When a keys_zone is full then each next request to the cache is
penalized. That is, the cache has to evict older files to get a
slot from the keys_zone synchronously. The patch introduces new
behavior in this scenario. Manager will try to maintain available
free slots in the keys_zone by cleaning old files in the background.
The "aio_write" directive is introduced, which enables use of aio
for writing. Currently it is meaningful only with "aio threads".
Note that aio operations can be done by both event pipe and output
chain, so proper mapping between r->aio and p->aio is provided when
calling ngx_event_pipe() and in output filter.
In collaboration with Valentin Bartenev.
The ngx_thread_write_chain_to_file() function introduced, which
uses ngx_file_t thread_handler, thread_ctx and thread_task fields.
The task context structure (ngx_thread_file_ctx_t) is the same for
both reading and writing, and can be safely shared as long as
operations are serialized.
The task->handler field is now always set (and not only when task is
allocated), as the same task can be used with different handlers.
The thread_write flag is introduced in the ngx_temp_file_t structure
to explicitly enable use of ngx_thread_write_chain_to_file() in
ngx_write_chain_to_temp_file() when supported by caller.
In collaboration with Valentin Bartenev.
This simplifies the interface of the ngx_thread_read() function.
Additionally, most of the thread operations now explicitly set
file->thread_task, file->thread_handler and file->thread_ctx,
to facilitate use of thread operations in other places.
(Potential problems remain with sendfile in threads though - it uses
file->thread_handler as set in ngx_output_chain(), and it should not
be overwritten to an incompatible one.)
In collaboration with Valentin Bartenev.
If a write event happens after sendfile() but before we've got the
sendfile results in the main thread, this write event will be ignored.
And if no more events will happen, the connection will hang.
Removing the events works in the simple cases, but not always, as
in some cases events are added back by an unrelated code. E.g.,
the upstream module adds write event in the ngx_http_upstream_init()
to track client aborts.
Fix is to use wev->complete instead. It is now set to 0 before
a sendfile() task is posted, and it is set to 1 once a write event
happens. If on completion of the sendfile() task wev->complete is 1,
we know that an event happened while we were executing sendfile(), and
the socket is still ready for writing even if sendfile() did not sent
all the data or returned EAGAIN.
While sendfilev() is documented to return -1 with EINVAL set
if the file was truncated, at least Solaris 11 silently returns 0,
and this results in CPU hog. Added a test to complain appropriately
if 0 is returned.
The main proxy function ngx_stream_proxy_process() can terminate the stream
session. The code, following it, should check its return code to make sure the
session still exists. This happens in client and upstream initialization
functions. Swapping ngx_stream_proxy_process() call with the code, that
follows it, leaves the same problem vice versa.
In future ngx_stream_proxy_process() will call ngx_stream_proxy_next_upstream()
making it too complicated to know if stream session still exists after this
call.
Now ngx_stream_proxy_process() is called from posted event handlers in both
places with no code following it. The posted event is automatically removed
once session is terminated.
It can now be set to "off" conditionally, e.g. using the map
directive.
An empty value will disable the emission of the Server: header
and the signature in error messages generated by nginx.
Any other value is treated as "on", meaning that full nginx
version is emitted in the Server: header and error messages
generated by nginx.
If proxy_cache is enabled, and proxy_no_cache tests true, it was previously
possible for the client connection to be closed after a 304. The fix is to
recheck r->header_only after the final cacheability is determined, and end the
request if no longer cacheable.
Example configuration:
proxy_cache foo;
proxy_cache_bypass 1;
proxy_no_cache 1;
If a client sends If-None-Match, and the upstream server returns 200 with a
matching ETag, no body should be returned to the client. At the start of
ngx_http_upstream_send_response proxy_no_cache is not yet tested, thus cacheable
is still 1 and downstream_error is set.
However, by the time the downstream_error check is done in process_request,
proxy_no_cache has been tested and cacheable is set to 0. The client connection
is then closed, regardless of keepalive.
If caching was used, "zero size buf in output" alerts might appear
in logs if a client prematurely closed connection. Alerts appeared
in the following situation:
- writing to client returned an error, so event pipe
drained all busy buffers leaving body output filters
in an invalid state;
- when upstream response was fully received,
ngx_http_upstream_finalize_request() tried to flush
all pending data.
Fix is to avoid flushing body if p->downstream_error is set.
Just using "cp" is incorrect, as it will overwrite old files
possibly used by OS, leading to unexpected effects. Changed
to "mv + cp", much like used for the main binary.
Sendfile handlers (aio preload and thread handler) are called within
ctx->output_filter() in ngx_output_chain(), and hence ctx->aio cannot
be set directly in ngx_output_chain(). Meanwhile, it must be set to
make sure loop within ngx_output_chain() will be properly terminated.
There are no known cases that trigger the problem, though in theory
something like aio + sub filter (something that needs body in memory,
and can also free some memory buffers) + sendfile can result in
"task already active" and "second aio post" alerts.
