mongoose/examples/NXP_K64/fsl_phy.c
Alexander Alashkin eaef5bd133 Revert "Stop publish examples to mongoose repo"
This reverts commit 1a17e17c462bdd4e1d26d8742f8b7087273e04c2.

PUBLISHED_FROM=80028de308c9a021955d1425d2bfee8feb85f193
2017-02-06 14:08:59 +00:00

294 lines
9.4 KiB
C

/* clang-format off */
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_phy.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0xFFFFFU
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
extern uint32_t ENET_GetInstance(ENET_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to enet clocks for each instance. */
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
/*******************************************************************************
* Code
******************************************************************************/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
uint32_t bssReg;
uint32_t counter = PHY_TIMEOUT_COUNT;
status_t result = kStatus_Success;
uint32_t instance = ENET_GetInstance(base);
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
ENET_SetSMI(base, srcClock_Hz, false);
/* Reset PHY. */
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (result == kStatus_Success)
{
/* Set the negotiation. */
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (result == kStatus_Success)
{
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (result == kStatus_Success)
{
/* Check auto negotiation complete. */
while (counter --)
{
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
if ( result == kStatus_Success)
{
if ((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0)
{
break;
}
}
if (!counter)
{
return kStatus_PHY_AutoNegotiateFail;
}
}
}
}
}
return result;
}
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t counter;
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
{
assert(dataPtr);
uint32_t counter;
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Get data from MII register. */
*dataPtr = ENET_ReadSMIData(base);
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, bool enable)
{
status_t result;
uint32_t data = 0;
/* Set the loop mode. */
if (enable)
{
if (mode == kPHY_LocalLoop)
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_LOOP_MASK));
}
}
else
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (mode == kPHY_LocalLoop)
{
/* First read the current status in the basic control register. */
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data & ~PHY_BCTL_LOOP_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
{
assert(status);
status_t result = kStatus_Success;
uint32_t data;
/* Read the basic status register. */
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
if (result == kStatus_Success)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = false;
}
else
{
/* link up. */
*status = true;
}
}
return result;
}
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
{
assert(duplex);
status_t result = kStatus_Success;
uint32_t data, ctlReg;
/* Read the control two register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
if (result == kStatus_Success)
{
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = kPHY_FullDuplex;
}
else
{
/* Half duplex. */
*duplex = kPHY_HalfDuplex;
}
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = kPHY_Speed100M;
}
else
{ /* 10M speed. */
*speed = kPHY_Speed10M;
}
}
return result;
}