duplex, &speed);
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
// tmp = reg with flags set to the most likely situation: 100M full-duplex
|
|
// if(link is slow or half) set flags otherwise
|
|
// reg = tmp
|
|
uint32_t maccr = ETH->MACCR | MG_BIT(14) | MG_BIT(11); // 100M, Full-duplex
|
|
if (speed == MG_PHY_SPEED_10M) maccr &= ~MG_BIT(14); // 10M
|
|
if (full_duplex == false) maccr &= ~MG_BIT(11); // Half-duplex
|
|
ETH->MACCR = maccr; // IRQ handler does not fiddle with this register
|
|
MG_DEBUG(("Link is %uM %s-duplex", maccr & MG_BIT(14) ? 100 : 10,
|
|
maccr & MG_BIT(11) ? "full" : "half"));
|
|
}
|
|
return up;
|
|
}
|
|
|
|
#ifdef __riscv
|
|
__attribute__((interrupt())) // For RISCV CH32V307, which share the same MAC
|
|
#endif
|
|
void ETH_IRQHandler(void);
|
|
void ETH_IRQHandler(void) {
|
|
if (ETH->DMASR & MG_BIT(6)) { // Frame received, loop
|
|
ETH->DMASR = MG_BIT(16) | MG_BIT(6); // Clear flag
|
|
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
|
|
if (s_rxdesc[s_rxno][0] & MG_BIT(31)) break; // exit when done
|
|
if (((s_rxdesc[s_rxno][0] & (MG_BIT(8) | MG_BIT(9))) ==
|
|
(MG_BIT(8) | MG_BIT(9))) &&
|
|
!(s_rxdesc[s_rxno][0] & MG_BIT(15))) { // skip partial/errored frames
|
|
uint32_t len = ((s_rxdesc[s_rxno][0] >> 16) & (MG_BIT(14) - 1));
|
|
// printf("%lx %lu %lx %.8lx\n", s_rxno, len, s_rxdesc[s_rxno][0],
|
|
// ETH->DMASR);
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp);
|
|
}
|
|
s_rxdesc[s_rxno][0] = MG_BIT(31);
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
}
|
|
// Cleanup flags
|
|
ETH->DMASR = MG_BIT(16) // NIS, normal interrupt summary
|
|
| MG_BIT(7); // Clear possible RBUS while processing
|
|
ETH->DMARPDR = 0; // and resume RX
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_stm32f = {
|
|
mg_tcpip_driver_stm32f_init, mg_tcpip_driver_stm32f_tx, NULL,
|
|
mg_tcpip_driver_stm32f_up};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/stm32h.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_STM32H) && \
|
|
MG_ENABLE_DRIVER_STM32H
|
|
struct stm32h_eth {
|
|
volatile uint32_t MACCR, MACECR, MACPFR, MACWTR, MACHT0R, MACHT1R,
|
|
RESERVED1[14], MACVTR, RESERVED2, MACVHTR, RESERVED3, MACVIR, MACIVIR,
|
|
RESERVED4[2], MACTFCR, RESERVED5[7], MACRFCR, RESERVED6[7], MACISR,
|
|
MACIER, MACRXTXSR, RESERVED7, MACPCSR, MACRWKPFR, RESERVED8[2], MACLCSR,
|
|
MACLTCR, MACLETR, MAC1USTCR, RESERVED9[12], MACVR, MACDR, RESERVED10,
|
|
MACHWF0R, MACHWF1R, MACHWF2R, RESERVED11[54], MACMDIOAR, MACMDIODR,
|
|
RESERVED12[2], MACARPAR, RESERVED13[59], MACA0HR, MACA0LR, MACA1HR,
|
|
MACA1LR, MACA2HR, MACA2LR, MACA3HR, MACA3LR, RESERVED14[248], MMCCR,
|
|
MMCRIR, MMCTIR, MMCRIMR, MMCTIMR, RESERVED15[14], MMCTSCGPR, MMCTMCGPR,
|
|
RESERVED16[5], MMCTPCGR, RESERVED17[10], MMCRCRCEPR, MMCRAEPR,
|
|
RESERVED18[10], MMCRUPGR, RESERVED19[9], MMCTLPIMSTR, MMCTLPITCR,
|
|
MMCRLPIMSTR, MMCRLPITCR, RESERVED20[65], MACL3L4C0R, MACL4A0R,
|
|
RESERVED21[2], MACL3A0R0R, MACL3A1R0R, MACL3A2R0R, MACL3A3R0R,
|
|
RESERVED22[4], MACL3L4C1R, MACL4A1R, RESERVED23[2], MACL3A0R1R,
|
|
MACL3A1R1R, MACL3A2R1R, MACL3A3R1R, RESERVED24[108], MACTSCR, MACSSIR,
|
|
MACSTSR, MACSTNR, MACSTSUR, MACSTNUR, MACTSAR, RESERVED25, MACTSSR,
|
|
RESERVED26[3], MACTTSSNR, MACTTSSSR, RESERVED27[2], MACACR, RESERVED28,
|
|
MACATSNR, MACATSSR, MACTSIACR, MACTSEACR, MACTSICNR, MACTSECNR,
|
|
RESERVED29[4], MACPPSCR, RESERVED30[3], MACPPSTTSR, MACPPSTTNR, MACPPSIR,
|
|
MACPPSWR, RESERVED31[12], MACPOCR, MACSPI0R, MACSPI1R, MACSPI2R, MACLMIR,
|
|
RESERVED32[11], MTLOMR, RESERVED33[7], MTLISR, RESERVED34[55], MTLTQOMR,
|
|
MTLTQUR, MTLTQDR, RESERVED35[8], MTLQICSR, MTLRQOMR, MTLRQMPOCR, MTLRQDR,
|
|
RESERVED36[177], DMAMR, DMASBMR, DMAISR, DMADSR, RESERVED37[60], DMACCR,
|
|
DMACTCR, DMACRCR, RESERVED38[2], DMACTDLAR, RESERVED39, DMACRDLAR,
|
|
DMACTDTPR, RESERVED40, DMACRDTPR, DMACTDRLR, DMACRDRLR, DMACIER,
|
|
DMACRIWTR, DMACSFCSR, RESERVED41, DMACCATDR, RESERVED42, DMACCARDR,
|
|
RESERVED43, DMACCATBR, RESERVED44, DMACCARBR, DMACSR, RESERVED45[2],
|
|
DMACMFCR;
|
|
};
|
|
#undef ETH
|
|
#define ETH \
|
|
((struct stm32h_eth *) (uintptr_t) (0x40000000UL + 0x00020000UL + 0x8000UL))
|
|
|
|
#define ETH_PKT_SIZE 1540 // Max frame size
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#define ETH_DS 4 // Descriptor size (words)
|
|
|
|
static volatile uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
|
|
static volatile uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
|
|
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
|
|
ETH->MACMDIOAR &= (0xF << 8);
|
|
ETH->MACMDIOAR |= ((uint32_t) addr << 21) | ((uint32_t) reg << 16) | 3 << 2;
|
|
ETH->MACMDIOAR |= MG_BIT(0);
|
|
while (ETH->MACMDIOAR & MG_BIT(0)) (void) 0;
|
|
return (uint16_t) ETH->MACMDIODR;
|
|
}
|
|
|
|
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
ETH->MACMDIODR = val;
|
|
ETH->MACMDIOAR &= (0xF << 8);
|
|
ETH->MACMDIOAR |= ((uint32_t) addr << 21) | ((uint32_t) reg << 16) | 1 << 2;
|
|
ETH->MACMDIOAR |= MG_BIT(0);
|
|
while (ETH->MACMDIOAR & MG_BIT(0)) (void) 0;
|
|
}
|
|
|
|
static uint32_t get_hclk(void) {
|
|
struct rcc {
|
|
volatile uint32_t CR, HSICFGR, CRRCR, CSICFGR, CFGR, RESERVED1, D1CFGR,
|
|
D2CFGR, D3CFGR, RESERVED2, PLLCKSELR, PLLCFGR, PLL1DIVR, PLL1FRACR,
|
|
PLL2DIVR, PLL2FRACR, PLL3DIVR, PLL3FRACR, RESERVED3, D1CCIPR, D2CCIP1R,
|
|
D2CCIP2R, D3CCIPR, RESERVED4, CIER, CIFR, CICR, RESERVED5, BDCR, CSR,
|
|
RESERVED6, AHB3RSTR, AHB1RSTR, AHB2RSTR, AHB4RSTR, APB3RSTR, APB1LRSTR,
|
|
APB1HRSTR, APB2RSTR, APB4RSTR, GCR, RESERVED8, D3AMR, RESERVED11[9],
|
|
RSR, AHB3ENR, AHB1ENR, AHB2ENR, AHB4ENR, APB3ENR, APB1LENR, APB1HENR,
|
|
APB2ENR, APB4ENR, RESERVED12, AHB3LPENR, AHB1LPENR, AHB2LPENR,
|
|
AHB4LPENR, APB3LPENR, APB1LLPENR, APB1HLPENR, APB2LPENR, APB4LPENR,
|
|
RESERVED13[4];
|
|
} *rcc = ((struct rcc *) (0x40000000 + 0x18020000 + 0x4400));
|
|
uint32_t clk = 0, hsi = 64000000 /* 64 MHz */, hse = 8000000 /* 8MHz */,
