mongoose/examples/nxp/frdm-mcxn947-xpresso-baremetal-builtin/component/uart/fsl_adapter_uart.h
2024-06-13 13:43:53 -03:00

830 lines
33 KiB
C

/*
* Copyright 2018-2020 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __HAL_UART_ADAPTER_H__
#define __HAL_UART_ADAPTER_H__
#include "fsl_common.h"
#if defined(SDK_OS_FREE_RTOS)
#include "FreeRTOS.h"
#endif
/*!
* @addtogroup UART_Adapter
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Enable or disable UART adapter non-blocking mode (1 - enable, 0 - disable) */
#ifdef DEBUG_CONSOLE_TRANSFER_NON_BLOCKING
#define UART_ADAPTER_NON_BLOCKING_MODE (1U)
#else
#ifndef SERIAL_MANAGER_NON_BLOCKING_MODE
#define UART_ADAPTER_NON_BLOCKING_MODE (0U)
#else
#define UART_ADAPTER_NON_BLOCKING_MODE SERIAL_MANAGER_NON_BLOCKING_MODE
#endif
#endif
#if defined(__GIC_PRIO_BITS)
#ifndef HAL_UART_ISR_PRIORITY
#define HAL_UART_ISR_PRIORITY (25U)
#endif
#else
#if defined(configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY)
#ifndef HAL_UART_ISR_PRIORITY
#define HAL_UART_ISR_PRIORITY (configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY)
#endif
#else
/* The default value 3 is used to support different ARM Core, such as CM0P, CM4, CM7, and CM33, etc.
* The minimum number of priority bits implemented in the NVIC is 2 on these SOCs. The value of mininum
* priority is 3 (2^2 - 1). So, the default value is 3.
*/
#ifndef HAL_UART_ISR_PRIORITY
#define HAL_UART_ISR_PRIORITY (3U)
#endif
#endif
#endif
#ifndef HAL_UART_ADAPTER_LOWPOWER
#define HAL_UART_ADAPTER_LOWPOWER (0U)
#endif /* HAL_UART_ADAPTER_LOWPOWER */
/*! @brief Enable or disable uart hardware FIFO mode (1 - enable, 0 - disable) */
#ifndef HAL_UART_ADAPTER_FIFO
#define HAL_UART_ADAPTER_FIFO (1U)
#endif /* HAL_UART_ADAPTER_FIFO */
#if (defined(SERIAL_PORT_TYPE_UART_DMA) && (SERIAL_PORT_TYPE_UART_DMA > 0U))
#ifndef HAL_UART_DMA_ENABLE
#define HAL_UART_DMA_ENABLE (1U)
#endif
#endif
#ifndef HAL_UART_DMA_ENABLE
#define HAL_UART_DMA_ENABLE (0U)
#endif /* HAL_UART_DMA_ENABLE */
/*! @brief Enable or disable uart DMA adapter int mode (1 - enable, 0 - disable) */
#ifndef HAL_UART_DMA_INIT_ENABLE
#define HAL_UART_DMA_INIT_ENABLE (1U)
#endif /* HAL_SPI_MASTER_DMA_INIT_ENABLE */
/*! @brief Definition of uart dma adapter software idleline detection timeout value in ms. */
#ifndef HAL_UART_DMA_IDLELINE_TIMEOUT
#define HAL_UART_DMA_IDLELINE_TIMEOUT (1U)
#endif /* HAL_UART_DMA_IDLELINE_TIMEOUT */
/*! @brief Definition of uart adapter handle size. */
#if (defined(UART_ADAPTER_NON_BLOCKING_MODE) && (UART_ADAPTER_NON_BLOCKING_MODE > 0U))
#define HAL_UART_HANDLE_SIZE (92U + HAL_UART_ADAPTER_LOWPOWER * 16U + HAL_UART_DMA_ENABLE * 4U)
#define HAL_UART_BLOCK_HANDLE_SIZE (8U + HAL_UART_ADAPTER_LOWPOWER * 16U + HAL_UART_DMA_ENABLE * 4U)
#else
#define HAL_UART_HANDLE_SIZE (8U + HAL_UART_ADAPTER_LOWPOWER * 16U + HAL_UART_DMA_ENABLE * 4U)
#endif
/*! @brief Definition of uart dma adapter handle size. */
#if (defined(HAL_UART_DMA_ENABLE) && (HAL_UART_DMA_ENABLE > 0U))
#if (defined(FSL_FEATURE_SOC_DMA_COUNT) && (FSL_FEATURE_SOC_DMA_COUNT > 0U))
#define HAL_UART_DMA_HANDLE_SIZE (124U + HAL_UART_ADAPTER_LOWPOWER * 36U)
#elif (defined(FSL_FEATURE_SOC_EDMA_COUNT) && (FSL_FEATURE_SOC_EDMA_COUNT > 0U))
#define HAL_UART_DMA_HANDLE_SIZE (140U + HAL_UART_ADAPTER_LOWPOWER * 36U)
#else
#error This SOC does not have DMA or EDMA available!
