Although it has better implementation status than HTTP/3 server push,
it remains of limited use, with adoption numbers seen as negligible.
Per IETF 102 materials, server push was used only in 0.04% of sessions.
It was considered to be "difficult to use effectively" in RFC 9113.
Its use is further limited by badly matching to fetch/cache/connection
models in browsers, see related discussions linked from [1].
Server push was disabled in Chrome 106 [2].
The http2_push, http2_push_preload, and http2_max_concurrent_pushes
directives are made obsolete. In particular, this essentially reverts
7201:641306096f5b and 7207:3d2b0b02bd3d.
[1] https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
[2] https://chromestatus.com/feature/6302414934114304
Previously, QUIC used the existing UDP framework, which was created for UDP in
Stream. However the way QUIC connections are created and looked up is different
from the way UDP connections in Stream are created and looked up. Now these
two implementations are decoupled.
ngx_http_v3_tables.h and ngx_http_v3_tables.c are renamed to
ngx_http_v3_table.h and ngx_http_v3_table.c to better match HTTP/2 code.
ngx_http_v3_streams.h and ngx_http_v3_streams.c are renamed to
ngx_http_v3_uni.h and ngx_http_v3_uni.c to better match their content.
The patch adds proper transitions between multiple networking addresses that
can be used by a single quic connection. New networking paths are validated
using PATH_CHALLENGE/PATH_RESPONSE frames.
The quic kernel bpf helper inspects packet payload for DCID, extracts key
and routes the packet into socket matching the key.
Due to reuseport feature, each worker owns a personal socket, which is
identified by the same key, used to create DCID.
BPF objects are locked in RAM and are subject to RLIMIT_MEMLOCK.
The "ulimit -l" command may be used to setup proper limits, if maps
cannot be created with EPERM or updated with ETOOLONG.
The filter is responsible for creating HTTP/3 response header and body.
The change removes differences to the default branch for
ngx_http_chunked_filter_module and ngx_http_header_filter_module.
All code dealing with serializing/deserializing
is moved int srv/event/ngx_event_quic_transport.c/h file.
All macros for dealing with data are internal to source file.
The header file exposes frame types and error codes.
The exported functions are currently packet header parsers and writers
and frames parser/writer.
The ngx_quic_header_t structure is updated with 'log' member. This avoids
passing extra argument to parsing functions that need to report errors.
New files:
src/event/ngx_event_quic_protection.h
src/event/ngx_event_quic_protection.c
The protection.h header provides interface to the crypto part of the QUIC:
2 functions to initialize corresponding secrets:
ngx_quic_set_initial_secret()
ngx_quic_set_encryption_secret()
and 2 functions to deal with packet processing:
ngx_quic_encrypt()
ngx_quic_decrypt()
Also, structures representing secrets are defined there.
All functions require SSL connection and a pool, only crypto operations
inside, no access to nginx connections or events.
Currently pool->log is used for the logging (instead of original c->log).
Postpone filter is an essential part of subrequest functionality. In absence
of it a subrequest response body is sent to the client out of order with
respect to the main request header and body, as well as other subrequests.
For in-memory subrequests the response is also sent to the client instead of
being stored in memory.
Currently the postpone filter is automatically enabled if one of the following
standard modules which are known to create subrequests is enabled: ssi, slice,
addition. However a third-party module that creates subrequests can still be
built without the postpone filter or be dynamically loaded in nginx built
without it.
The module implements random load-balancing algorithm with optional second
choice. In the latter case, the best of two servers is chosen, accounting
number of connections and server weight.
Example:
upstream u {
random [two [least_conn]];
server 127.0.0.1:8080;
server 127.0.0.1:8081;
server 127.0.0.1:8082;
server 127.0.0.1:8083;
}
The module allows passing requests to upstream gRPC servers.
The module is built by default as long as HTTP/2 support is compiled in.
Example configuration:
grpc_pass 127.0.0.1:9000;
Alternatively, the "grpc://" scheme can be used:
grpc_pass grpc://127.0.0.1:9000;
Keepalive support is available via the upstream keepalive module. Note
that keepalive connections won't currently work with grpc-go as it fails
to handle SETTINGS_HEADER_TABLE_SIZE.
To use with SSL:
grpc_pass grpcs://127.0.0.1:9000;
SSL connections use ALPN "h2" when available. At least grpc-go works fine
without ALPN, so if ALPN is not available we just establish a connection
without it.
Tested with grpc-c++ and grpc-go.
The phase is added instead of the try_files phase. Unlike the old phase, the
new one supports registering multiple handlers. The try_files implementation is
moved to a separate ngx_http_try_files_module, which now registers a precontent
phase handler.
Some combinations of options might cause the builds with the
--with-stream option to break due to invalid value of the
STREAM_INCS make variable, e.g.
auto/configure \
--with-stream \
--with-http_perl_module=dynamic \
--without-http_memcached_module \
--without-http_empty_gif_module \
--without-http_browser_module \
--without-http_upstream_hash_module \
--without-http_upstream_ip_hash_module \
--without-http_upstream_least_conn_module \
--without-http_upstream_keepalive_module \
--without-http_upstream_zone_module \
Explicit initialization of ngx_module_libs and ngx_module_link
matches what we already do when processing mail modules, and
is also required after the next change.