|
|
csi = 4000000 /* 4MHz */;
|
|
unsigned int sel = (rcc->CFGR & (7 << 3)) >> 3;
|
|
|
|
if (sel == 1) {
|
|
clk = csi;
|
|
} else if (sel == 2) {
|
|
clk = hse;
|
|
} else if (sel == 3) {
|
|
uint32_t vco, m, n, p;
|
|
unsigned int src = (rcc->PLLCKSELR & (3 << 0)) >> 0;
|
|
m = ((rcc->PLLCKSELR & (0x3F << 4)) >> 4);
|
|
n = ((rcc->PLL1DIVR & (0x1FF << 0)) >> 0) + 1 +
|
|
((rcc->PLLCFGR & MG_BIT(0)) ? 1 : 0); // round-up in fractional mode
|
|
p = ((rcc->PLL1DIVR & (0x7F << 9)) >> 9) + 1;
|
|
if (src == 1) {
|
|
clk = csi;
|
|
} else if (src == 2) {
|
|
clk = hse;
|
|
} else {
|
|
clk = hsi;
|
|
clk >>= ((rcc->CR & 3) >> 3);
|
|
}
|
|
vco = (uint32_t) ((uint64_t) clk * n / m);
|
|
clk = vco / p;
|
|
} else {
|
|
clk = hsi;
|
|
clk >>= ((rcc->CR & 3) >> 3);
|
|
}
|
|
const uint8_t cptab[12] = {1, 2, 3, 4, 6, 7, 8, 9}; // log2(div)
|
|
uint32_t d1cpre = (rcc->D1CFGR & (0x0F << 8)) >> 8;
|
|
if (d1cpre >= 8) clk >>= cptab[d1cpre - 8];
|
|
MG_DEBUG(("D1 CLK: %u", clk));
|
|
uint32_t hpre = (rcc->D1CFGR & (0x0F << 0)) >> 0;
|
|
if (hpre < 8) return clk;
|
|
return ((uint32_t) clk) >> cptab[hpre - 8];
|
|
}
|
|
|
|
// Guess CR from AHB1 clock. MDC clock is generated from the ETH peripheral
|
|
// clock (AHB1); as per 802.3, it must not exceed 2. As the AHB clock can
|
|
// be derived from HSI or CSI (internal RC) clocks, and those can go above
|
|
// specs, the datasheets specify a range of frequencies and activate one of a
|
|
// series of dividers to keep the MDC clock safely below 2.5MHz. We guess a
|
|
// divider setting based on HCLK with some drift. If the user uses a different
|
|
// clock from our defaults, needs to set the macros on top. Valid for
|
|
// STM32H74xxx/75xxx (58.11.4)(4.5% worst case drift)(CSI clock has a 7.5 %
|
|
// worst case drift @ max temp)
|
|
static int guess_mdc_cr(void) {
|
|
const uint8_t crs[] = {2, 3, 0, 1, 4, 5}; // ETH->MACMDIOAR::CR values
|
|
const uint8_t div[] = {16, 26, 42, 62, 102, 124}; // Respective HCLK dividers
|
|
uint32_t hclk = get_hclk(); // Guess system HCLK
|
|
int result = -1; // Invalid CR value
|
|
for (int i = 0; i < 6; i++) {
|
|
if (hclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) {
|
|
result = crs[i];
|
|
break;
|
|
}
|
|
}
|
|
if (result < 0) MG_ERROR(("HCLK too high"));
|
|
MG_DEBUG(("HCLK: %u, CR: %d", hclk, result));
|
|
return result;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_stm32h_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_stm32h_data *d =
|
|
(struct mg_tcpip_driver_stm32h_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
uint8_t phy_addr = d == NULL ? 0 : d->phy_addr;
|
|
uint8_t phy_conf = d == NULL ? MG_PHY_CLOCKS_MAC : d->phy_conf;
|
|
|
|
// Init RX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i][0] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer
|
|
s_rxdesc[i][3] = MG_BIT(31) | MG_BIT(30) | MG_BIT(24); // OWN, IOC, BUF1V
|
|
}
|
|
|
|
// Init TX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_txdesc[i][0] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer
|
|
}
|
|
|
|
ETH->DMAMR |= MG_BIT(0); // Software reset
|
|
while ((ETH->DMAMR & MG_BIT(0)) != 0) (void) 0; // Wait until done
|
|
|
|
// Set MDC clock divider. If user told us the value, use it. Otherwise, guess
|
|
int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr;
|
|
ETH->MACMDIOAR = ((uint32_t) cr & 0xF) << 8;
|
|
|
|
// NOTE(scaprile): We do not use timing facilities so the DMA engine does not
|
|
// re-write buffer address
|
|
ETH->DMAMR = 0 << 16; // use interrupt mode 0 (58.8.1) (reset value)
|
|
ETH->DMASBMR |= MG_BIT(12); // AAL NOTE(scaprile): is this actually needed
|
|
ETH->MACIER = 0; // Do not enable additional irq sources (reset value)
|
|
ETH->MACTFCR = MG_BIT(7); // Disable zero-quanta pause
|
|
// ETH->MACPFR = MG_BIT(31); // Receive all
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
mg_phy_init(&phy, phy_addr, phy_conf);
|
|
ETH->DMACRDLAR =
|
|
(uint32_t) (uintptr_t) s_rxdesc; // RX descriptors start address
|
|
ETH->DMACRDRLR = ETH_DESC_CNT - 1; // ring length
|
|
ETH->DMACRDTPR =
|
|
(uint32_t) (uintptr_t) &s_rxdesc[ETH_DESC_CNT -
|
|
1]; // last valid descriptor address
|
|
ETH->DMACTDLAR =
|
|
(uint32_t) (uintptr_t) s_txdesc; // TX descriptors start address
|
|
ETH->DMACTDRLR = ETH_DESC_CNT - 1; // ring length
|
|
ETH->DMACTDTPR =
|
|
(uint32_t) (uintptr_t) s_txdesc; // first available descriptor address
|
|
ETH->DMACCR = 0; // DSL = 0 (contiguous descriptor table) (reset value)
|
|
ETH->DMACIER = MG_BIT(6) | MG_BIT(15); // RIE, NIE
|
|
ETH->MACCR = MG_BIT(0) | MG_BIT(1) | MG_BIT(13) | MG_BIT(14) |
|
|
MG_BIT(15); // RE, TE, Duplex, Fast, Reserved
|
|
ETH->MTLTQOMR |= MG_BIT(1); // TSF
|
|
ETH->MTLRQOMR |= MG_BIT(5); // RSF
|
|
ETH->DMACTCR |= MG_BIT(0); // ST
|
|
ETH->DMACRCR |= MG_BIT(0); // SR
|
|
|
|
// MAC address filtering
|
|
ETH->MACA0HR = ((uint32_t) ifp->mac[5] << 8U) | ifp->mac[4];
|
|
ETH->MACA0LR = (uint32_t) (ifp->mac[3] << 24) |
|
|
((uint32_t) ifp->mac[2] << 16) |
|
|
((uint32_t) ifp->mac[1] << 8) | ifp->mac[0];
|
|
return true;
|
|
}
|
|
|
|
static uint32_t s_txno;
|
|
static size_t mg_tcpip_driver_stm32h_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
if (len > sizeof(s_txbuf[s_txno])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = 0; // Frame is too big
|
|
} else if ((s_txdesc[s_txno][3] & MG_BIT(31))) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No free descriptors: %u %08X %08X %08X", s_txno,
|
|
s_txdesc[s_txno][3], ETH->DMACSR, ETH->DMACTCR));
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) MG_ERROR(("%08X", s_txdesc[i][3]));
|
|
len = 0; // All descriptors are busy, fail
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len); // Copy data
|
|
s_txdesc[s_txno][2] = (uint32_t) len; // Set data len
|
|
s_txdesc[s_txno][3] = MG_BIT(28) | MG_BIT(29); // FD, LD
|
|
s_txdesc[s_txno][3] |= MG_BIT(31); // Set OWN bit - let DMA take over