#endif
#endif /* HAL_UART_DMA_ENABLE */
/*!
* @brief Defines the uart handle
*
* This macro is used to define a 4 byte aligned uart handle.
* Then use "(hal_uart_handle_t)name" to get the uart handle.
*
* The macro should be global and could be optional. You could also define uart handle by yourself.
*
* This is an example,
* @code
* UART_HANDLE_DEFINE(uartHandle);
* @endcode
*
* @param name The name string of the uart handle.
*/
#define UART_HANDLE_DEFINE(name) uint32_t name[((HAL_UART_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))]
#if (defined(HAL_UART_DMA_ENABLE) && (HAL_UART_DMA_ENABLE > 0U))
#define UART_DMA_HANDLE_DEFINE(name) \
uint32_t name[((HAL_UART_DMA_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))]
#endif
/*! @brief Whether enable transactional function of the UART. (0 - disable, 1 - enable) */
#ifndef HAL_UART_TRANSFER_MODE
#define HAL_UART_TRANSFER_MODE (0U)
#endif
/*! @brief The handle of uart adapter. */
typedef void *hal_uart_handle_t;
/*! @brief The handle of uart dma adapter. */
typedef void *hal_uart_dma_handle_t;
/*! @brief UART status */
typedef enum _hal_uart_status
{
kStatus_HAL_UartSuccess = kStatus_Success, /*!< Successfully */
kStatus_HAL_UartTxBusy = MAKE_STATUS(kStatusGroup_HAL_UART, 1), /*!< TX busy */
kStatus_HAL_UartRxBusy = MAKE_STATUS(kStatusGroup_HAL_UART, 2), /*!< RX busy */
kStatus_HAL_UartTxIdle = MAKE_STATUS(kStatusGroup_HAL_UART, 3), /*!< HAL UART transmitter is idle. */
kStatus_HAL_UartRxIdle = MAKE_STATUS(kStatusGroup_HAL_UART, 4), /*!< HAL UART receiver is idle */
kStatus_HAL_UartBaudrateNotSupport =
MAKE_STATUS(kStatusGroup_HAL_UART, 5), /*!< Baudrate is not support in current clock source */
kStatus_HAL_UartProtocolError = MAKE_STATUS(
kStatusGroup_HAL_UART,
6), /*!< Error occurs for Noise, Framing, Parity, etc.
For transactional transfer, The up layer needs to abort the transfer and then starts again */
kStatus_HAL_UartError = MAKE_STATUS(kStatusGroup_HAL_UART, 7), /*!< Error occurs on HAL UART */
} hal_uart_status_t;
/*! @brief UART parity mode. */
typedef enum _hal_uart_parity_mode
{
kHAL_UartParityDisabled = 0x0U, /*!< Parity disabled */
kHAL_UartParityEven = 0x2U, /*!< Parity even enabled */
kHAL_UartParityOdd = 0x3U, /*!< Parity odd enabled */
} hal_uart_parity_mode_t;
/*! @brief UART stop bit count. */
typedef enum _hal_uart_stop_bit_count
{
kHAL_UartOneStopBit = 0U, /*!< One stop bit */
kHAL_UartTwoStopBit = 1U, /*!< Two stop bits */
} hal_uart_stop_bit_count_t;
/*! @brief UART configuration structure. */
typedef struct _hal_uart_config
{
uint32_t srcClock_Hz; /*!< Source clock */
uint32_t baudRate_Bps; /*!< Baud rate */
hal_uart_parity_mode_t parityMode; /*!< Parity mode, disabled (default), even, odd */
hal_uart_stop_bit_count_t stopBitCount; /*!< Number of stop bits, 1 stop bit (default) or 2 stop bits */
uint8_t enableRx; /*!< Enable RX */
uint8_t enableTx; /*!< Enable TX */
uint8_t enableRxRTS; /*!< Enable RX RTS */
uint8_t enableTxCTS; /*!< Enable TX CTS */
uint8_t instance; /*!< Instance (0 - UART0, 1 - UART1, ...), detail information please refer to the
SOC corresponding RM.
