In order to finalize stream the error flag is set on fake connection and
either "write" or "read" event handler is called. The read events of fake
connections are always ready, but it's not the case with the write events.
When the ready flag isn't set, the error flag can be not checked in some
cases and as a result stream isn't finalized. Now the ready flag is
explicilty set on write events for proper finalization in all cases.
Previously, flow control didn't account for padding in DATA frames,
which meant that its view of the world could drift from peer's view
by up to 256 bytes per received padded DATA frame, which could lead
to a deadlock.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
Previously, its value accounted for payloads of HEADERS, CONTINUATION
and DATA frames, as well as frame headers of HEADERS and DATA frames,
but it didn't account for frame headers of CONTINUATION frames.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
Previously, connection write handler was called, resulting in wake up
of the active subrequest. This change makes it possible to read data
in non-active subrequests as well. For example, this allows SSI to
process instructions in non-active subrequests earlier and start
additional subrequests if needed, reducing overall response time.
If the subrequest is already finalized, the handler set with aio_write
may still be used by sendfile in threads when using range requests
(see also e4c1f5b32868, and the original note in 9fd738b85fad). Calling
already finalized subrequest's r->write_event_handler in practice
results in request hang in some cases.
Fix is to trigger connection event handler if the subrequest was already
finalized.
If of.err is 0, it means that there was a memory allocation error
and no further logging and/or processing is needed. The of.failed
string can be only accessed if of.err is not 0.
The ev->timedout flag is set on first timer expiration, and never reset
after it. Due to this the code to stop the timer when the timer was
canceled never worked (except in a very specific time frame immediately
after start), and the timer was always armed again. This essentially
resulted in a buffer flush at the end of an event loop iteration.
This behaviour actually seems to be better than just stopping the flush
timer for the whole shutdown, so it is preserved as is instead of fixing
the code to actually remove the timer. It will be further improved by
upcoming changes to preserve cancelable timers if there are other timers
blocking shutdown.
Most notably, this fixes possible buffer overflows if number of large
client header buffers in a virtual server is different from the one in
the default server.
Reported by Daniil Bondarev.
Cloned subrequests should inherit r->content_handler. This way they will
be able to use the same location configuration as the original request
if there are "if" directives in the configuration.
Without r->content_handler inherited, the following configuration tries
to access a static file in the update request:
location / {
set $true 1;
if ($true) {
# nothing
}
proxy_pass http://backend;
proxy_cache one;
proxy_cache_use_stale updating;
proxy_cache_background_update on;
}
See http://mailman.nginx.org/pipermail/nginx/2017-February/053019.html for
initial report.
With "proxy_ignore_client_abort off" (the default), upstream module changes
r->read_event_handler to ngx_http_upstream_rd_check_broken_connection().
If the handler is not cleared during upstream finalization, it can be
triggered later, causing unexpected effects, if, for example, a request
was redirected to a different location using error_page or X-Accel-Redirect.
In particular, it makes "proxy_ignore_client_abort on" non-working after
a redirection in a configuration like this:
location = / {
error_page 502 = /error;
proxy_pass http://127.0.0.1:8082;
}
location /error {
proxy_pass http://127.0.0.1:8083;
proxy_ignore_client_abort on;
}
It is also known to cause segmentation faults with aio used, see
http://mailman.nginx.org/pipermail/nginx-ru/2015-August/056570.html.
Fix is to explicitly set r->read_event_handler to ngx_http_block_reading()
during upstream finalization, similar to how it is done in the request body
reading code and in the limit_req module.
This allows to store larger ETag values for proxy_cache_revalidate,
including ones generated as SHA256, and cache responses with longer
Vary (ticket #826).
In particular, this fixes caching of Amazon S3 responses with CORS
enabled, which now use "Vary: Origin, Access-Control-Request-Headers,
Access-Control-Request-Method".
Cache version bumped accordingly.
Previously, slice subrequest location was selected based on request URI.
If request is then redirected to a new location, its context array is cleared,
making the slice module loose current slice range information. This lead to
broken output. Now subrequests with the NGX_HTTP_SUBREQUEST_CLONE flag are
created for slices. Such subrequests stay in the same location as the parent
request and keep the right slice context.