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
ETH->DMACSR |= MG_BIT(2) | MG_BIT(1); // Clear any prior TBU, TPS
|
|
ETH->DMACTDTPR = (uint32_t) (uintptr_t) &s_txdesc[s_txno]; // and resume
|
|
return len;
|
|
(void) ifp;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_stm32h_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_stm32h_data *d =
|
|
(struct mg_tcpip_driver_stm32h_data *) ifp->driver_data;
|
|
uint8_t phy_addr = d == NULL ? 0 : d->phy_addr;
|
|
uint8_t speed = MG_PHY_SPEED_10M;
|
|
bool up = false, full_duplex = false;
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
up = mg_phy_up(&phy, phy_addr, &full_duplex, &speed);
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
// tmp = reg with flags set to the most likely situation: 100M full-duplex
|
|
// if(link is slow or half) set flags otherwise
|
|
// reg = tmp
|
|
uint32_t maccr = ETH->MACCR | MG_BIT(14) | MG_BIT(13); // 100M, Full-duplex
|
|
if (speed == MG_PHY_SPEED_10M) maccr &= ~MG_BIT(14); // 10M
|
|
if (full_duplex == false) maccr &= ~MG_BIT(13); // Half-duplex
|
|
ETH->MACCR = maccr; // IRQ handler does not fiddle with this register
|
|
MG_DEBUG(("Link is %uM %s-duplex", maccr & MG_BIT(14) ? 100 : 10,
|
|
maccr & MG_BIT(13) ? "full" : "half"));
|
|
}
|
|
return up;
|
|
}
|
|
|
|
void ETH_IRQHandler(void);
|
|
static uint32_t s_rxno;
|
|
void ETH_IRQHandler(void) {
|
|
if (ETH->DMACSR & MG_BIT(6)) { // Frame received, loop
|
|
ETH->DMACSR = MG_BIT(15) | MG_BIT(6); // Clear flag
|
|
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
|
|
if (s_rxdesc[s_rxno][3] & MG_BIT(31)) break; // exit when done
|
|
if (((s_rxdesc[s_rxno][3] & (MG_BIT(28) | MG_BIT(29))) ==
|
|
(MG_BIT(28) | MG_BIT(29))) &&
|
|
!(s_rxdesc[s_rxno][3] & MG_BIT(15))) { // skip partial/errored frames
|
|
uint32_t len = s_rxdesc[s_rxno][3] & (MG_BIT(15) - 1);
|
|
// MG_DEBUG(("%lx %lu %lx %08lx", s_rxno, len, s_rxdesc[s_rxno][3],
|
|
// ETH->DMACSR));
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp);
|
|
}
|
|
s_rxdesc[s_rxno][3] =
|
|
MG_BIT(31) | MG_BIT(30) | MG_BIT(24); // OWN, IOC, BUF1V
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
}
|
|
ETH->DMACSR =
|
|
MG_BIT(7) | MG_BIT(8); // Clear possible RBU RPS while processing
|
|
ETH->DMACRDTPR =
|
|
(uint32_t) (uintptr_t) &s_rxdesc[ETH_DESC_CNT - 1]; // and resume RX
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_stm32h = {
|
|
mg_tcpip_driver_stm32h_init, mg_tcpip_driver_stm32h_tx, NULL,
|
|
mg_tcpip_driver_stm32h_up};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/tm4c.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C
|
|
struct tm4c_emac {
|
|
volatile uint32_t EMACCFG, EMACFRAMEFLTR, EMACHASHTBLH, EMACHASHTBLL,
|
|
EMACMIIADDR, EMACMIIDATA, EMACFLOWCTL, EMACVLANTG, RESERVED0, EMACSTATUS,
|
|
EMACRWUFF, EMACPMTCTLSTAT, RESERVED1[2], EMACRIS, EMACIM, EMACADDR0H,
|
|
EMACADDR0L, EMACADDR1H, EMACADDR1L, EMACADDR2H, EMACADDR2L, EMACADDR3H,
|
|
EMACADDR3L, RESERVED2[31], EMACWDOGTO, RESERVED3[8], EMACMMCCTRL,
|
|
EMACMMCRXRIS, EMACMMCTXRIS, EMACMMCRXIM, EMACMMCTXIM, RESERVED4,
|
|
EMACTXCNTGB, RESERVED5[12], EMACTXCNTSCOL, EMACTXCNTMCOL, RESERVED6[4],
|
|
EMACTXOCTCNTG, RESERVED7[6], EMACRXCNTGB, RESERVED8[4], EMACRXCNTCRCERR,
|
|
EMACRXCNTALGNERR, RESERVED9[10], EMACRXCNTGUNI, RESERVED10[239],
|
|
EMACVLNINCREP, EMACVLANHASH, RESERVED11[93], EMACTIMSTCTRL, EMACSUBSECINC,
|
|
EMACTIMSEC, EMACTIMNANO, EMACTIMSECU, EMACTIMNANOU, EMACTIMADD,
|
|
EMACTARGSEC, EMACTARGNANO, EMACHWORDSEC, EMACTIMSTAT, EMACPPSCTRL,
|
|
RESERVED12[12], EMACPPS0INTVL, EMACPPS0WIDTH, RESERVED13[294],
|
|
EMACDMABUSMOD, EMACTXPOLLD, EMACRXPOLLD, EMACRXDLADDR, EMACTXDLADDR,
|
|
EMACDMARIS, EMACDMAOPMODE, EMACDMAIM, EMACMFBOC, EMACRXINTWDT,
|
|
RESERVED14[8], EMACHOSTXDESC, EMACHOSRXDESC, EMACHOSTXBA, EMACHOSRXBA,
|
|
RESERVED15[218], EMACPP, EMACPC, EMACCC, RESERVED16, EMACEPHYRIS,
|
|
EMACEPHYIM, EMACEPHYIMSC;
|
|
};
|
|
#undef EMAC
|
|
#define EMAC ((struct tm4c_emac *) (uintptr_t) 0x400EC000)
|
|
|
|
#define ETH_PKT_SIZE 1540 // Max frame size
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#define ETH_DS 4 // Descriptor size (words)
|
|
|
|
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
|
|
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
enum {
|
|
EPHY_ADDR = 0,
|
|
EPHYBMCR = 0,
|
|
EPHYBMSR = 1,
|
|
EPHYSTS = 16
|
|
}; // PHY constants
|
|
|
|
static inline void tm4cspin(volatile uint32_t count) {
|
|
while (count--) (void) 0;
|
|
}
|
|
|
|
static uint32_t emac_read_phy(uint8_t addr, uint8_t reg) {
|
|
EMAC->EMACMIIADDR &= (0xf << 2);
|
|
EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6);
|
|
EMAC->EMACMIIADDR |= MG_BIT(0);
|
|
while (EMAC->EMACMIIADDR & MG_BIT(0)) tm4cspin(1);
|
|
return EMAC->EMACMIIDATA;
|
|
}
|
|
|
|
static void emac_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
|
|
EMAC->EMACMIIDATA = val;
|
|
EMAC->EMACMIIADDR &= (0xf << 2);
|
|
EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | MG_BIT(1);
|
|
EMAC->EMACMIIADDR |= MG_BIT(0);
|
|
while (EMAC->EMACMIIADDR & MG_BIT(0)) tm4cspin(1);
|
|
}
|
|
|
|
static uint32_t get_sysclk(void) {
|
|
struct sysctl {
|
|
volatile uint32_t DONTCARE0[44], RSCLKCFG, DONTCARE1[43], PLLFREQ0,
|
|
PLLFREQ1;
|
|
} *sysctl = (struct sysctl *) 0x400FE000;
|
|
uint32_t clk = 0, piosc = 16000000 /* 16 MHz */, mosc = 25000000 /* 25MHz */;
|
|
if (sysctl->RSCLKCFG & (1 << 28)) { // USEPLL
|
|
uint32_t fin, vco, mdiv, n, q, psysdiv;
|
|
uint32_t pllsrc = (sysctl->RSCLKCFG & (0xf << 24)) >> 24;
|
|
if (pllsrc == 0) {
|
|
clk = piosc;
|
|
} else if (pllsrc == 3) {
|
|
clk = mosc;
|
|
} else {
|
|
MG_ERROR(("Unsupported clock source"));
|
|
}
|
|
q = (sysctl->PLLFREQ1 & (0x1f << 8)) >> 8;
|
|
n = (sysctl->PLLFREQ1 & (0x1f << 0)) >> 0;
|
|
fin = clk / ((q + 1) * (n + 1));
|
|
mdiv = (sysctl->PLLFREQ0 & (0x3ff << 0)) >>
|
|
0; // mint + (mfrac / 1024); MFRAC not supported
|
|
psysdiv = (sysctl->RSCLKCFG & (0x3f << 0)) >> 0;
