When several requests were waiting for a response, then after getting
a CNAME response only the last request was properly processed, while
others were left waiting.
If one or more requests were waiting for a response, then after
getting a CNAME response, the timeout event on the first request
remained active, pointing to the wrong node with an empty
rn->waiting list, and that could cause either null pointer
dereference or use-after-free memory access if this timeout
expired.
If several requests were waiting for a response, and the first
request terminated (e.g., due to client closing a connection),
other requests were left without a timeout and could potentially
wait indefinitely.
This is fixed by introducing per-request independent timeouts.
This change also reverts 954867a2f0a6 and 5004210e8c78.
If enabled, workers are bound to available CPUs, each worker to once CPU
in order. If there are more workers than available CPUs, remaining are
bound in a loop, starting again from the first available CPU.
The optional mask parameter defines which CPUs are available for automatic
binding.
In collaboration with Vladimir Homutov.
With main request buffered, it's possible, that a slice subrequest will send
output before it. For example, while main request is waiting for aio read to
complete, a slice subrequest can start an aio operation as well. The order
in which aio callbacks are called is undetermined.
Skip SSL_CTX_set_tlsext_servername_callback in case of renegotiation.
Do nothing in SNI callback as in this case it will be supplied with
request in c->data which isn't expected and doesn't work this way.
This was broken by b40af2fd1c16 (1.9.6) with OpenSSL master branch and LibreSSL.
Splits a request into subrequests, each providing a specific range of response.
The variable "$slice_range" must be used to set subrequest range and proper
cache key. The directive "slice" sets slice size.
The following example splits requests into 1-megabyte cacheable subrequests.
server {
listen 8000;
location / {
slice 1m;
proxy_cache cache;
proxy_cache_key $uri$is_args$args$slice_range;
proxy_set_header Range $slice_range;
proxy_cache_valid 200 206 1h;
proxy_pass http://127.0.0.1:9000;
}
}
If an upstream with variables evaluated to address without a port,
then instead of a "no port in upstream" error an attempt was made
to connect() which failed with EADDRNOTAVAIL.
This fixes suboptimal behavior caused by surplus lseek() for sequential writes
on systems without pwrite(). A consecutive read after write might result in an
error on systems without pread() and pwrite().
Fortunately, at the moment there are no widely used systems without these
syscalls.
The HEADERS frame is always represented by more than one buffer since
b930e598a199, but the handling code hasn't been adjusted.
Only the first buffer of HEADERS frame was checked and if it had been
sent while others had not, the rest of the frame was dropped, resulting
in broken connection.
Before b930e598a199, the problem could only be seen in case of HEADERS
frame with CONTINUATION.
The r->invalid_header flag wasn't reset once an invalid header appeared in a
request, resulting in all subsequent headers in the request were also marked
as invalid.
The directive toggles conversion of HEAD to GET for cacheable proxy requests.
When disabled, $request_method must be added to cache key for consistency.
By default, HEAD is converted to GET as before.