Invalid instance value will cause initialization failure. */
#if (defined(HAL_UART_ADAPTER_FIFO) && (HAL_UART_ADAPTER_FIFO > 0u))
uint8_t txFifoWatermark;
uint8_t rxFifoWatermark;
#endif
} hal_uart_config_t;
#if (defined(HAL_UART_DMA_ENABLE) && (HAL_UART_DMA_ENABLE > 0U))
/*! @brief UART DMA status */
typedef enum _hal_uart_dma_status
{
kStatus_HAL_UartDmaSuccess = 0U,
kStatus_HAL_UartDmaRxIdle = (1U << 1U),
kStatus_HAL_UartDmaRxBusy = (1U << 2U),
kStatus_HAL_UartDmaTxIdle = (1U << 3U),
kStatus_HAL_UartDmaTxBusy = (1U << 4U),
kStatus_HAL_UartDmaIdleline = (1U << 5U),
kStatus_HAL_UartDmaError = (1U << 6U),
} hal_uart_dma_status_t;
typedef struct _dma_mux_configure_t
{
union
{
struct
{
uint8_t dma_mux_instance;
uint32_t rx_request;
uint32_t tx_request;
} dma_dmamux_configure;
};
} dma_mux_configure_t;
typedef struct _dma_channel_mux_configure_t
{
union
{
struct
{
uint32_t dma_rx_channel_mux;
uint32_t dma_tx_channel_mux;
} dma_dmamux_configure;
};
} dma_channel_mux_configure_t;
typedef struct _hal_uart_dma_config_t
{
uint8_t uart_instance;
uint8_t dma_instance;
uint8_t rx_channel;
uint8_t tx_channel;
void *dma_mux_configure;
void *dma_channel_mux_configure;
} hal_uart_dma_config_t;
#endif /* HAL_UART_DMA_ENABLE */
/*! @brief UART transfer callback function. */
typedef void (*hal_uart_transfer_callback_t)(hal_uart_handle_t handle, hal_uart_status_t status, void *callbackParam);
#if (defined(HAL_UART_DMA_ENABLE) && (HAL_UART_DMA_ENABLE > 0U))
typedef struct _dma_callback_msg
{
hal_uart_dma_status_t status;
uint8_t *data;
uint32_t dataSize;
} hal_dma_callback_msg_t;
/*! @brief UART transfer callback function. */
typedef void (*hal_uart_dma_transfer_callback_t)(hal_uart_dma_handle_t handle,
hal_dma_callback_msg_t *msg,
void *callbackParam);
#endif /* HAL_UART_DMA_ENABLE */
/*! @brief UART transfer structure. */
typedef struct _hal_uart_transfer
{
uint8_t *data; /*!< The buffer of data to be transfer.*/
size_t dataSize; /*!< The byte count to be transfer. */
} hal_uart_transfer_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif /* _cplusplus */
/*!
* @name Initialization and deinitialization
* @{
*/
/*!
* @brief Initializes a UART instance with the UART handle and the user configuration structure.
*
* This function configures the UART module with user-defined settings. The user can configure the configuration
* structure. The parameter handle is a pointer to point to a memory space of size #HAL_UART_HANDLE_SIZE allocated by
* the caller. Example below shows how to use this API to configure the UART.
* @code
* UART_HANDLE_DEFINE(g_UartHandle);
* hal_uart_config_t config;
* config.srcClock_Hz = 48000000;
* config.baudRate_Bps = 115200U;
* config.parityMode = kHAL_UartParityDisabled;
* config.stopBitCount = kHAL_UartOneStopBit;
* config.enableRx = 1;
* config.enableTx = 1;
* config.enableRxRTS = 0;
* config.enableTxCTS = 0;
* config.instance = 0;
* HAL_UartInit((hal_uart_handle_t)g_UartHandle, &config);
* @endcode
*
* @param handle Pointer to point to a memory space of size #HAL_UART_HANDLE_SIZE allocated by the caller.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #UART_HANDLE_DEFINE(handle);
* or
* uint32_t handle[((HAL_UART_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @param uart_config Pointer to user-defined configuration structure.