|
|
vco = (uint32_t) ((uint64_t) fin * mdiv);
|
|
return vco / (psysdiv + 1);
|
|
}
|
|
uint32_t oscsrc = (sysctl->RSCLKCFG & (0xf << 20)) >> 20;
|
|
if (oscsrc == 0) {
|
|
clk = piosc;
|
|
} else if (oscsrc == 3) {
|
|
clk = mosc;
|
|
} else {
|
|
MG_ERROR(("Unsupported clock source"));
|
|
}
|
|
uint32_t osysdiv = (sysctl->RSCLKCFG & (0xf << 16)) >> 16;
|
|
return clk / (osysdiv + 1);
|
|
}
|
|
|
|
// Guess CR from SYSCLK. MDC clock is generated from SYSCLK (AHB); as per
|
|
// 802.3, it must not exceed 2.5MHz (also 20.4.2.6) As the AHB clock can be
|
|
// derived from the PIOSC (internal RC), and it can go above specs, the
|
|
// datasheets specify a range of frequencies and activate one of a series of
|
|
// dividers to keep the MDC clock safely below 2.5MHz. We guess a divider
|
|
// setting based on SYSCLK with a +5% drift. If the user uses a different clock
|
|
// from our defaults, needs to set the macros on top Valid for TM4C129x (20.7)
|
|
// (4.5% worst case drift)
|
|
// The PHY receives the main oscillator (MOSC) (20.3.1)
|
|
static int guess_mdc_cr(void) {
|
|
uint8_t crs[] = {2, 3, 0, 1}; // EMAC->MACMIIAR::CR values
|
|
uint8_t div[] = {16, 26, 42, 62}; // Respective HCLK dividers
|
|
uint32_t sysclk = get_sysclk(); // Guess system SYSCLK
|
|
int result = -1; // Invalid CR value
|
|
if (sysclk < 25000000) {
|
|
MG_ERROR(("SYSCLK too low"));
|
|
} else {
|
|
for (int i = 0; i < 4; i++) {
|
|
if (sysclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) {
|
|
result = crs[i];
|
|
break;
|
|
}
|
|
}
|
|
if (result < 0) MG_ERROR(("SYSCLK too high"));
|
|
}
|
|
MG_DEBUG(("SYSCLK: %u, CR: %d", sysclk, result));
|
|
return result;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_tm4c_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_tm4c_data *d =
|
|
(struct mg_tcpip_driver_tm4c_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
|
|
// Init RX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i][0] = MG_BIT(31); // Own
|
|
s_rxdesc[i][1] = sizeof(s_rxbuf[i]) | MG_BIT(14); // 2nd address chained
|
|
s_rxdesc[i][2] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer
|
|
s_rxdesc[i][3] =
|
|
(uint32_t) (uintptr_t) s_rxdesc[(i + 1) % ETH_DESC_CNT]; // Chain
|
|
// MG_DEBUG(("%d %p", i, s_rxdesc[i]));
|
|
}
|
|
|
|
// Init TX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_txdesc[i][2] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer
|
|
s_txdesc[i][3] =
|
|
(uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain
|
|
}
|
|
|
|
EMAC->EMACDMABUSMOD |= MG_BIT(0); // Software reset
|
|
while ((EMAC->EMACDMABUSMOD & MG_BIT(0)) != 0) tm4cspin(1); // Wait until done
|
|
|
|
// Set MDC clock divider. If user told us the value, use it. Otherwise, guess
|
|
int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr;
|
|
EMAC->EMACMIIADDR = ((uint32_t) cr & 0xf) << 2;
|
|
|
|
// NOTE(cpq): we do not use extended descriptor bit 7, and do not use
|
|
// hardware checksum. Therefore, descriptor size is 4, not 8
|
|
// EMAC->EMACDMABUSMOD = MG_BIT(13) | MG_BIT(16) | MG_BIT(22) | MG_BIT(23) | MG_BIT(25);
|
|
EMAC->EMACIM = MG_BIT(3) | MG_BIT(9); // Mask timestamp & PMT IT
|
|
EMAC->EMACFLOWCTL = MG_BIT(7); // Disable zero-quanta pause
|
|
// EMAC->EMACFRAMEFLTR = MG_BIT(31); // Receive all
|
|
// EMAC->EMACPC defaults to internal PHY (EPHY) in MMI mode
|
|
emac_write_phy(EPHY_ADDR, EPHYBMCR, MG_BIT(15)); // Reset internal PHY (EPHY)
|
|
emac_write_phy(EPHY_ADDR, EPHYBMCR, MG_BIT(12)); // Set autonegotiation
|
|
EMAC->EMACRXDLADDR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors
|
|
EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // TX descriptors
|
|
EMAC->EMACDMAIM = MG_BIT(6) | MG_BIT(16); // RIE, NIE
|
|
EMAC->EMACCFG = MG_BIT(2) | MG_BIT(3) | MG_BIT(11) | MG_BIT(14); // RE, TE, Duplex, Fast
|
|
EMAC->EMACDMAOPMODE =
|
|
MG_BIT(1) | MG_BIT(13) | MG_BIT(21) | MG_BIT(25); // SR, ST, TSF, RSF
|
|
EMAC->EMACADDR0H = ((uint32_t) ifp->mac[5] << 8U) | ifp->mac[4];
|
|
EMAC->EMACADDR0L = (uint32_t) (ifp->mac[3] << 24) |
|
|
((uint32_t) ifp->mac[2] << 16) |
|
|
((uint32_t) ifp->mac[1] << 8) | ifp->mac[0];
|
|
// NOTE(scaprile) There are 3 additional slots for filtering, disabled by
|
|
// default. This also applies to the STM32 driver (at least for F7)
|
|
return true;
|
|
}
|
|
|
|
static uint32_t s_txno;
|
|
static size_t mg_tcpip_driver_tm4c_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
if (len > sizeof(s_txbuf[s_txno])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = 0; // fail
|
|
} else if ((s_txdesc[s_txno][0] & MG_BIT(31))) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No descriptors available"));
|
|
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long)
|
|
// EMAC->EMACDMARIS);
|
|
len = 0; // fail
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len); // Copy data
|
|
s_txdesc[s_txno][1] = (uint32_t) len; // Set data len
|
|
s_txdesc[s_txno][0] =
|
|
MG_BIT(20) | MG_BIT(28) | MG_BIT(29) | MG_BIT(30); // Chain,FS,LS,IC
|
|
s_txdesc[s_txno][0] |= MG_BIT(31); // Set OWN bit - let DMA take over
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
EMAC->EMACDMARIS = MG_BIT(2) | MG_BIT(5); // Clear any prior TU/UNF
|
|
EMAC->EMACTXPOLLD = 0; // and resume
|
|
return len;
|
|
(void) ifp;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_tm4c_up(struct mg_tcpip_if *ifp) {
|
|
uint32_t bmsr = emac_read_phy(EPHY_ADDR, EPHYBMSR);
|
|
bool up = (bmsr & MG_BIT(2)) ? 1 : 0;
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
uint32_t sts = emac_read_phy(EPHY_ADDR, EPHYSTS);
|
|
// tmp = reg with flags set to the most likely situation: 100M full-duplex
|
|
// if(link is slow or half) set flags otherwise
|
|
// reg = tmp
|
|
uint32_t emaccfg = EMAC->EMACCFG | MG_BIT(14) | MG_BIT(11); // 100M, Full-duplex
|
|
if (sts & MG_BIT(1)) emaccfg &= ~MG_BIT(14); // 10M
|
|
if ((sts & MG_BIT(2)) == 0) emaccfg &= ~MG_BIT(11); // Half-duplex
|
|
