The capability is retained automatically in unprivileged worker processes after
changing UID if transparent proxying is enabled at least once in nginx
configuration.
The feature is only available in Linux.
On some systems, it's possible that reaper of orphaned processes is
set to something other than "init" process. On such systems, the
changing binary procedure did not work.
The fix is to check if PPID has changed, instead of assuming it's
always 1 for orphaned processes.
This is what usually happens for zones no longer used in the new
configuration, but zones where size or tag were changed were freed
when creating new memory zones. If reconfiguration failed (for
example, due to a conflicting listening socket), this resulted in a
segmentation fault in the master process.
Reported by Zhihua Cao,
http://mailman.nginx.org/pipermail/nginx-devel/2017-October/010536.html.
At least FreeBSD, macOS, NetBSD, and OpenBSD can return unix sockets
with non-null-terminated sun_path. Additionally, the address may become
non-null-terminated if it does not fit into the buffer provided and was
truncated (may happen on macOS, NetBSD, and Solaris, which allow unix socket
addresess larger than struct sockaddr_un). As such, ngx_sock_ntop() might
overread the sockaddr provided, as it used "%s" format and thus assumed
null-terminated string.
To fix this, the ngx_strnlen() function was introduced, and it is now used
to calculate correct length of sun_path.
Some OSes (notably macOS, NetBSD, and Solaris) allow unix socket addresses
larger than struct sockaddr_un. Moreover, some of them (macOS, Solaris)
return socklen of the socket address before it was truncated to fit the
buffer provided. As such, on these systems socklen must not be used without
additional check that it is within the buffer provided.
Appropriate checks added to ngx_event_accept() (after accept()),
ngx_event_recvmsg() (after recvmsg()), and ngx_set_inherited_sockets()
(after getsockname()).
We also obtain socket addresses via getsockname() in
ngx_connection_local_sockaddr(), but it does not need any checks as
it is only used for INET and INET6 sockets (as there can be no
wildcard unix sockets).
Various buffers are allocated in an assumption that there would be
no more than 4 year digits. This might not be true on platforms
with 64-bit time_t, as 64-bit time_t is able to represent more than that.
Such dates with more than 4 year digits hardly make sense though, as
various date formats in use do not allow them anyway.
As such, all dates are now truncated by ngx_gmtime() to December 31, 9999.
This should have no effect on valid dates, though will prevent potential
buffer overflows on invalid ones.
In ngx_gmtime(), instead of casting to ngx_uint_t we now work with
time_t directly. This allows using dates after 2038 on 32-bit platforms
which use 64-bit time_t, notably NetBSD and OpenBSD.
As the code is not able to work with negative time_t values, argument
is now set to 0 for negative values. As a positive side effect, this
results in Epoch being used for such values instead of a date in distant
future.
On Windows, a worker process does not call ngx_slab_init() from
ngx_init_zone_pool(), so ngx_slab_max_size, ngx_slab_exact_size,
and ngx_slab_exact_shift were left uninitialized.
When closing a socket with SO_REUSEPORT, Linux drops all connections waiting
in this socket's listen queue. Previously, it was believed to only result
in connection resets when reconfiguring nginx to use smaller number of worker
processes. It also results in connection resets during configuration
testing though.
Workaround is to avoid using SO_REUSEPORT when testing configuration. It
should prevent listening sockets from being created if a conflicting socket
already exists, while still preserving detection of other possible errors.
It should also cover UDP sockets.
The only downside of this approach seems to be that a configuration testing
won't be able to properly report the case when nginx was compiled with
SO_REUSEPORT, but the kernel is not able to set it. Such errors will be
reported on a real start instead.
It is safe because re-sending still works during graceful shutdown as
long as resolving takes place (and resolve tasks set their own timeouts
that are not cancelable).
Also, the new ctx->cancelable flag can be set to make resolve task's
timeout event cancelable.
Notably, on ppc64 with 64k pagesize, slab 0 (of size 8) requires
128 64-bit elements for bitmasks. The code bogusly assumed that
one uintptr_t is enough for bitmasks plus at least one free slot.
Resolving an SRV record includes resolving its host names in subrequests.
Previously, if memory allocation failed while reporting a subrequest result
after receiving a response from a DNS server, the SRV resolve handler was
called immediately with the NGX_ERROR state. However, if the SRV record
included another copy of the resolved name, it was reported once again.
This could trigger the use-after-free memory access after SRV resolve
handler freed the resolve context by calling ngx_resolve_name_done().
Now the SRV resolve handler is called only when all its subrequests are
completed.
The directive configures a timeout to be used when gracefully shutting down
worker processes. When the timer expires, nginx will try to close all
the connections currently open to facilitate shutdown.