* @retval kStatus_HAL_UartBaudrateNotSupport Baudrate is not support in current clock source.
* @retval kStatus_HAL_UartSuccess UART initialization succeed
*/
hal_uart_status_t HAL_UartInit(hal_uart_handle_t handle, const hal_uart_config_t *uart_config);
/*!
* @brief Deinitializes a UART instance.
*
* This function waits for TX complete, disables TX and RX, and disables the UART clock.
*
* @param handle UART handle pointer.
* @retval kStatus_HAL_UartSuccess UART de-initialization succeed
*/
hal_uart_status_t HAL_UartDeinit(hal_uart_handle_t handle);
/*! @}*/
/*!
* @name Blocking bus Operations
* @{
*/
/*!
* @brief Reads RX data register using a blocking method.
*
* This function polls the RX register, waits for the RX register to be full or for RX FIFO to
* have data, and reads data from the RX register.
*
* @note The function #HAL_UartReceiveBlocking and the function HAL_UartTransferReceiveNonBlocking
* cannot be used at the same time.
* And, the function HAL_UartTransferAbortReceive cannot be used to abort the transmission of this function.
*
* @param handle UART handle pointer.
* @param data Start address of the buffer to store the received data.
* @param length Size of the buffer.
* @retval kStatus_HAL_UartError An error occurred while receiving data.
* @retval kStatus_HAL_UartParityError A parity error occurred while receiving data.
* @retval kStatus_HAL_UartSuccess Successfully received all data.
*/
hal_uart_status_t HAL_UartReceiveBlocking(hal_uart_handle_t handle, uint8_t *data, size_t length);
/*!
* @brief Writes to the TX register using a blocking method.
*
* This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
* to have room and writes data to the TX buffer.
*
* @note The function #HAL_UartSendBlocking and the function HAL_UartTransferSendNonBlocking
* cannot be used at the same time.
* And, the function HAL_UartTransferAbortSend cannot be used to abort the transmission of this function.
*
* @param handle UART handle pointer.
* @param data Start address of the data to write.
* @param length Size of the data to write.
* @retval kStatus_HAL_UartSuccess Successfully sent all data.
*/
hal_uart_status_t HAL_UartSendBlocking(hal_uart_handle_t handle, const uint8_t *data, size_t length);
/*! @}*/
#if (defined(UART_ADAPTER_NON_BLOCKING_MODE) && (UART_ADAPTER_NON_BLOCKING_MODE > 0U))
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
/*!
* @name Transactional
* @note The transactional API and the functional API cannot be used at the same time. The macro
* #HAL_UART_TRANSFER_MODE is used to set which one will be used. If #HAL_UART_TRANSFER_MODE is zero, the
* functional API with non-blocking mode will be used. Otherwise, transactional API will be used.
* @{
*/
/*!
* @brief Installs a callback and callback parameter.
*
* This function is used to install the callback and callback parameter for UART module.
* When any status of the UART changed, the driver will notify the upper layer by the installed callback
* function. And the status is also passed as status parameter when the callback is called.
*
* @param handle UART handle pointer.
* @param callback The callback function.
* @param callbackParam The parameter of the callback function.
* @retval kStatus_HAL_UartSuccess Successfully install the callback.
*/
hal_uart_status_t HAL_UartTransferInstallCallback(hal_uart_handle_t handle,
hal_uart_transfer_callback_t callback,
void *callbackParam);
/*!
* @brief Receives a buffer of data using an interrupt method.
*
* This function receives data using an interrupt method. This is a non-blocking function, which
* returns directly without waiting for all data to be received.
* The receive request is saved by the UART driver.
* When the new data arrives, the receive request is serviced first.
* When all data is received, the UART driver notifies the upper layer
* through a callback function and passes the status parameter @ref kStatus_HAL_UartRxIdle.
*
* @note The function #HAL_UartReceiveBlocking and the function #HAL_UartTransferReceiveNonBlocking
* cannot be used at the same time.
*
* @param handle UART handle pointer.
* @param transfer UART transfer structure, see #hal_uart_transfer_t.