Previously, there was no way to enable the proxy_cache_use_stale behavior by
reading the backend response. Now, stale-while-revalidate and stale-if-error
Cache-Control extensions (RFC 5861) are supported. They specify, how long a
stale response can be used when a cache entry is being updated, or in case of
an error.
Previously, buffer size was not changed from the one saved during
initial ngx_ssl_create_connection(), even if the buffer itself was not
yet created. Fix is to change c->ssl->buffer_size in the SNI callback.
Note that it should be also possible to update buffer size even in non-SNI
virtual hosts as long as the buffer is not yet allocated. This looks
like an overcomplication though.
The ngx_event_pipe() function wasn't called on write events with
wev->delayed set. As a result, threaded writing results weren't
properly collected in ngx_event_pipe_write_to_downstream() when a
write event was triggered for a completed write.
Further, this wasn't detected, as p->aio was reset by a thread completion
handler, and results were later collected in ngx_event_pipe_read_upstream()
instead of scheduling a new write of additional data. If this happened
on the last reading from an upstream, last part of the response was never
written to the cache file.
Similar problems might also happen in case of timeouts when writing to
client, as this also results in ngx_event_pipe() not being called on write
events. In this scenario socket leaks were observed.
Fix is to check if p->writing is set in ngx_event_pipe_read_upstream(), and
therefore collect results of previous write operations in case of read events
as well, similar to how we do so in ngx_event_pipe_write_downstream().
This is enough to fix the wev->delayed case. Additionally, we now call
ngx_event_pipe() from ngx_http_upstream_process_request() if there are
uncollected write operations (p->writing and !p->aio). This also fixes
the wev->timedout case.
There are lots of C4244 warnings (conversion from 'type1' to 'type2',
possible loss of data), so they were disabled.
The same applies to C4267 warnings (conversion from 'size_t' to 'type',
possible loss of data), most notably - conversion from ngx_str_t.len to
ngx_variable_value_t.len (which is unsigned:28). Additionally, there
is at least one case when it is not possible to fix the warning properly
without introducing win32-specific code: recv() on win32 uses "int len",
while POSIX defines "size_t len".
The ssize_t type now properly defined for 64-bit compilation with MSVC.
Caught by warning C4305 (truncation from '__int64' to 'ssize_t'), on
"cutoff = NGX_MAX_SIZE_T_VALUE / 10" in ngx_atosz()).
Several C4334 warnings (result of 32-bit shift implicitly converted to 64 bits)
were fixed by adding explicit conversions.
Several C4214 warnings (nonstandard extension used: bit field types other
than int) in ngx_http_script.h fixed by changing bit field types from
uintptr_t to unsigned.
Most notably, warning W8012 (comparing signed and unsigned values) reported
in multiple places where an unsigned value of small type (e.g., u_short) is
promoted to an int and compared to an unsigned value.
Warning W8072 (suspicious pointer arithmetic) disabled, it is reported
when we increment base pointer in ngx_shm_alloc().
The current version of HTTP/1.1 standard allows relative references in
redirects (https://tools.ietf.org/html/rfc7231#section-7.1.2).
Allow this form for redirects generated by nginx by introducing the new
directive absolute_redirect.
A bug was introduced by 82efcedb310b that could lead to timing out of
responses or segmentation fault, when accept_mutex was enabled.
The output queue in HTTP/2 can contain frames from different streams.
When the queue is sent, all related write handlers need to be called.
In order to do so, the streams were added to the h2c->posted queue
after handling sent frames. Then this queue was processed in
ngx_http_v2_write_handler().
If accept_mutex is enabled, the event's "ready" flag is set but its
handler is not called immediately. Instead, the event is added to
the ngx_posted_events queue. At the same time in this queue can be
events from upstream connections. Such events can result in sending
output queue before ngx_http_v2_write_handler() is triggered. And
at the time ngx_http_v2_write_handler() is called, the output queue
can be already empty with some streams added to h2c->posted.
