mirror of
https://github.com/cesanta/mongoose.git
synced 2025-01-12 15:49:10 +08:00
186 lines
6.8 KiB
C
186 lines
6.8 KiB
C
// Copyright (c) 2022 Cesanta Software Limited
|
|
// All rights reserved
|
|
// https://www.ti.com/lit/pdf/spms433
|
|
|
|
#pragma once
|
|
|
|
#include "TM4C1294NCPDT.h"
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#define BIT(x) (1UL << (x))
|
|
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
|
|
#define PIN(bank, num) ((bank << 8) | (num))
|
|
#define PINNO(pin) (pin & 255)
|
|
#define PINBANK(pin) pinbank(pin >> 8)
|
|
// This MCU doesn't have GPIOI nor GPIOO
|
|
static inline unsigned int pinbank(unsigned int bank) {
|
|
bank = bank > 'O' ? bank - 2 : bank > 'I' ? bank - 1 : bank;
|
|
return bank - 'A';
|
|
}
|
|
|
|
// 5.5, Table 5-12: configure flash (and EEPROM) timing in accordance to clock
|
|
// freq
|
|
enum {
|
|
PLL_CLK = 25,
|
|
PLL_M = 96,
|
|
PLL_N = 5,
|
|
PLL_Q = 1,
|
|
PSYSDIV = 4
|
|
}; // Run at 120 Mhz
|
|
#define PLL_FREQ (PLL_CLK * PLL_M / PLL_N / PLL_Q / PSYSDIV)
|
|
#define FLASH_CLKHIGH 6
|
|
#define FLASH_WAITST 5
|
|
#define SYS_FREQUENCY (PLL_FREQ * 1000000)
|
|
|
|
static inline void spin(volatile uint32_t count) {
|
|
while (count--) (void) 0;
|
|
}
|
|
|
|
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
|
|
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
|
|
enum { GPIO_SPEED_LOW, GPIO_SPEED_HIGH };
|
|
enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN };
|
|
#define GPIO(bank) ((GPIOA_AHB_Type *) (GPIOA_AHB_BASE + 0x1000U * (bank)))
|
|
|
|
// CMSIS header forces 0xFF mask when writing to DATA (see 10.6 in datasheet)
|
|
// and does not seem to support that feature for writing by defining RESERVED0
|
|
// to read-only
|
|
static inline void gpio_toggle(uint16_t pin) {
|
|
GPIOA_AHB_Type *gpio = GPIO(PINBANK(pin));
|
|
volatile uint32_t *GPIODATA = (volatile uint32_t *) gpio->RESERVED0;
|
|
uint8_t mask = BIT(PINNO(pin));
|
|
GPIODATA[mask] ^= mask;
|
|
}
|
|
static inline int gpio_read(uint16_t pin) {
|
|
GPIOA_AHB_Type *gpio = GPIO(PINBANK(pin));
|
|
volatile uint32_t *GPIODATA = (volatile uint32_t *) gpio->RESERVED0;
|
|
uint8_t mask = BIT(PINNO(pin));
|
|
return GPIODATA[mask] ? 1 : 0;
|
|
}
|
|
static inline void gpio_write(uint16_t pin, bool val) {
|
|
GPIOA_AHB_Type *gpio = GPIO(PINBANK(pin));
|
|
volatile uint32_t *GPIODATA = (volatile uint32_t *) gpio->RESERVED0;
|
|
uint8_t mask = BIT(PINNO(pin));
|
|
GPIODATA[mask] = val ? mask : 0;
|
|
}
|
|
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
|
|
uint8_t speed, uint8_t pull, uint8_t af) {
|
|
GPIOA_AHB_Type *gpio = GPIO(PINBANK(pin));
|
|
uint8_t n = (uint8_t) (PINNO(pin));
|
|
SYSCTL->RCGCGPIO |= BIT(PINBANK(pin)); // Enable GPIO clock
|
|
if (mode == GPIO_MODE_ANALOG) {
|
|
gpio->AMSEL |= BIT(PINNO(pin));
|
|
return;
|
|
}
|
|
if (mode == GPIO_MODE_INPUT) {
|
|
gpio->DIR &= ~BIT(PINNO(pin));
|
|
} else if (mode == GPIO_MODE_OUTPUT) {
|
|
gpio->DIR |= BIT(PINNO(pin));
|
|
} else { // GPIO_MODE_AF
|
|
SETBITS(gpio->PCTL, 15UL << ((n & 7) * 4),
|
|
((uint32_t) af) << ((n & 7) * 4));
|
|
gpio->AFSEL |= BIT(PINNO(pin));
|
|
}
|
|
gpio->DEN |= BIT(PINNO(pin)); // Enable pin as digital function
|
|
if (type == GPIO_OTYPE_OPEN_DRAIN)
|
|
gpio->ODR |= BIT(PINNO(pin));
|
|
else // GPIO_OTYPE_PUSH_PULL
|
|
gpio->ODR &= ~BIT(PINNO(pin));
|
|
if (speed == GPIO_SPEED_LOW)
|
|
gpio->SLR |= BIT(PINNO(pin));
|
|
else // GPIO_SPEED_HIGH
|
|
gpio->SLR &= ~BIT(PINNO(pin));
|
|
if (pull == GPIO_PULL_UP) {
|
|
gpio->PUR |= BIT(PINNO(pin)); // setting one...