* @retval kStatus_HAL_UartSuccess Successfully queue the transfer into transmit queue.
* @retval kStatus_HAL_UartRxBusy Previous receive request is not finished.
* @retval kStatus_HAL_UartError An error occurred.
*/
hal_uart_status_t HAL_UartTransferReceiveNonBlocking(hal_uart_handle_t handle, hal_uart_transfer_t *transfer);
/*!
* @brief Transmits a buffer of data using the interrupt method.
*
* This function sends data using an interrupt method. This is a non-blocking function, which
* returns directly without waiting for all data to be written to the TX register. When
* all data is written to the TX register in the ISR, the UART driver calls the callback
* function and passes the @ref kStatus_HAL_UartTxIdle as status parameter.
*
* @note The function #HAL_UartSendBlocking and the function #HAL_UartTransferSendNonBlocking
* cannot be used at the same time.
*
* @param handle UART handle pointer.
* @param transfer UART transfer structure. See #hal_uart_transfer_t.
* @retval kStatus_HAL_UartSuccess Successfully start the data transmission.
* @retval kStatus_HAL_UartTxBusy Previous transmission still not finished; data not all written to TX register yet.
* @retval kStatus_HAL_UartError An error occurred.
*/
hal_uart_status_t HAL_UartTransferSendNonBlocking(hal_uart_handle_t handle, hal_uart_transfer_t *transfer);
/*!
* @brief Gets the number of bytes that have been received.
*
* This function gets the number of bytes that have been received.
*
* @param handle UART handle pointer.
* @param count Receive bytes count.
* @retval kStatus_HAL_UartError An error occurred.
* @retval kStatus_Success Get successfully through the parameter \p count.
*/
hal_uart_status_t HAL_UartTransferGetReceiveCount(hal_uart_handle_t handle, uint32_t *count);
/*!
* @brief Gets the number of bytes written to the UART TX register.
*
* This function gets the number of bytes written to the UART TX
* register by using the interrupt method.
*
* @param handle UART handle pointer.
* @param count Send bytes count.
* @retval kStatus_HAL_UartError An error occurred.
* @retval kStatus_Success Get successfully through the parameter \p count.
*/
hal_uart_status_t HAL_UartTransferGetSendCount(hal_uart_handle_t handle, uint32_t *count);
/*!
* @brief Aborts the interrupt-driven data receiving.
*
* This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know
* how many bytes are not received yet.
*
* @note The function #HAL_UartTransferAbortReceive cannot be used to abort the transmission of
* the function #HAL_UartReceiveBlocking.
*
* @param handle UART handle pointer.
* @retval kStatus_Success Get successfully abort the receiving.
*/
hal_uart_status_t HAL_UartTransferAbortReceive(hal_uart_handle_t handle);
/*!
* @brief Aborts the interrupt-driven data sending.
*
* This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out
* how many bytes are not sent out.
*
* @note The function #HAL_UartTransferAbortSend cannot be used to abort the transmission of
* the function #HAL_UartSendBlocking.
*
* @param handle UART handle pointer.
* @retval kStatus_Success Get successfully abort the sending.
*/
hal_uart_status_t HAL_UartTransferAbortSend(hal_uart_handle_t handle);
/*! @}*/
#else
/*!
* @name Functional API with non-blocking mode.
* @note The functional API and the transactional API cannot be used at the same time. The macro
* #HAL_UART_TRANSFER_MODE is used to set which one will be used. If #HAL_UART_TRANSFER_MODE is zero, the
* functional API with non-blocking mode will be used. Otherwise, transactional API will be used.
* @{
*/
/*!
* @brief Installs a callback and callback parameter.
*
* This function is used to install the callback and callback parameter for UART module.
* When non-blocking sending or receiving finished, the adapter will notify the upper layer by the installed callback
* function. And the status is also passed as status parameter when the callback is called.
*
* @param handle UART handle pointer.
* @param callback The callback function.
* @param callbackParam The parameter of the callback function.
* @retval kStatus_HAL_UartSuccess Successfully install the callback.
*/
hal_uart_status_t HAL_UartInstallCallback(hal_uart_handle_t handle,
hal_uart_transfer_callback_t callback,
void *callbackParam);
/*!
* @brief Receives a buffer of data using an interrupt method.