But after 82efcedb310b, these streams weren't processed if all frames
have already been sent and the output queue was empty. This might lead
to a situation when a number of streams were get stuck in h2c->posted
queue for a long time. Eventually these streams might get closed by
the send timeout.
In the worst case this might also lead to a segmentation fault, if
already freed stream was left in the h2c->posted queue. This could
happen if one of the streams was terminated but wasn't closed, due to
the HEADERS frame or a partially sent DATA frame left in the output
queue. If this happened the ngx_http_v2_filter_cleanup() handler
removed the stream from the h2c->waiting or h2c->posted queue on
termination stage, before the frame has been sent, and the stream
was again added to the h2c->posted queue after the frame was sent.
In order to fix all these problems and simplify the code, write
events of fake stream connections are now added to ngx_posted_events
instead of using a custom h2c->posted queue.
By default, "map" creates cacheable variables [1]. With this
parameter it creates a non-cacheable variable.
An original idea was to deduce the cacheability of the "map"
variable by checking the cacheability of variables specified
in source and resulting values, but it turned to be too hard.
For example, a cacheable variable can be overridden with the
"set" directive or with the SSI "set" command. Also, keeping
"map" variables cacheable by default is good for performance
reasons. This required adding a new parameter.
[1] Before db699978a33f (1.11.0), the cacheability of the
"map" variable could vary depending on the cacheability of
variables specified in resulting values (ticket #1090).
This is believed to be a bug rather than a feature.
For Perl compiled with threads, without PERL_SET_INTERP() the PL_curinterp
remains set to the first interpreter created (that is, one created at
original start). As a result after a reload Perl thinks that operations
are done withing a thread, and, most notably, denies to change environment.
For example, the following code properly works on original start,
but fails after a reload:
perl 'sub {
my $r = shift;
$r->send_http_header("text/plain");
$ENV{TZ} = "UTC";
$r->print("tz: " . $ENV{TZ} . " (localtime " . (localtime()) . ")\n");
$ENV{TZ} = "Europe/Moscow";
$r->print("tz: " . $ENV{TZ} . " (localtime " . (localtime()) . ")\n");
return OK;
}';
To fix this, PERL_SET_INTERP() added anywhere where PERL_SET_CONTEXT()
was previously used.
Note that PERL_SET_INTERP() doesn't seem to be documented anywhere.
Yet it is used in some other software, and also seems to be the only
solution possible.
Atom size is the sum of atom header size and atom data size. The
specification says that the first 4 bytes are set to one when
the atom size is greater than the maximum unsigned 32-bit value.
Which means atom header size should be considered when the
comparison takes place between atom data size and 0xffffffff.
The variable contains a list of curves as supported by the client.
Known curves are listed by their names, unknown ones are shown
in hex, e.g., "0x001d:prime256v1:secp521r1:secp384r1".
Note that OpenSSL uses session data for SSL_get1_curves(), and
it doesn't store full list of curves supported by the client when
serializing a session. As a result $ssl_curves is only available
for new sessions (and will be empty for reused ones).
The variable is only meaningful when using OpenSSL 1.0.2 and above.
With older versions the variable is empty.
The variable contains list of ciphers as supported by the client.
Known ciphers are listed by their names, unknown ones are shown
in hex, e.g., ""AES128-SHA:AES256-SHA:0x00ff".
The variable is fully supported only when using OpenSSL 1.0.2 and above.
With older version there is an attempt to provide some information
using SSL_get_shared_ciphers(). It only lists known ciphers though.
Moreover, as OpenSSL uses session data for SSL_get_shared_ciphers(),
and it doesn't store relevant data when serializing a session. As
a result $ssl_ciphers is only available for new sessions (and not
available for reused ones) when using OpenSSL older than 1.0.2.
Previously, a request body bigger than "client_body_buffer_size" wasn't written
into a temporary file if it has been pre-read entirely. The preread buffer
is freed after processing, thus subsequent use of it might result in sending
corrupted body or cause a segfault.
On Linux, the rename syscall can be slow due to a global file system lock,
acquired for the entire rename operation, unless both old and new files are
in the same directory. To address this temporary files are now created
in the same directory as the expected resulting cache file when using the
"use_temp_path=off" parameter.
