mongoose/src/device_stm32h7.c
2023-11-02 09:30:55 +00:00

156 lines
5.3 KiB
C

#include "device.h"
#include "log.h"
#if MG_DEVICE == MG_DEVICE_STM32H7
#define FLASH_BASE1 0x52002000 // Base address for bank1
#define FLASH_BASE2 0x52002100 // Base address for bank2
#define FLASH_KEYR 0x04 // See RM0433 4.9.2
#define FLASH_OPTKEYR 0x08
#define FLASH_OPTCR 0x18
#define FLASH_SR 0x10
#define FLASH_CR 0x0c
#define FLASH_CCR 0x14
#define FLASH_OPTSR_CUR 0x1c
#define FLASH_OPTSR_PRG 0x20
#define FLASH_SIZE_REG 0x1ff1e880
MG_IRAM void *mg_flash_start(void) {
return (void *) 0x08000000;
}
MG_IRAM size_t mg_flash_size(void) {
return MG_REG(FLASH_SIZE_REG) * 1024;
}
MG_IRAM size_t mg_flash_sector_size(void) {
return 128 * 1024; // 128k
}
MG_IRAM size_t mg_flash_write_align(void) {
return 32; // 256 bit
}
MG_IRAM int mg_flash_bank(void) {
if (mg_flash_size() < 2 * 1024 * 1024) return 0; // No dual bank support
return MG_REG(FLASH_BASE1 + FLASH_OPTCR) & MG_BIT(31) ? 2 : 1;
}
MG_IRAM static void flash_unlock(void) {
static bool unlocked = false;
if (unlocked == false) {
MG_REG(FLASH_BASE1 + FLASH_KEYR) = 0x45670123;
MG_REG(FLASH_BASE1 + FLASH_KEYR) = 0xcdef89ab;
if (mg_flash_bank() > 0) {
MG_REG(FLASH_BASE2 + FLASH_KEYR) = 0x45670123;
MG_REG(FLASH_BASE2 + FLASH_KEYR) = 0xcdef89ab;
}
MG_REG(FLASH_BASE1 + FLASH_OPTKEYR) = 0x08192a3b; // opt reg is "shared"
MG_REG(FLASH_BASE1 + FLASH_OPTKEYR) = 0x4c5d6e7f; // thus unlock once
unlocked = true;
}
}
MG_IRAM static bool flash_page_start(volatile uint32_t *dst) {
char *base = (char *) mg_flash_start(), *end = base + mg_flash_size();
volatile char *p = (char *) dst;
return p >= base && p < end && ((p - base) % mg_flash_sector_size()) == 0;
}
MG_IRAM static bool flash_is_err(uint32_t bank) {
return MG_REG(bank + FLASH_SR) & ((MG_BIT(11) - 1) << 17); // RM0433 4.9.5
}
MG_IRAM static void flash_wait(uint32_t bank) {
while (MG_REG(bank + FLASH_SR) & (MG_BIT(0) | MG_BIT(2))) (void) 0;
}
MG_IRAM static void flash_clear_err(uint32_t bank) {
flash_wait(bank); // Wait until ready
MG_REG(bank + FLASH_CCR) = ((MG_BIT(11) - 1) << 16U); // Clear all errors
}
MG_IRAM static bool flash_bank_is_swapped(uint32_t bank) {
return MG_REG(bank + FLASH_OPTCR) & MG_BIT(31); // RM0433 4.9.7
}
// Figure out flash bank based on the address
MG_IRAM static uint32_t flash_bank(void *addr) {
size_t ofs = (char *) addr - (char *) mg_flash_start();
if (mg_flash_bank() == 0) return FLASH_BASE1;
return ofs < mg_flash_size() / 2 ? FLASH_BASE1 : FLASH_BASE2;
}
MG_IRAM bool mg_flash_erase(void *addr) {
bool ok = false;