EMAC->EMACCFG = emaccfg; // IRQ handler does not fiddle with this register
|
|
MG_DEBUG(("Link is %uM %s-duplex", emaccfg & MG_BIT(14) ? 100 : 10,
|
|
emaccfg & MG_BIT(11) ? "full" : "half"));
|
|
}
|
|
return up;
|
|
}
|
|
|
|
void EMAC0_IRQHandler(void);
|
|
static uint32_t s_rxno;
|
|
void EMAC0_IRQHandler(void) {
|
|
if (EMAC->EMACDMARIS & MG_BIT(6)) { // Frame received, loop
|
|
EMAC->EMACDMARIS = MG_BIT(16) | MG_BIT(6); // Clear flag
|
|
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
|
|
if (s_rxdesc[s_rxno][0] & MG_BIT(31)) break; // exit when done
|
|
if (((s_rxdesc[s_rxno][0] & (MG_BIT(8) | MG_BIT(9))) == (MG_BIT(8) | MG_BIT(9))) &&
|
|
!(s_rxdesc[s_rxno][0] & MG_BIT(15))) { // skip partial/errored frames
|
|
uint32_t len = ((s_rxdesc[s_rxno][0] >> 16) & (MG_BIT(14) - 1));
|
|
// printf("%lx %lu %lx %.8lx\n", s_rxno, len, s_rxdesc[s_rxno][0],
|
|
// EMAC->EMACDMARIS);
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp);
|
|
}
|
|
s_rxdesc[s_rxno][0] = MG_BIT(31);
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
}
|
|
EMAC->EMACDMARIS = MG_BIT(7); // Clear possible RU while processing
|
|
EMAC->EMACRXPOLLD = 0; // and resume RX
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_tm4c = {mg_tcpip_driver_tm4c_init,
|
|
mg_tcpip_driver_tm4c_tx, NULL,
|
|
mg_tcpip_driver_tm4c_up};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/w5500.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_W5500) && MG_ENABLE_DRIVER_W5500
|
|
|
|
enum { W5500_CR = 0, W5500_S0 = 1, W5500_TX0 = 2, W5500_RX0 = 3 };
|
|
|
|
static void w5500_txn(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr,
|
|
bool wr, void *buf, size_t len) {
|
|
size_t i;
|
|
uint8_t *p = (uint8_t *) buf;
|
|
uint8_t cmd[] = {(uint8_t) (addr >> 8), (uint8_t) (addr & 255),
|
|
(uint8_t) ((block << 3) | (wr ? 4 : 0))};
|
|
s->begin(s->spi);
|
|
for (i = 0; i < sizeof(cmd); i++) s->txn(s->spi, cmd[i]);
|
|
for (i = 0; i < len; i++) {
|
|
uint8_t r = s->txn(s->spi, p[i]);
|
|
if (!wr) p[i] = r;
|
|
}
|
|
s->end(s->spi);
|
|
}
|
|
|
|
// clang-format off
|
|
static void w5500_wn(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, void *buf, size_t len) { w5500_txn(s, block, addr, true, buf, len); }
|
|
static void w5500_w1(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, uint8_t val) { w5500_wn(s, block, addr, &val, 1); }
|
|
static void w5500_w2(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, uint16_t val) { uint8_t buf[2] = {(uint8_t) (val >> 8), (uint8_t) (val & 255)}; w5500_wn(s, block, addr, buf, sizeof(buf)); }
|
|
static void w5500_rn(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr, void *buf, size_t len) { w5500_txn(s, block, addr, false, buf, len); }
|
|
static uint8_t w5500_r1(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr) { uint8_t r = 0; w5500_rn(s, block, addr, &r, 1); return r; }
|
|
static uint16_t w5500_r2(struct mg_tcpip_spi *s, uint8_t block, uint16_t addr) { uint8_t buf[2] = {0, 0}; w5500_rn(s, block, addr, buf, sizeof(buf)); return (uint16_t) ((buf[0] << 8) | buf[1]); }
|
|
// clang-format on
|
|
|
|
static size_t w5500_rx(void *buf, size_t buflen, struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_spi *s = (struct mg_tcpip_spi *) ifp->driver_data;
|
|
uint16_t r = 0, n = 0, len = (uint16_t) buflen, n2; // Read recv len
|
|
while ((n2 = w5500_r2(s, W5500_S0, 0x26)) > n) n = n2; // Until it is stable
|
|
// printf("RSR: %d\n", (int) n);
|
|
if (n > 0) {
|
|
uint16_t ptr = w5500_r2(s, W5500_S0, 0x28); // Get read pointer
|
|
n = w5500_r2(s, W5500_RX0, ptr); // Read frame length
|
|
if (n <= len + 2 && n > 1) {
|
|
r = (uint16_t) (n - 2);
|
|
w5500_rn(s, W5500_RX0, (uint16_t) (ptr + 2), buf, r);
|
|
}
|
|
w5500_w2(s, W5500_S0, 0x28, (uint16_t) (ptr + n)); // Advance read pointer
|
|
w5500_w1(s, W5500_S0, 1, 0x40); // Sock0 CR -> RECV
|
|
// printf(" RX_RD: tot=%u n=%u r=%u\n", n2, n, r);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static size_t w5500_tx(const void *buf, size_t buflen,
|
|
struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_spi *s = (struct mg_tcpip_spi *) ifp->driver_data;
|
|
uint16_t i, ptr, n = 0, len = (uint16_t) buflen;
|
|
while (n < len) n = w5500_r2(s, W5500_S0, 0x20); // Wait for space
|
|
ptr = w5500_r2(s, W5500_S0, 0x24); // Get write pointer
|
|
w5500_wn(s, W5500_TX0, ptr, (void *) buf, len); // Write data
|
|
w5500_w2(s, W5500_S0, 0x24, (uint16_t) (ptr + len)); // Advance write pointer
|
|
w5500_w1(s, W5500_S0, 1, 0x20); // Sock0 CR -> SEND
|
|
for (i = 0; i < 40; i++) {
|
|
uint8_t ir = w5500_r1(s, W5500_S0, 2); // Read S0 IR
|
|
if (ir == 0) continue;
|
|
// printf("IR %d, len=%d, free=%d, ptr %d\n", ir, (int) len, (int) n, ptr);
|
|
w5500_w1(s, W5500_S0, 2, ir); // Write S0 IR: clear it!
|
|
if (ir & 8) len = 0; // Timeout. Report error
|
|
if (ir & (16 | 8)) break; // Stop on SEND_OK or timeout
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static bool w5500_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_spi *s = (struct mg_tcpip_spi *) ifp->driver_data;
|
|
s->end(s->spi);
|
|
w5500_w1(s, W5500_CR, 0, 0x80); // Reset chip: CR -> 0x80
|
|
w5500_w1(s, W5500_CR, 0x2e, 0); // CR PHYCFGR -> reset
|
|
w5500_w1(s, W5500_CR, 0x2e, 0xf8); // CR PHYCFGR -> set
|
|
// w5500_wn(s, W5500_CR, 9, s->mac, 6); // Set source MAC
|
|
w5500_w1(s, W5500_S0, 0x1e, 16); // Sock0 RX buf size
|
|
w5500_w1(s, W5500_S0, 0x1f, 16); // Sock0 TX buf size
|
|
w5500_w1(s, W5500_S0, 0, 4); // Sock0 MR -> MACRAW
|
|
w5500_w1(s, W5500_S0, 1, 1); // Sock0 CR -> OPEN
|
|
return w5500_r1(s, W5500_S0, 3) == 0x42; // Sock0 SR == MACRAW
|
|
}
|
|
|
|
static bool w5500_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_spi *spi = (struct mg_tcpip_spi *) ifp->driver_data;
|
|
uint8_t phycfgr = w5500_r1(spi, W5500_CR, 0x2e);
|
|
return phycfgr & 1; // Bit 0 of PHYCFGR is LNK (0 - down, 1 - up)
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_w5500 = {w5500_init, w5500_tx, w5500_rx,