This change mostly reverts 99639bfdfa2a and 3281de8142f5, restoring the
behaviour as of a9138c35120d (with minor changes).
Holding a cache node lock doesn't make sense as we can't use caching
anyway, and results in "ignore long locked inactive cache entry" alerts
if a node is locked for a long time.
The same is done for unbuffered connections, as they can be alive for
a long time as well.
It configures a threshold in bytes, above which client range
requests are not cached. In such a case the client's Range
header is passed directly to a proxied server.
As the pointer to the first argument was tested instead of the argument
itself, array of arguments was always created, even if there were no
arguments. Fix is to test args[0] instead of args.
Found by Coverity (CID 1356862).
The only thing that default_port comparison did in the current
code is prevented implicit upstreams to the same address/port
from being aliased for http and https, e.g.:
proxy_pass http://10.0.0.1:12345;
proxy_pass https://10.0.0.1:12345;
This is inconsistent because it doesn't work for a similar case
with uswgi_pass:
uwsgi_pass uwsgi://10.0.0.1:12345;
uwsgi_pass suwsgi://10.0.0.1:12345;
or with an explicit upstream:
upstream u {
server 10.0.0.1:12345;
}
proxy_pass http://u;
proxy_pass https://u;
Before c9059bd5445b, default_port comparison was needed to
differentiate implicit upstreams in
proxy_pass http://example.com;
and
proxy_pass https://example.com;
as u->port was not set.
When an upstream{} block follows a proxy_pass reference to it,
such an upstream inherited port and default_port settings from
proxy_pass. This was different from when they came in another
order (see ticket #1059). Explicit upstreams should not have
port and default_port in any case.
This fixes the following case:
server { location / { proxy_pass http://u; } ... }
upstream u { server 127.0.0.1; }
server { location / { proxy_pass https://u; } ... }
but not the following:
server { location / { proxy_pass http://u; } ... }
server { location / { proxy_pass https://u; } ... }
upstream u { server 127.0.0.1; }
If proxy_pass (and friends) with variables evaluates an upstream
specified with literal address, nginx always created a per-request
upstream.
Now, if there's a matching upstream specified in the configuration
(either implicit or explicit), it will be used instead.
This fixes inconsistency in what is stored in the "host" field.
Normally it would contain the "host" part of the parsed URL
(e.g., proxy_pass with variables), but for the case of an
implicit upstream specified with literal address it contained
the text representation of the socket address (that is, host
including port for IP).
Now the "host" field always contains the "host" part of the URL,
while the text representation of the socket address is stored
in the newly added "name" field.
The ngx_http_upstream_create_round_robin_peer() function was
modified accordingly in a way to be compatible with the code
that does not know about the new "name" field.
The "stream" code was similarly modified except for not adding
compatibility in ngx_stream_upstream_create_round_robin_peer().
This change is also a prerequisite for the next change.
The new directive "http2_max_requests" is introduced. From users point of
view it works quite similar to "keepalive_requests" but has significantly
bigger default value that is more suitable for HTTP/2.
This allows to correctly parse "start" and "end" arguments without
null-termination (ticket #475), and also fixes rounding errors observed
with strtod() when using i387 instructions.
Originally, the variables kept a result of X509_NAME_oneline(),
which is, according to the official documentation, a legacy
function. It produces a non standard output form and has
various quirks and inconsistencies.
The RFC2253 compliant behavior is introduced for these variables.
The original variables are available through $ssl_client_s_dn_legacy
and $ssl_client_i_dn_legacy.
Previously, while shutting down gracefully, the HTTP/2 connections were
closed in transition to idle state after all active streams have been
processed. That might never happen if the client continued opening new
streams.
Now, nginx sends GOAWAY to all HTTP/2 connections and ignores further
attempts to open new streams. A worker process will quit as soon as
processing of already opened streams is finished.
BoringSSL changed SSL_set_tlsext_host_name() to be a real function
with a (const char *) argument, so it now triggers a warning due to
conversion from (u_char *). Added an explicit cast to silence the
warning.
Prodded by Piotr Sikora, Alessandro Ghedini.