The fix is to set ctx->aio in ngx_http_copy_aio_sendfile_preload()
and ngx_http_copy_thread_handler().
For consistency, ctx->aio is no longer set explicitly in
ngx_output_chain_copy_buf(), as it's now done in
ngx_http_copy_thread_handler().
If sendfile in threads is used, it is possible that multiple
subrequests will trigger multiple ngx_linux_sendfile_thread() calls,
as operations are only serialized in output chain based on r->aio,
that is, on subrequest level.
This resulted in "task #N already active" alerts, in particular, when
running proxy_store.t with "aio threads; sendfile on;".
Fix is to tolerate duplicate calls, with an additional safety check
that the file is the same as previously used.
The same problem also affects "aio on; sendfile on;" on FreeBSD
(previously known as "aio sendfile;"), where aio->preload_handler()
could be called multiple times due to similar reasons, resulting in
"second aio post" alerts. Fix is the same as well.
It is also believed that similar problems can arise if a filter
calls the next body filter multiple times for some reason. These are
mostly theoretical though.
Previously, there were only three timeouts used globally for the whole HTTP/2
connection:
1. Idle timeout for inactivity when there are no streams in processing
(the "http2_idle_timeout" directive);
2. Receive timeout for incomplete frames when there are no streams in
processing (the "http2_recv_timeout" directive);
3. Send timeout when there are frames waiting in the output queue
(the "send_timeout" directive on a server level).
Reaching one of these timeouts leads to HTTP/2 connection close.
This left a number of scenarios when a connection can get stuck without any
processing and timeouts:
1. A client has sent the headers block partially so nginx starts processing
a new stream but cannot continue without the rest of HEADERS and/or
CONTINUATION frames;
2. When nginx waits for the request body;
3. All streams are stuck on exhausted connection or stream windows.
The first idea that was rejected was to detect when the whole connection
gets stuck because of these situations and set the global receive timeout.
The disadvantage of such approach would be inconsistent behaviour in some
typical use cases. For example, if a user never replies to the browser's
question about where to save the downloaded file, the stream will be
eventually closed by a timeout. On the other hand, this will not happen
if there's some activity in other concurrent streams.
Now almost all the request timeouts work like in HTTP/1.x connections, so
the "client_header_timeout", "client_body_timeout", and "send_timeout" are
respected. These timeouts close the request.
The global timeouts work as before.
Previously, the c->write->delayed flag was abused to avoid setting timeouts on
stream events. Now, the "active" and "ready" flags are manipulated instead to
control the processing of individual streams.
This is required for implementing per request timeouts.
Previously, the temporary pool was used only during skipping of
headers and the request pool was used otherwise. That required
switching of pools if the request was closed while parsing.
It wasn't a problem since the request could be closed only after
the validation of the fully parsed header. With the per request
timeouts, the request can be closed at any moment, and switching
of pools in the middle of parsing header name or value becomes a
problem.
To overcome this, the temporary pool is now always created and
used. Special checks are added to keep it when either the stream
is being processed or until header block is fully parsed.
Since 667aaf61a778 (1.1.17) the ngx_http_parse_header_line() function can return
NGX_HTTP_PARSE_INVALID_HEADER when a header contains NUL character. In this
case the r->header_end pointer isn't properly initialized, but the log message
in ngx_http_process_request_headers() hasn't been adjusted. It used the pointer
in size calculation, which might result in up to 2k buffer over-read.
Found with afl-fuzz.
The "build" target introduced to do all build-related tasks, and
it is now used in Makefile and in objs/Makefile as a dependency for
the "install" target.
In particular, this resolves problems as observed with dynamic modules
by people trying to do "make install" without calling "make" first.
This fixes "called a function you should not call" and
"shutdown while in init" errors as observed with OpenSSL 1.0.2f
due to changes in how OpenSSL handles SSL_shutdown() during
SSL handshakes.
The install_sw target first appeared in OpenSSL 0.9.7e and is documented since
OpenSSL 1.0.0 as the way to install the OpenSSL software without documentation.
Before 7142b04337d6, it was possible to build the OpenSSL library
along with nginx, and link nginx statically with this library
(--with-openssl=DIR --with-ld-opt=-static --with-http_ssl_module).
This was broken on Linux by not adding -ldl after -lcrypto.
The fix also makes it possible to link nginx statically on Linux
with the system OpenSSL library, which never worked before.
Now we always set NGX_CC_NAME to "msvc", and additionally test compiler
version as reported by "cl" in auto/cc/msvc (the same version is also
available via the _MSC_VER define). In particular, this approach allows
to properly check for C99 variadic macros support, which previously was
not used with MSVC versions not explicitly recognized.
Now unneeded wildcards in NGX_CC_NAME tests for msvc removed accordingly,
as well as unused wildcards for owc and icc.