|
|
w5500_up};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/xmc.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_XMC) && MG_ENABLE_DRIVER_XMC
|
|
|
|
struct ETH_GLOBAL_TypeDef {
|
|
volatile uint32_t MAC_CONFIGURATION, MAC_FRAME_FILTER, HASH_TABLE_HIGH,
|
|
HASH_TABLE_LOW, GMII_ADDRESS, GMII_DATA, FLOW_CONTROL, VLAN_TAG, VERSION,
|
|
DEBUG, REMOTE_WAKE_UP_FRAME_FILTER, PMT_CONTROL_STATUS, RESERVED[2],
|
|
INTERRUPT_STATUS, INTERRUPT_MASK, MAC_ADDRESS0_HIGH, MAC_ADDRESS0_LOW,
|
|
MAC_ADDRESS1_HIGH, MAC_ADDRESS1_LOW, MAC_ADDRESS2_HIGH, MAC_ADDRESS2_LOW,
|
|
MAC_ADDRESS3_HIGH, MAC_ADDRESS3_LOW, RESERVED1[40], MMC_CONTROL,
|
|
MMC_RECEIVE_INTERRUPT, MMC_TRANSMIT_INTERRUPT, MMC_RECEIVE_INTERRUPT_MASK,
|
|
MMC_TRANSMIT_INTERRUPT_MASK, TX_STATISTICS[26], RESERVED2,
|
|
RX_STATISTICS_1[26], RESERVED3[6], MMC_IPC_RECEIVE_INTERRUPT_MASK,
|
|
RESERVED4, MMC_IPC_RECEIVE_INTERRUPT, RESERVED5, RX_STATISTICS_2[30],
|
|
RESERVED7[286], TIMESTAMP_CONTROL, SUB_SECOND_INCREMENT,
|
|
SYSTEM_TIME_SECONDS, SYSTEM_TIME_NANOSECONDS,
|
|
SYSTEM_TIME_SECONDS_UPDATE, SYSTEM_TIME_NANOSECONDS_UPDATE,
|
|
TIMESTAMP_ADDEND, TARGET_TIME_SECONDS, TARGET_TIME_NANOSECONDS,
|
|
SYSTEM_TIME_HIGHER_WORD_SECONDS, TIMESTAMP_STATUS,
|
|
PPS_CONTROL, RESERVED8[564], BUS_MODE, TRANSMIT_POLL_DEMAND,
|
|
RECEIVE_POLL_DEMAND, RECEIVE_DESCRIPTOR_LIST_ADDRESS,
|
|
TRANSMIT_DESCRIPTOR_LIST_ADDRESS, STATUS, OPERATION_MODE,
|
|
INTERRUPT_ENABLE, MISSED_FRAME_AND_BUFFER_OVERFLOW_COUNTER,
|
|
RECEIVE_INTERRUPT_WATCHDOG_TIMER, RESERVED9, AHB_STATUS,
|
|
RESERVED10[6], CURRENT_HOST_TRANSMIT_DESCRIPTOR,
|
|
CURRENT_HOST_RECEIVE_DESCRIPTOR, CURRENT_HOST_TRANSMIT_BUFFER_ADDRESS,
|
|
CURRENT_HOST_RECEIVE_BUFFER_ADDRESS, HW_FEATURE;
|
|
};
|
|
|
|
#undef ETH0
|
|
#define ETH0 ((struct ETH_GLOBAL_TypeDef*) 0x5000C000UL)
|
|
|
|
#define ETH_PKT_SIZE 1536 // Max frame size
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#define ETH_DS 4 // Descriptor size (words)
|
|
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
|
|
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
|
|
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
|
|
static uint8_t s_txno; // Current TX descriptor
|
|
static uint8_t s_rxno; // Current RX descriptor
|
|
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
enum { MG_PHY_ADDR = 0, MG_PHYREG_BCR = 0, MG_PHYREG_BSR = 1 };
|
|
|
|
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
|
|
ETH0->GMII_ADDRESS = (ETH0->GMII_ADDRESS & 0x3c) |
|
|
((uint32_t)addr << 11) |
|
|
((uint32_t)reg << 6) | 1;
|
|
while ((ETH0->GMII_ADDRESS & 1) != 0) (void) 0;
|
|
return (uint16_t)(ETH0->GMII_DATA & 0xffff);
|
|
}
|
|
|
|
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
ETH0->GMII_DATA = val;
|
|
ETH0->GMII_ADDRESS = (ETH0->GMII_ADDRESS & 0x3c) |
|
|
((uint32_t)addr << 11) |
|
|
((uint32_t)reg << 6) | 3;
|
|
while ((ETH0->GMII_ADDRESS & 1) != 0) (void) 0;
|
|
}
|
|
|
|
static uint32_t get_clock_rate(struct mg_tcpip_driver_xmc_data *d) {
|
|
if (d->mdc_cr == -1) {
|
|
// assume ETH clock is 60MHz by default
|
|
// then according to 13.2.8.1, we need to set value 3
|
|
return 3;
|
|
}
|
|
|
|
return d->mdc_cr;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_xmc_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_xmc_data *d =
|
|
(struct mg_tcpip_driver_xmc_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
|
|
// reset MAC
|
|
ETH0->BUS_MODE |= 1;
|
|
while (ETH0->BUS_MODE & 1) (void) 0;
|
|
|
|
// set clock rate
|
|
ETH0->GMII_ADDRESS = get_clock_rate(d) << 2;
|
|
|
|
// init phy
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
mg_phy_init(&phy, d->phy_addr, MG_PHY_CLOCKS_MAC);
|
|
|
|
// configure MAC: DO, DM, FES, TC
|
|
ETH0->MAC_CONFIGURATION = MG_BIT(13) | MG_BIT(11) | MG_BIT(14) | MG_BIT(24);
|
|
|
|
// set the MAC address
|
|
ETH0->MAC_ADDRESS0_HIGH = MG_U32(0, 0, ifp->mac[5], ifp->mac[4]);
|
|
ETH0->MAC_ADDRESS0_LOW =
|
|
MG_U32(ifp->mac[3], ifp->mac[2], ifp->mac[1], ifp->mac[0]);
|
|
|
|
// Configure the receive filter
|
|
ETH0->MAC_FRAME_FILTER = MG_BIT(10) | MG_BIT(2); // HFP, HMC
|
|
// Disable flow control
|
|
ETH0->FLOW_CONTROL = 0;
|
|
// Enable store and forward mode
|
|
ETH0->OPERATION_MODE = MG_BIT(25) | MG_BIT(21); // RSF, TSF
|
|
|
|
// Configure DMA bus mode (AAL, USP, RPBL, PBL)
|
|
ETH0->BUS_MODE = MG_BIT(25) | MG_BIT(23) | (32 << 17) | (32 << 8);
|
|
|
|
// init RX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i][0] = MG_BIT(31); // OWN descriptor
|
|
s_rxdesc[i][1] = MG_BIT(14) | ETH_PKT_SIZE;
|
|
s_rxdesc[i][2] = (uint32_t) s_rxbuf[i];
|
|
if (i == ETH_DESC_CNT - 1) {
|
|
s_rxdesc[i][3] = (uint32_t) &s_rxdesc[0][0];
|
|
} else {
|
|
s_rxdesc[i][3] = (uint32_t) &s_rxdesc[i + 1][0];
|
|
}
|
|
}
|
|
ETH0->RECEIVE_DESCRIPTOR_LIST_ADDRESS = (uint32_t) &s_rxdesc[0][0];
|
|
|
|
// init TX descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_txdesc[i][0] = MG_BIT(30) | MG_BIT(20);
|
|
s_txdesc[i][2] = (uint32_t) s_txbuf[i];
|
|
if (i == ETH_DESC_CNT - 1) {
|
|
s_txdesc[i][3] = (uint32_t) &s_txdesc[0][0];
|
|
} else {
|
|
s_txdesc[i][3] = (uint32_t) &s_txdesc[i + 1][0];
|
|
}
|
|
}
|
|
ETH0->TRANSMIT_DESCRIPTOR_LIST_ADDRESS = (uint32_t) &s_txdesc[0][0];
|
|
|
|
// Clear interrupts
|
|
ETH0->STATUS = 0xFFFFFFFF;
|
|
|
|
// Disable MAC interrupts
|
|
ETH0->MMC_TRANSMIT_INTERRUPT_MASK = 0xFFFFFFFF;
|
|
ETH0->MMC_RECEIVE_INTERRUPT_MASK = 0xFFFFFFFF;
|
|
ETH0->MMC_IPC_RECEIVE_INTERRUPT_MASK = 0xFFFFFFFF;
|
|
ETH0->INTERRUPT_MASK = MG_BIT(9) | MG_BIT(3); // TSIM, PMTIM
|
|
|
|
//Enable interrupts (NIE, RIE, TIE)
|
|
ETH0->INTERRUPT_ENABLE = MG_BIT(16) | MG_BIT(6) | MG_BIT(0);
|
|
|
|
// Enable MAC transmission and reception (TE, RE)
|
|
ETH0->MAC_CONFIGURATION |= MG_BIT(3) | MG_BIT(2);
|
|
// Enable DMA transmission and reception (ST, SR)
|
|
ETH0->OPERATION_MODE |= MG_BIT(13) | MG_BIT(1);
|
|
return true;
|
|
}
|
|
|
|