When headers are set at the "http" level and not redefined in
a server block, we now preserve conf->headers into the "http"
section configuration to inherit it to all servers.
The same applies to conf->headers_cache, though it may not be effective
if no servers use cache at the "server" level as conf->headers_cache
is only initialized if cache is enabled on a given level.
Similar changes made in fastcgi/scgi/uwsgi to preserve conf->params
and conf->params_cache.
When headers to hide are set at the "http" level and not redefined in
a server block, we now preserve compiled headers hash into the "http"
section configuration to inherit this hash to all servers.
Dependency on cache settings existed prior to 2728c4e4a9ae (0.8.44)
as Set-Cookie header was automatically hidden from responses when
using cache. This is no longer the case, and hide_headers_hash can
be safely inherited regardless of cache settings.
With this change it is now possible to load modules compiled without
the "--with-http_ssl_module" configure option into nginx binary compiled
with it, and vice versa (if a module doesn't use ssl-specific functions),
assuming both use the "--with-compat" option.
With this change it is now possible to load modules compiled without
the "--with-file-aio" configure option into nginx binary compiled with it,
and vice versa, assuming both use the "--with-compat" option.
With this change it is now possible to load modules compiled without
the "--with-threads" configure option into nginx binary compiled with it,
and vice versa (if a module does not use thread-specific functions),
assuming both use the "--with-compat" option.
It is used at least by SOAP (M-POST method, defined by RFC 2774) and
by WebDAV versioning (VERSION-CONTROL and BASELINE-CONTROL methods,
defined by RFC 3253).
Duplicate processing was possible if the address set by realip was
listed in set_realip_from, and there was an internal redirect so module
context was cleared. This resulted in exactly the same address being set,
so this wasn't a problem before the $realip_remote_addr variable was
introduced, though now results in incorrect $realip_remote_addr being
picked.
Fix is to use ngx_http_realip_get_module_ctx() to look up module context
even if it was cleared. Additionally, the order of checks was switched to
check the configuration first as it looks more effective.
The new parameters "manager_files", "manager_sleep"
and "manager_threshold" were added to proxy_cache_path
and friends.
Note that ngx_path_manager_pt was changed to return ngx_msec_t
instead of time_t (API change).
When the last_buf flag is cleared for add_after_body to append more data from a
subrequest, other filters may still have buffered data, which should be flushed
at this point. For example, the sub_filter may have a partial match buffered,
which will only be flushed after the subrequest is done, ending up with
interleaved data in output.
Setting last_in_chain instead of last_buf flushes the data and fixes the order
of output buffers.
The last_buf flag should only be set in the last buffer of the main request.
Otherwise, several last_buf flags can appear in output. This can, for example,
break the chunked filter, which will include several final chunks in output.
The IPV6_V6ONLY macro is now checked only while parsing appropriate flag
and when using the macro.
The ipv6only field in listen structures is always initialized to 1,
even if not supported on a given platform. This is expected to prevent
a module compiled without IPV6_V6ONLY from accidentally creating dual
sockets if loaded into main binary with proper IPV6_V6ONLY support.
It is to be used as a bitmask with various bits set/reset when appropriate.
Any bit set means that the peer should not be used, that is, exactly what
current checks do, no additional changes required.
Previously flags passed by --with-ld-opt were not used when building perl
module, which meant hardening flags provided by package build systems were not
applied.
All the errors that prevent loading configuration must be printed on the "emerg"
log level. Previously, nginx might silently fail to load configuration in some
cases as the default log level is "error".
Previously, the realip module could be left with uninitialized context after an
error in the ngx_http_realip_set_addr() function. That context could be later
accessed by $realip_remote_addr and $realip_remote_port variable handlers.
If the range includes two or more /16 networks and does
not start at the /16 boundary, the last subrange was not
removed (see 91cff7f97a50 for details).
Unlike $upstream_response_length that only counts the body size,
the new variable also counts the size of response header and data
received after switching protocols when proxying WebSockets.
If PCRE is disabled, captures were treated as normal variables in
ngx_http_script_compile(), while code calculating flushes array length in
ngx_http_compile_complex_value() did not account captures as variables.