*
* This function receives data using an interrupt method. This is a non-blocking function, which
* returns directly without waiting for all data to be received.
* The receive request is saved by the UART adapter.
* When the new data arrives, the receive request is serviced first.
* When all data is received, the UART adapter notifies the upper layer
* through a callback function and passes the status parameter @ref kStatus_HAL_UartRxIdle.
*
* @note The function #HAL_UartReceiveBlocking and the function #HAL_UartReceiveNonBlocking
* cannot be used at the same time.
*
* @param handle UART handle pointer.
* @param data Start address of the data to write.
* @param length Size of the data to write.
* @retval kStatus_HAL_UartSuccess Successfully queue the transfer into transmit queue.
* @retval kStatus_HAL_UartRxBusy Previous receive request is not finished.
* @retval kStatus_HAL_UartError An error occurred.
*/
hal_uart_status_t HAL_UartReceiveNonBlocking(hal_uart_handle_t handle, uint8_t *data, size_t length);
/*!
* @brief Transmits a buffer of data using the interrupt method.
*
* This function sends data using an interrupt method. This is a non-blocking function, which
* returns directly without waiting for all data to be written to the TX register. When
* all data is written to the TX register in the ISR, the UART driver calls the callback
* function and passes the @ref kStatus_HAL_UartTxIdle as status parameter.
*
* @note The function #HAL_UartSendBlocking and the function #HAL_UartSendNonBlocking
* cannot be used at the same time.
*
* @param handle UART handle pointer.
* @param data Start address of the data to write.
* @param length Size of the data to write.
* @retval kStatus_HAL_UartSuccess Successfully start the data transmission.
* @retval kStatus_HAL_UartTxBusy Previous transmission still not finished; data not all written to TX register yet.
* @retval kStatus_HAL_UartError An error occurred.
*/
hal_uart_status_t HAL_UartSendNonBlocking(hal_uart_handle_t handle, uint8_t *data, size_t length);
/*!
* @brief Gets the number of bytes that have been received.
*
* This function gets the number of bytes that have been received.
*
* @param handle UART handle pointer.
* @param reCount Receive bytes count.
* @retval kStatus_HAL_UartError An error occurred.
* @retval kStatus_Success Get successfully through the parameter \p count.
*/
hal_uart_status_t HAL_UartGetReceiveCount(hal_uart_handle_t handle, uint32_t *reCount);
/*!
* @brief Gets the number of bytes written to the UART TX register.
*
* This function gets the number of bytes written to the UART TX
* register by using the interrupt method.
*
* @param handle UART handle pointer.
* @param seCount Send bytes count.
* @retval kStatus_HAL_UartError An error occurred.
* @retval kStatus_Success Get successfully through the parameter \p count.
*/
hal_uart_status_t HAL_UartGetSendCount(hal_uart_handle_t handle, uint32_t *seCount);
/*!
* @brief Aborts the interrupt-driven data receiving.
*
* This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know
* how many bytes are not received yet.
*
* @note The function #HAL_UartAbortReceive cannot be used to abort the transmission of
* the function #HAL_UartReceiveBlocking.
*
* @param handle UART handle pointer.
* @retval kStatus_Success Get successfully abort the receiving.
*/
hal_uart_status_t HAL_UartAbortReceive(hal_uart_handle_t handle);
/*!
* @brief Aborts the interrupt-driven data sending.
*
* This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out
* how many bytes are not sent out.
*
* @note The function #HAL_UartAbortSend cannot be used to abort the transmission of
* the function #HAL_UartSendBlocking.
*
* @param handle UART handle pointer.
* @retval kStatus_Success Get successfully abort the sending.
*/
hal_uart_status_t HAL_UartAbortSend(hal_uart_handle_t handle);
/*! @}*/
#endif
#endif
#if (defined(HAL_UART_DMA_ENABLE) && (HAL_UART_DMA_ENABLE > 0U))
/*!
* @brief Initializes a UART dma instance with the UART dma handle and the user configuration structure.
*
* This function configures the UART dma module with user-defined settings. The user can configure the configuration
* structure. The parameter handle is a pointer to point to a memory space of size #HAL_UART_DMA_HANDLE_SIZE allocated
* by the caller. Example below shows how to use this API to configure the UART.