static size_t mg_tcpip_driver_xmc_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
if (len > sizeof(s_txbuf[s_txno])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = 0; // Frame is too big
|
|
} else if ((s_txdesc[s_txno][0] & MG_BIT(31))) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No free descriptors"));
|
|
len = 0; // All descriptors are busy, fail
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len);
|
|
s_txdesc[s_txno][1] = len;
|
|
// Table 13-19 Transmit Descriptor Word 0 (IC, LS, FS, TCH)
|
|
s_txdesc[s_txno][0] = MG_BIT(30) | MG_BIT(29) | MG_BIT(28) | MG_BIT(20);
|
|
s_txdesc[s_txno][0] |= MG_BIT(31); // OWN bit: handle control to DMA
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
|
|
// Resume processing
|
|
ETH0->STATUS = MG_BIT(2); // clear Transmit unavailable
|
|
ETH0->TRANSMIT_POLL_DEMAND = 0;
|
|
return len;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_xmc_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_xmc_data *d =
|
|
(struct mg_tcpip_driver_xmc_data *) ifp->driver_data;
|
|
uint8_t speed = MG_PHY_SPEED_10M;
|
|
bool up = false, full_duplex = false;
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
up = mg_phy_up(&phy, d->phy_addr, &full_duplex, &speed);
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
MG_DEBUG(("Link is %uM %s-duplex", speed == MG_PHY_SPEED_10M ? 10 : 100,
|
|
full_duplex ? "full" : "half"));
|
|
}
|
|
return up;
|
|
}
|
|
|
|
void ETH0_IRQHandler(void);
|
|
void ETH0_IRQHandler(void) {
|
|
uint32_t irq_status = ETH0->STATUS;
|
|
|
|
// check if a frame was received
|
|
if (irq_status & MG_BIT(6)) {
|
|
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
|
|
if ((s_rxdesc[s_rxno][0] & MG_BIT(31)) == 0) {
|
|
size_t len = (s_rxdesc[s_rxno][0] & 0x3fff0000) >> 16;
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
|
|
s_rxdesc[s_rxno][0] = MG_BIT(31); // OWN bit: handle control to DMA
|
|
// Resume processing
|
|
ETH0->STATUS = MG_BIT(7) | MG_BIT(6); // clear RU and RI
|
|
ETH0->RECEIVE_POLL_DEMAND = 0;
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
}
|
|
ETH0->STATUS = MG_BIT(6);
|
|
}
|
|
|
|
// clear Successful transmission interrupt
|
|
if (irq_status & 1) {
|
|
ETH0->STATUS = 1;
|
|
}
|
|
|
|
// clear normal interrupt
|
|
if (irq_status & MG_BIT(16)) {
|
|
ETH0->STATUS = MG_BIT(16);
|
|
}
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_xmc = {
|
|
mg_tcpip_driver_xmc_init, mg_tcpip_driver_xmc_tx, NULL,
|
|
mg_tcpip_driver_xmc_up};
|
|
#endif
|
|
|
|
#ifdef MG_ENABLE_LINES
|
|
#line 1 "src/drivers/xmc7.c"
|
|
#endif
|
|
|
|
|
|
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_XMC7) && MG_ENABLE_DRIVER_XMC7
|
|
|
|
struct ETH_Type {
|
|
volatile uint32_t CTL, STATUS, RESERVED[1022], NETWORK_CONTROL,
|
|
NETWORK_CONFIG, NETWORK_STATUS, USER_IO_REGISTER, DMA_CONFIG,
|
|
TRANSMIT_STATUS, RECEIVE_Q_PTR, TRANSMIT_Q_PTR, RECEIVE_STATUS,
|
|
INT_STATUS, INT_ENABLE, INT_DISABLE, INT_MASK, PHY_MANAGEMENT, PAUSE_TIME,
|
|
TX_PAUSE_QUANTUM, PBUF_TXCUTTHRU, PBUF_RXCUTTHRU, JUMBO_MAX_LENGTH,
|
|
EXTERNAL_FIFO_INTERFACE, RESERVED1, AXI_MAX_PIPELINE, RSC_CONTROL,
|
|
INT_MODERATION, SYS_WAKE_TIME, RESERVED2[7], HASH_BOTTOM, HASH_TOP,
|
|
SPEC_ADD1_BOTTOM, SPEC_ADD1_TOP, SPEC_ADD2_BOTTOM, SPEC_ADD2_TOP,
|
|
SPEC_ADD3_BOTTOM, SPEC_ADD3_TOP, SPEC_ADD4_BOTTOM, SPEC_ADD4_TOP,
|
|
SPEC_TYPE1, SPEC_TYPE2, SPEC_TYPE3, SPEC_TYPE4, WOL_REGISTER,
|
|
STRETCH_RATIO, STACKED_VLAN, TX_PFC_PAUSE, MASK_ADD1_BOTTOM,
|
|
MASK_ADD1_TOP, DMA_ADDR_OR_MASK, RX_PTP_UNICAST, TX_PTP_UNICAST,
|
|
TSU_NSEC_CMP, TSU_SEC_CMP, TSU_MSB_SEC_CMP, TSU_PTP_TX_MSB_SEC,
|
|
TSU_PTP_RX_MSB_SEC, TSU_PEER_TX_MSB_SEC, TSU_PEER_RX_MSB_SEC,
|
|
DPRAM_FILL_DBG, REVISION_REG, OCTETS_TXED_BOTTOM, OCTETS_TXED_TOP,
|
|
FRAMES_TXED_OK, BROADCAST_TXED, MULTICAST_TXED, PAUSE_FRAMES_TXED,
|
|
FRAMES_TXED_64, FRAMES_TXED_65, FRAMES_TXED_128, FRAMES_TXED_256,
|
|
FRAMES_TXED_512, FRAMES_TXED_1024, FRAMES_TXED_1519, TX_UNDERRUNS,
|
|
SINGLE_COLLISIONS, MULTIPLE_COLLISIONS, EXCESSIVE_COLLISIONS,
|
|
LATE_COLLISIONS, DEFERRED_FRAMES, CRS_ERRORS, OCTETS_RXED_BOTTOM,
|
|
OCTETS_RXED_TOP, FRAMES_RXED_OK, BROADCAST_RXED, MULTICAST_RXED,
|
|
PAUSE_FRAMES_RXED, FRAMES_RXED_64, FRAMES_RXED_65, FRAMES_RXED_128,
|
|
FRAMES_RXED_256, FRAMES_RXED_512, FRAMES_RXED_1024, FRAMES_RXED_1519,
|
|
UNDERSIZE_FRAMES, EXCESSIVE_RX_LENGTH, RX_JABBERS, FCS_ERRORS,
|
|
RX_LENGTH_ERRORS, RX_SYMBOL_ERRORS, ALIGNMENT_ERRORS, RX_RESOURCE_ERRORS,
|
|
RX_OVERRUNS, RX_IP_CK_ERRORS, RX_TCP_CK_ERRORS, RX_UDP_CK_ERRORS,
|
|
AUTO_FLUSHED_PKTS, RESERVED3, TSU_TIMER_INCR_SUB_NSEC, TSU_TIMER_MSB_SEC,
|
|
TSU_STROBE_MSB_SEC, TSU_STROBE_SEC, TSU_STROBE_NSEC, TSU_TIMER_SEC,
|
|
TSU_TIMER_NSEC, TSU_TIMER_ADJUST, TSU_TIMER_INCR, TSU_PTP_TX_SEC,
|
|
TSU_PTP_TX_NSEC, TSU_PTP_RX_SEC, TSU_PTP_RX_NSEC, TSU_PEER_TX_SEC,
|
|
TSU_PEER_TX_NSEC, TSU_PEER_RX_SEC, TSU_PEER_RX_NSEC, PCS_CONTROL,
|
|
PCS_STATUS, RESERVED4[2], PCS_AN_ADV, PCS_AN_LP_BASE, PCS_AN_EXP,
|
|
PCS_AN_NP_TX, PCS_AN_LP_NP, RESERVED5[6], PCS_AN_EXT_STATUS, RESERVED6[8],
|
|
TX_PAUSE_QUANTUM1, TX_PAUSE_QUANTUM2, TX_PAUSE_QUANTUM3, RESERVED7,
|
|
RX_LPI, RX_LPI_TIME, TX_LPI, TX_LPI_TIME, DESIGNCFG_DEBUG1,
|
|
DESIGNCFG_DEBUG2, DESIGNCFG_DEBUG3, DESIGNCFG_DEBUG4, DESIGNCFG_DEBUG5,
|
|
DESIGNCFG_DEBUG6, DESIGNCFG_DEBUG7, DESIGNCFG_DEBUG8, DESIGNCFG_DEBUG9,
|
|
DESIGNCFG_DEBUG10, RESERVED8[22], SPEC_ADD5_BOTTOM, SPEC_ADD5_TOP,
|
|
RESERVED9[60], SPEC_ADD36_BOTTOM, SPEC_ADD36_TOP, INT_Q1_STATUS,
|
|
INT_Q2_STATUS, INT_Q3_STATUS, RESERVED10[11], INT_Q15_STATUS, RESERVED11,
|
|
TRANSMIT_Q1_PTR, TRANSMIT_Q2_PTR, TRANSMIT_Q3_PTR, RESERVED12[11],
|
|
TRANSMIT_Q15_PTR, RESERVED13, RECEIVE_Q1_PTR, RECEIVE_Q2_PTR,
|
|
RECEIVE_Q3_PTR, RESERVED14[3], RECEIVE_Q7_PTR, RESERVED15,
|
|
DMA_RXBUF_SIZE_Q1, DMA_RXBUF_SIZE_Q2, DMA_RXBUF_SIZE_Q3, RESERVED16[3],
|
|
DMA_RXBUF_SIZE_Q7, CBS_CONTROL, CBS_IDLESLOPE_Q_A, CBS_IDLESLOPE_Q_B,
|
|
UPPER_TX_Q_BASE_ADDR, TX_BD_CONTROL, RX_BD_CONTROL, UPPER_RX_Q_BASE_ADDR,