This could lead to write outside of the array boundary when setting
last element to -1.
Found with AddressSanitizer.
It fixes potential connection leak if some unsent data was left in the SSL
buffer. Particularly, that could happen when a client canceled the stream
after the HEADERS frame has already been created. In this case no other
frames might be produced and the HEADERS frame alone didn't flush the buffer.
Checking for return value of c->send_chain() isn't sufficient since there
are data can be left in the SSL buffer. Now the wew->ready flag is used
instead.
In particular, this fixed a connection leak in cases when all streams were
closed, but there's still some data to be sent in the SSL buffer and the
client forgot about the connection.
Particularly this fixes alerts on OS X and NetBSD systems when HTTP/2 is
configured over plain TCP sockets.
On these systems calling writev() with no data leads to EINVAL errors
being logged as "writev() failed (22: Invalid argument) while processing
HTTP/2 connection".
Previously, if the worker process exited, GOAWAY was sent to connections in
idle state, but connections with active streams were closed without GOAWAY.
On non-aligned platforms, properly cast argument before left-shifting it in
ngx_http_v2_parse_uint32 that is used with u_char. Otherwise it propagates
to int to hold the value and can step over the sign bit. Usually, on known
compilers, this results in negation. Furthermore, a subsequent store into a
wider type, that is ngx_uint_t on 64-bit platforms, results in sign-extension.
In practice, this can be observed in debug log as a very large exclusive bit
value, when client sent PRIORITY frame with exclusive bit set:
: *14 http2 PRIORITY frame sid:5 on 1 excl:8589934591 weight:17
Found with UndefinedBehaviorSanitizer.
Previously, when a buffer was processed by the sub filter, its final bytes
could be buffered by the filter even if they don't match any pattern.
This happened because the Boyer-Moore algorithm, employed by the sub filter
since b9447fc457b4 (1.9.4), matches the last characters of patterns prior to
checking other characters. If the last character is out of scope, initial
bytes of a potential match are buffered until the last character is available.
Now, after receiving a flush or recycled buffer, the filter performs
additional checks to reduce the number of buffered bytes. The potential match
is checked against the initial parts of all patterns. Non-matching bytes are
not buffered. This improves processing of a chunked response from upstream
by sending the entire chunks without buffering unless a partial match is found
at the end of a chunk.
This patch moves various OpenSSL-specific function calls into the
OpenSSL module and introduces ngx_ssl_ciphers() to make nginx more
crypto-library-agnostic.
When the stream is terminated the HEADERS frame can still wait in the output
queue. This frame can't be removed and must be sent to the client anyway,
since HTTP/2 uses stateful compression for headers. So in order to postpone
closing and freeing memory of such stream the special close stream handler
is set to the write event. After the HEADERS frame is sent the write event
is called and the stream will be finally closed.
Some events like receiving a RST_STREAM can trigger the read handler of such
stream in closing state and cause unexpected processing that can result in
another attempt to finalize the request. To prevent it the read handler is
now set to ngx_http_empty_handler.
Thanks to Amazon.
There is no reason to add the "Content-Length: 0" header to a proxied request
without body if the header isn't presented in the original request.
Thanks to Amazon.
According to RFC 7540, an endpoint should not send more than one RST_STREAM
frame for any stream.
Also, now all the data frames will be skipped while termination.
The ngx_http_v2_finalize_connection() closes current stream, but that is an
invalid operation while processing unbuffered upload. This results in access
to already freed memory, since the upstream module sets a cleanup handler that
also finalizes the request.
Previously, the stream's window was kept zero in order to prevent a client
from sending the request body before it was requested (see 887cca40ba6a for
details). Until such initial window was acknowledged all requests with
data were rejected (see 0aa07850922f for details).
That approach revealed a number of problems:
1. Some clients (notably MS IE/Edge, Safari, iOS applications) show an error
or even crash if a stream is rejected;
2. This requires at least one RTT for every request with body before the
client receives window update and able to send data.
To overcome these problems the new directive "http2_body_preread_size" is
introduced. It sets the initial window and configures a special per stream
preread buffer that is used to save all incoming data before the body is
requested and processed.