* @code
*
* Init TimerManager, only used in UART without Idleline interrupt
* timer_config_t timerConfig;
* timerConfig.srcClock_Hz = 16000000;
* timerConfig.instance = 0;
* TM_Init(&timerConfig);
*
* Init the DMA module
* DMA_Init(DMA0);
*
* Define a uart dma handle
* UART_HANDLE_DEFINE(g_uartHandle);
* UART_DMA_HANDLE_DEFINE(g_UartDmaHandle);
*
* Configure uart settings
* hal_uart_config_t uartConfig;
* uartConfig.srcClock_Hz = 48000000;
* uartConfig.baudRate_Bps = 115200;
* uartConfig.parityMode = kHAL_UartParityDisabled;
* uartConfig.stopBitCount = kHAL_UartOneStopBit;
* uartConfig.enableRx = 1;
* uartConfig.enableTx = 1;
* uartConfig.enableRxRTS = 0;
* uartConfig.enableTxCTS = 0;
* uartConfig.instance = 0;
*
* Init uart
* HAL_UartInit((hal_uart_handle_t *)g_uartHandle, &uartConfig);
*
* Configure uart dma settings
* hal_uart_dma_config_t dmaConfig;
* dmaConfig.uart_instance = 0;
* dmaConfig.dma_instance = 0;
* dmaConfig.rx_channel = 0;
* dmaConfig.tx_channel = 1;
*
* Init uart dma
* HAL_UartDMAInit((hal_uart_handle_t *)g_uartHandle, (hal_uart_dma_handle_t *)g_uartDmaHandle, &dmaConfig);
* @endcode
*
* @param handle UART handle pointer.
* @param dmaHandle Pointer to point to a memory space of size #HAL_UART_DMA_HANDLE_SIZE allocated by the caller.
* The handle should be 4 byte aligned, because unaligned access doesn't be supported on some devices.
* You can define the handle in the following two ways:
* #UART_DMA_HANDLE_DEFINE(handle);
* or
* uint32_t handle[((HAL_UART_DMA_HANDLE_SIZE + sizeof(uint32_t) - 1U) / sizeof(uint32_t))];
* @param dmaConfig Pointer to user-defined configuration structure.
* @retval kStatus_HAL_UartDmaError UART dma initialization failed.
* @retval kStatus_HAL_UartDmaSuccess UART dma initialization succeed.
*/
hal_uart_dma_status_t HAL_UartDMAInit(hal_uart_handle_t handle,
hal_uart_dma_handle_t dmaHandle,
hal_uart_dma_config_t *dmaConfig);
/*!
* @brief Deinitializes a UART DMA instance.
*
* This function will abort uart dma receive/send transfer and deinitialize UART.
*
* @param handle UART handle pointer.
* @retval kStatus_HAL_UartDmaSuccess UART DMA de-initialization succeed
*/
hal_uart_dma_status_t HAL_UartDMADeinit(hal_uart_handle_t handle);
/*!
* @brief Installs a callback and callback parameter.
*
* This function is used to install the callback and callback parameter for UART DMA module.
* When any status of the UART DMA changed, the driver will notify the upper layer by the installed callback
* function. And the status is also passed as status parameter when the callback is called.
*
* @param handle UART handle pointer.
* @param callback The callback function.
* @param callbackParam The parameter of the callback function.
* @retval kStatus_HAL_UartDmaSuccess Successfully install the callback.
*/
hal_uart_dma_status_t HAL_UartDMATransferInstallCallback(hal_uart_handle_t handle,
hal_uart_dma_transfer_callback_t callback,
void *callbackParam);
/*!
* @brief Receives a buffer of data using an dma method.
*
* This function receives data using an dma method. This is a non-blocking function, which
* returns directly without waiting for all data to be received.
* The receive request is saved by the UART DMA driver.
* When all data is received, the UART DMA adapter notifies the upper layer
* through a callback function and passes the status parameter @ref kStatus_HAL_UartDmaRxIdle.
*
* When an idleline is detected, the UART DMA adapter notifies the upper layer through a callback function,
* and passes the status parameter @ref kStatus_HAL_UartDmaIdleline. For the UARTs without hardware idleline
* interrupt(like usart), it will use a software idleline detection method with the help of TimerManager.
*
* When the soc support cache, uplayer should do cache maintain operations for transfer buffer before call this API.
*
* @param handle UART handle pointer.
* @param data data Start address of the buffer to store the received data.