|
|
} else if (pull == GPIO_PULL_DOWN) {
|
|
gpio->PDR |= BIT(PINNO(pin)); // ...just clears the other
|
|
} else {
|
|
gpio->PUR &= ~BIT(PINNO(pin));
|
|
gpio->PDR &= ~BIT(PINNO(pin));
|
|
}
|
|
}
|
|
static inline void gpio_input(uint16_t pin) {
|
|
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
|
|
GPIO_PULL_NONE, 0);
|
|
}
|
|
static inline void gpio_output(uint16_t pin) {
|
|
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
|
|
GPIO_PULL_NONE, 0);
|
|
}
|
|
|
|
static inline void gpio_irq_attach(uint16_t pin) {
|
|
uint8_t irqvecs[] = {16, 17, 18, 19, 20, 30, 31, 32,
|
|
51, 52, 53, 72, 73, 76, 84};
|
|
GPIOA_AHB_Type *gpio = GPIO(PINBANK(pin));
|
|
gpio->IS &= ~BIT(PINNO(pin)); // edge sensitive
|
|
gpio->IBE |= BIT(PINNO(pin)); // both edges
|
|
gpio->IM |= BIT(PINNO(pin)); // enable pin irq
|
|
int irqvec = irqvecs[PINBANK(pin)]; // IRQ vector index, 2.5.2
|
|
NVIC_SetPriority(irqvec, 3);
|
|
NVIC_EnableIRQ(irqvec);
|
|
}
|
|
|
|
#ifndef UART_DEBUG
|
|
#define UART_DEBUG UART0
|
|
#endif
|
|
|
|
#define UART_OFFSET 0x1000
|
|
#define UART(N) ((UART0_Type *) (UART0_BASE + UART_OFFSET * (N)))
|
|
#define UARTNO(u) ((uint8_t) (((unsigned int) (u) -UART0_BASE) / UART_OFFSET))
|
|
|
|
static inline void uart_init(UART0_Type *uart, unsigned long baud) {
|
|
struct uarthw {
|
|
uint16_t rx, tx; // pins
|
|
uint8_t af; // Alternate function
|
|
};
|
|
// rx, tx, af for UART0,1,2
|
|
struct uarthw uarthw[3] = {{PIN('A', 0), PIN('A', 1), 1},
|
|
{PIN('B', 0), PIN('B', 1), 1},
|
|
{PIN('A', 6), PIN('A', 7), 1}}; // or PD4, PD5...
|
|
|
|
uint8_t uartno = UARTNO(uart);
|
|
SYSCTL->RCGCUART |= BIT(uartno); // Enable peripheral clock
|
|
|
|
gpio_init(uarthw[uartno].tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL,
|
|
GPIO_SPEED_HIGH, 0, uarthw[uartno].af);
|
|
gpio_init(uarthw[uartno].rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL,
|
|
GPIO_SPEED_HIGH, 0, uarthw[uartno].af);
|
|
// (16.3.2) ClkDiv = 16 (HSE=0)
|
|
// BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate)
|
|
// UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
|
|
// must write in this order
|
|
uart->CTL = 0; // Disable this UART, clear HSE
|
|
uart->IBRD = SYS_FREQUENCY / (16 * baud); // Baud rate, integer part
|
|
uart->FBRD = ((SYS_FREQUENCY % (16 * baud)) >> 26) &
|
|
0x3F; // Baud rate, fractional part
|
|
uart->LCRH = (3 << 5); // 8N1, no FIFOs;
|
|
uart->CTL |= BIT(0) | BIT(9) | BIT(8); // Set UARTEN, RXE, TXE
|
|
}
|
|
static inline void uart_write_byte(UART0_Type *uart, uint8_t byte) {
|
|
uart->DR = byte;
|
|
while ((uart->FR & BIT(7)) == 0) spin(1);
|
|
}
|
|
static inline void uart_write_buf(UART0_Type *uart, char *buf, size_t len) {
|
|
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
|
|
}
|
|
static inline int uart_read_ready(UART0_Type *uart) {
|
|
return uart->FR & BIT(6); // If RXFF bit is set, data is ready
|
|
}
|
|
static inline uint8_t uart_read_byte(UART0_Type *uart) {
|
|
return (uint8_t) (uart->DR & 0xFF);
|
|
}
|
|
|
|
// Helper macro for reading pre-flashed MAC from user registers
|
|
#define READ_PREFLASHED_MAC() \
|
|
{ \
|
|
(FLASH_CTRL->USERREG0 >> 0) & 0xFF, (FLASH_CTRL->USERREG0 >> 8) & 0xFF, \
|
|
(FLASH_CTRL->USERREG0 >> 16) & 0xFF, \
|
|
(FLASH_CTRL->USERREG1 >> 0) & 0xFF, \
|
|
(FLASH_CTRL->USERREG1 >> 8) & 0xFF, \
|
|
(FLASH_CTRL->USERREG1 >> 16) & 0xFF \
|
|
}
|