|
|
RESERVED17[2], HIDDEN_REG0, HIDDEN_REG1, HIDDEN_REG2, HIDDEN_REG3,
|
|
RESERVED18[2], HIDDEN_REG4, HIDDEN_REG5;
|
|
};
|
|
|
|
#define ETH0 ((struct ETH_Type *) 0x40490000)
|
|
|
|
#define ETH_PKT_SIZE 1536 // Max frame size
|
|
#define ETH_DESC_CNT 4 // Descriptors count
|
|
#define ETH_DS 2 // Descriptor size (words)
|
|
|
|
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
|
|
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
|
|
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
|
|
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
|
|
static uint8_t s_txno; // Current TX descriptor
|
|
static uint8_t s_rxno; // Current RX descriptor
|
|
|
|
static struct mg_tcpip_if *s_ifp; // MIP interface
|
|
enum { MG_PHY_ADDR = 0, MG_PHYREG_BCR = 0, MG_PHYREG_BSR = 1 };
|
|
|
|
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
|
|
// WRITE1, READ OPERATION, PHY, REG, WRITE10
|
|
ETH0->PHY_MANAGEMENT = MG_BIT(30) | MG_BIT(29) | ((addr & 0xf) << 24) |
|
|
((reg & 0x1f) << 18) | MG_BIT(17);
|
|
while ((ETH0->NETWORK_STATUS & MG_BIT(2)) == 0) (void) 0;
|
|
return ETH0->PHY_MANAGEMENT & 0xffff;
|
|
}
|
|
|
|
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
|
|
ETH0->PHY_MANAGEMENT = MG_BIT(30) | MG_BIT(28) | ((addr & 0xf) << 24) |
|
|
((reg & 0x1f) << 18) | MG_BIT(17) | val;
|
|
while ((ETH0->NETWORK_STATUS & MG_BIT(2)) == 0) (void) 0;
|
|
}
|
|
|
|
static uint32_t get_clock_rate(struct mg_tcpip_driver_xmc7_data *d) {
|
|
// see ETH0 -> NETWORK_CONFIG register
|
|
(void) d;
|
|
return 3;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_xmc7_init(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_xmc7_data *d =
|
|
(struct mg_tcpip_driver_xmc7_data *) ifp->driver_data;
|
|
s_ifp = ifp;
|
|
|
|
// enable controller, set RGMII mode
|
|
ETH0->CTL = MG_BIT(31) | 2;
|
|
|
|
uint32_t cr = get_clock_rate(d);
|
|
// set NSP change, ignore RX FCS, data bus width, clock rate
|
|
// frame length 1536, full duplex, speed
|
|
ETH0->NETWORK_CONFIG = MG_BIT(29) | MG_BIT(26) | MG_BIT(21) |
|
|
((cr & 7) << 18) | MG_BIT(8) | MG_BIT(4) |
|
|
MG_BIT(1) | MG_BIT(0);
|
|
|
|
// config DMA settings: Force TX burst, Discard on Error, set RX buffer size
|
|
// to 1536, TX_PBUF_SIZE, RX_PBUF_SIZE, AMBA_BURST_LENGTH
|
|
ETH0->DMA_CONFIG =
|
|
MG_BIT(26) | MG_BIT(24) | (0x18 << 16) | MG_BIT(10) | (3 << 8) | 4;
|
|
|
|
// initialize descriptors
|
|
for (int i = 0; i < ETH_DESC_CNT; i++) {
|
|
s_rxdesc[i][0] = (uint32_t) s_rxbuf[i];
|
|
if (i == ETH_DESC_CNT - 1) {
|
|
s_rxdesc[i][0] |= MG_BIT(1); // mark last descriptor
|
|
}
|
|
|
|
s_txdesc[i][0] = (uint32_t) s_txbuf[i];
|
|
s_txdesc[i][1] = MG_BIT(31); // OWN descriptor
|
|
if (i == ETH_DESC_CNT - 1) {
|
|
s_txdesc[i][1] |= MG_BIT(30); // mark last descriptor
|
|
}
|
|
}
|
|
ETH0->RECEIVE_Q_PTR = (uint32_t) s_rxdesc;
|
|
ETH0->TRANSMIT_Q_PTR = (uint32_t) s_txdesc;
|
|
|
|
// disable other queues
|
|
ETH0->TRANSMIT_Q2_PTR = 1;
|
|
ETH0->TRANSMIT_Q1_PTR = 1;
|
|
ETH0->RECEIVE_Q2_PTR = 1;
|
|
ETH0->RECEIVE_Q1_PTR = 1;
|
|
|
|
// enable interrupts (TX and RX complete)
|
|
ETH0->INT_ENABLE = MG_BIT(7) | MG_BIT(1);
|
|
|
|
// set MAC address
|
|
ETH0->SPEC_ADD1_BOTTOM =
|
|
ifp->mac[3] << 24 | ifp->mac[2] << 16 | ifp->mac[1] << 8 | ifp->mac[0];
|
|
ETH0->SPEC_ADD1_TOP = ifp->mac[5] << 8 | ifp->mac[4];
|
|
|
|
// enable MDIO, TX, RX
|
|
ETH0->NETWORK_CONTROL = MG_BIT(4) | MG_BIT(3) | MG_BIT(2);
|
|
|
|
// start transmission
|
|
ETH0->NETWORK_CONTROL |= MG_BIT(9);
|
|
|
|
// init phy
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
mg_phy_init(&phy, d->phy_addr, MG_PHY_CLOCKS_MAC);
|
|
|
|
(void) d;
|
|
return true;
|
|
}
|
|
|
|
static size_t mg_tcpip_driver_xmc7_tx(const void *buf, size_t len,
|
|
struct mg_tcpip_if *ifp) {
|
|
if (len > sizeof(s_txbuf[s_txno])) {
|
|
MG_ERROR(("Frame too big, %ld", (long) len));
|
|
len = 0; // Frame is too big
|
|
} else if (((s_txdesc[s_txno][1] & MG_BIT(31)) == 0)) {
|
|
ifp->nerr++;
|
|
MG_ERROR(("No free descriptors"));
|
|
len = 0; // All descriptors are busy, fail
|
|
} else {
|
|
memcpy(s_txbuf[s_txno], buf, len);
|
|
s_txdesc[s_txno][1] = (s_txno == ETH_DESC_CNT - 1 ? MG_BIT(30) : 0) |
|
|
MG_BIT(15) | len; // Last buffer and length
|
|
|
|
ETH0->NETWORK_CONTROL |= MG_BIT(9); // enable transmission
|
|
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
|
|
}
|
|
|
|
MG_DSB();
|
|
ETH0->TRANSMIT_STATUS = ETH0->TRANSMIT_STATUS;
|
|
ETH0->NETWORK_CONTROL |= MG_BIT(9); // enable transmission
|
|
|
|
return len;
|
|
}
|
|
|
|
static bool mg_tcpip_driver_xmc7_up(struct mg_tcpip_if *ifp) {
|
|
struct mg_tcpip_driver_xmc7_data *d =
|
|
(struct mg_tcpip_driver_xmc7_data *) ifp->driver_data;
|
|
uint8_t speed = MG_PHY_SPEED_10M;
|
|
bool up = false, full_duplex = false;
|
|
struct mg_phy phy = {eth_read_phy, eth_write_phy};
|
|
up = mg_phy_up(&phy, d->phy_addr, &full_duplex, &speed);
|
|
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
|
|
if (speed == MG_PHY_SPEED_1000M) {
|
|
ETH0->NETWORK_CONFIG |= MG_BIT(10);
|
|
}
|
|
MG_DEBUG(("Link is %uM %s-duplex",
|
|
speed == MG_PHY_SPEED_10M ? 10 :
|
|
(speed == MG_PHY_SPEED_100M ? 100 : 1000),
|
|
full_duplex ? "full" : "half"));
|
|
}
|
|
(void) d;
|
|
return up;
|
|
}
|
|
|
|
void ETH_IRQHandler(void) {
|
|
uint32_t irq_status = ETH0->INT_STATUS;
|
|
if (irq_status & MG_BIT(1)) {
|
|
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
|
|
if (s_rxdesc[s_rxno][0] & MG_BIT(0)) {
|
|
size_t len = s_rxdesc[s_rxno][1] & (MG_BIT(13) - 1);
|
|
//MG_INFO(("Receive complete: %ld bytes", len));
|
|
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
|
|
s_rxdesc[s_rxno][0] &= ~MG_BIT(0); // OWN bit: handle control to DMA
|
|
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
ETH0->INT_STATUS = irq_status;
|
|
}
|
|
|
|
struct mg_tcpip_driver mg_tcpip_driver_xmc7 = {mg_tcpip_driver_xmc7_init,
|
|
mg_tcpip_driver_xmc7_tx, NULL,
|
|
mg_tcpip_driver_xmc7_up};
|
|
#endif
|