* @param length Size of the buffer.
* @param receiveAll Idleline interrupt will not end transfer process if set true.
* @retval kStatus_HAL_UartDmaSuccess Successfully start the data receive.
* @retval kStatus_HAL_UartDmaRxBusy Previous receive request is not finished.
*/
hal_uart_dma_status_t HAL_UartDMATransferReceive(hal_uart_handle_t handle,
uint8_t *data,
size_t length,
bool receiveAll);
/*!
* @brief Transmits a buffer of data using an dma method.
*
* This function sends data using an dma method. This is a non-blocking function, which
* returns directly without waiting for all data to be written to the TX register. When
* all data is written to the TX register by DMA, the UART DMA driver calls the callback
* function and passes the @ref kStatus_HAL_UartDmaTxIdle as status parameter.
*
* When the soc support cache, uplayer should do cache maintain operations for transfer buffer before call this API.
*
* @param handle UART handle pointer.
* @param data data Start address of the data to write.
* @param length Size of the data to write.
* @retval kStatus_HAL_UartDmaSuccess Successfully start the data transmission.
* @retval kStatus_HAL_UartDmaTxBusy Previous send request is not finished.
*/
hal_uart_dma_status_t HAL_UartDMATransferSend(hal_uart_handle_t handle, uint8_t *data, size_t length);
/*!
* @brief Gets the number of bytes that have been received.
*
* This function gets the number of bytes that have been received.
*
* @param handle UART handle pointer.
* @param reCount Receive bytes count.
* @retval kStatus_HAL_UartDmaError An error occurred.
* @retval kStatus_HAL_UartDmaSuccess Get successfully through the parameter \p reCount.
*/
hal_uart_dma_status_t HAL_UartDMAGetReceiveCount(hal_uart_handle_t handle, uint32_t *reCount);
/*!
* @brief Gets the number of bytes written to the UART TX register.
*
* This function gets the number of bytes written to the UART TX
* register by using the DMA method.
*
* @param handle UART handle pointer.
* @param seCount Send bytes count.
* @retval kStatus_HAL_UartDmaError An error occurred.
* @retval kStatus_HAL_UartDmaSuccess Get successfully through the parameter \p seCount.
*/
hal_uart_dma_status_t HAL_UartDMAGetSendCount(hal_uart_handle_t handle, uint32_t *seCount);
/*!
* @brief Aborts the DMA-driven data receiving.
*
* This function aborts the DMA-driven data receiving.
*
* @param handle UART handle pointer.
* @retval kStatus_HAL_UartDmaSuccess Get successfully abort the receiving.
*/
hal_uart_dma_status_t HAL_UartDMAAbortReceive(hal_uart_handle_t handle);
/*!
* @brief Aborts the DMA-driven data sending.
*
* This function aborts the DMA-driven data sending.
*
* @param handle UART handle pointer.
* @retval kStatus_Success Get successfully abort the sending.
*/
hal_uart_dma_status_t HAL_UartDMAAbortSend(hal_uart_handle_t handle);
#endif /* HAL_UART_DMA_ENABLE */
/*!
* @brief Prepares to enter low power consumption.
*
* This function is used to prepare to enter low power consumption.
*
* @param handle UART handle pointer.
* @retval kStatus_HAL_UartSuccess Successful operation.
* @retval kStatus_HAL_UartError An error occurred.
*/
hal_uart_status_t HAL_UartEnterLowpower(hal_uart_handle_t handle);
/*!
* @brief Restores from low power consumption.
*
* This function is used to restore from low power consumption.
*
* @param handle UART handle pointer.
* @retval kStatus_HAL_UartSuccess Successful operation.
* @retval kStatus_HAL_UartError An error occurred.
*/
hal_uart_status_t HAL_UartExitLowpower(hal_uart_handle_t handle);
#if (defined(UART_ADAPTER_NON_BLOCKING_MODE) && (UART_ADAPTER_NON_BLOCKING_MODE > 0U))
/*!
* @brief UART IRQ handle function.
*
* This function handles the UART transmit and receive IRQ request.
*
* @param handle UART handle pointer.
*/
void HAL_UartIsrFunction(hal_uart_handle_t handle);
#endif
#if defined(__cplusplus)
}
#endif
/*! @}*/
#endif /* __HAL_UART_ADAPTER_H__ */