if (flash_page_start(addr) == false) {
MG_ERROR(("%p is not on a sector boundary", addr));
} else {
uintptr_t diff = (char *) addr - (char *) mg_flash_start();
uint32_t sector = diff / mg_flash_sector_size();
uint32_t bank = flash_bank(addr);
uint32_t saved_cr = MG_REG(bank + FLASH_CR); // Save CR value
flash_unlock();
if (sector > 7) sector -= 8;
flash_clear_err(bank);
MG_REG(bank + FLASH_CR) = MG_BIT(5); // 32-bit write parallelism
MG_REG(bank + FLASH_CR) |= (sector & 7U) << 8U; // Sector to erase
MG_REG(bank + FLASH_CR) |= MG_BIT(2); // Sector erase bit
MG_REG(bank + FLASH_CR) |= MG_BIT(7); // Start erasing
ok = !flash_is_err(bank);
MG_DEBUG(("Erase sector %lu @ %p %s. CR %#lx SR %#lx", sector, addr,
ok ? "ok" : "fail", MG_REG(bank + FLASH_CR),
MG_REG(bank + FLASH_SR)));
MG_REG(bank + FLASH_CR) = saved_cr; // Restore CR
}
return ok;
}
MG_IRAM bool mg_flash_swap_bank() {
if (mg_flash_bank() == 0) return true;
uint32_t bank = FLASH_BASE1;
uint32_t desired = flash_bank_is_swapped(bank) ? 0 : MG_BIT(31);
flash_unlock();
flash_clear_err(bank);
// printf("OPTSR_PRG 1 %#lx\n", FLASH->OPTSR_PRG);
MG_SET_BITS(MG_REG(bank + FLASH_OPTSR_PRG), MG_BIT(31), desired);
// printf("OPTSR_PRG 2 %#lx\n", FLASH->OPTSR_PRG);
MG_REG(bank + FLASH_OPTCR) |= MG_BIT(1); // OPTSTART
while ((MG_REG(bank + FLASH_OPTSR_CUR) & MG_BIT(31)) != desired) (void) 0;
return true;
}
MG_IRAM bool mg_flash_write(void *addr, const void *buf, size_t len) {
if ((len % mg_flash_write_align()) != 0) {
MG_ERROR(("%lu is not aligned to %lu", len, mg_flash_write_align()));
return false;
}
uint32_t bank = flash_bank(addr);
uint32_t *dst = (uint32_t *) addr;
uint32_t *src = (uint32_t *) buf;
uint32_t *end = (uint32_t *) ((char *) buf + len);
bool ok = true;
flash_unlock();
flash_clear_err(bank);
MG_REG(bank + FLASH_CR) = MG_BIT(1); // Set programming flag
MG_REG(bank + FLASH_CR) |= MG_BIT(5); // 32-bit write parallelism
MG_DEBUG(("Writing flash @ %p, %lu bytes", addr, len));
MG_ARM_DISABLE_IRQ();
while (ok && src < end) {
if (flash_page_start(dst) && mg_flash_erase(dst) == false) break;
*(volatile uint32_t *) dst++ = *src++;
flash_wait(bank);
if (flash_is_err(bank)) ok = false;
}
MG_ARM_ENABLE_IRQ();
MG_DEBUG(("Flash write %lu bytes @ %p: %s. CR %#lx SR %#lx", len, dst,
ok ? "ok" : "fail", MG_REG(bank + FLASH_CR),
MG_REG(bank + FLASH_SR)));
MG_REG(bank + FLASH_CR) &= ~MG_BIT(1); // Clear programming flag
return ok;
}
MG_IRAM void mg_device_reset(void) {
// SCB->AIRCR = ((0x5fa << SCB_AIRCR_VECTKEY_Pos)|SCB_AIRCR_SYSRESETREQ_Msk);
*(volatile unsigned long *) 0xe000ed0c = 0x5fa0004;
}
#endif