If the directive's value is lower than the default initial window (65535),
as previously, all streams with data will be rejected until the new window
is acknowledged. Otherwise, no special processing is used and all requests
with data are welcome right from the connection start.
The default value is chosen to be 64k, which is bigger than the default
initial window. Setting it to zero is fully complaint to the previous
behavior.
Now, the module extracts optional port which may accompany an
IP address. This custom extension is introduced, among other
things, in order to facilitate logging of original client ports.
Addresses with ports are expected to be in the RFC 3986 format,
that is, with IPv6 addresses in square brackets. E.g.,
"X-Real-IP: [2001:0db8::1]:12345" sets client port ($remote_port)
to 12345.
Previously, when the client address was changed to the one from
the PROXY protocol header, the client port ($remote_port) was
reset to zero. Now the client port is also changed to the one
from the PROXY protocol header.
Since 4fbef397c753 nginx rejects with the 400 error any attempts of
requesting different host over the same connection, if the relevant
virtual server requires verification of a client certificate.
While requesting hosts other than negotiated isn't something legal
in HTTP/1.x, the HTTP/2 specification explicitly permits such requests
for connection reuse and has introduced a special response code 421.
According to RFC 7540 Section 9.1.2 this code can be sent by a server
that is not configured to produce responses for the combination of
scheme and authority that are included in the request URI. And the
client may retry the request over a different connection.
Now this code is used for requests that aren't authorized in current
connection. After receiving the 421 response a client will be able
to open a new connection, provide the required certificate and retry
the request.
Unfortunately, not all clients currently are able to handle it well.
Notably Chrome just shows an error, while at least the latest version
of Firefox retries the request over a new connection.
OpenSSL 1.0.2+ allows configuring a curve list instead of a single curve
previously supported. This allows use of different curves depending on
what client supports (as available via the elliptic_curves extension),
and also allows use of different curves in an ECDHE key exchange and
in the ECDSA certificate.
The special value "auto" was introduced (now the default for ssl_ecdh_curve),
which means "use an internal list of curves as available in the OpenSSL
library used". For versions prior to OpenSSL 1.0.2 it maps to "prime256v1"
as previously used. The default in 1.0.2b+ prefers prime256v1 as well
(and X25519 in OpenSSL 1.1.0+).
As client vs. server preference of curves is controlled by the
same option as used for ciphers (SSL_OP_CIPHER_SERVER_PREFERENCE),
the ssl_prefer_server_ciphers directive now controls both.
Both minor and major versions are now limited to 999 maximum. In case of
r->http_minor, this limit is already implied by the code. Major version,
r->http_major, in theory can be up to 65535 with current code, but such
values are very unlikely to become real (and, additionally, such values
are not allowed by RFC 7230), so the same test was used for r->http_major.
When it's known that the kernel supports EPOLLRDHUP, there is no need in
additional recv() call to get EOF or error when the flag is absent in the
event generated by the kernel. A special runtime test is done at startup
to detect if EPOLLRDHUP is actually supported by the kernel because
epoll_ctl() silently ignores unknown flags.
With this knowledge it's now possible to drop the "ready" flag for partial
read. Previously, the "ready" flag was kept until the recv() returned EOF
or error. In particular, this change allows the lingering close heuristics
(which relies on the "ready" flag state) to actually work on Linux, and not
wait for more data in most cases.
The "available" flag is now used in the read event with the semantics similar
to the corresponding counter in kqueue.
This parameter lets binding the proxy connection to a non-local address.
Upstream will see the connection as coming from that address.
When used with $remote_addr, upstream will accept the connection from real
client address.
Example:
proxy_bind $remote_addr transparent;
The WINDOW_UPDATE frame could be left in the output queue for an indefinite
period of time resulting in the request timeout.
This might happen if reading of the body was triggered by an event unrelated
to client connection, e.g. by the limit_req timer.
Particularly this prevents sending WINDOW_UPDATE with zero delta
which can result in PROTOCOL_ERROR.
Also removed surplus setting of no_flow_control to 0.
Refusing streams is known to be incorrectly handled at least by IE, Edge
and Safari. Make sure to provide appropriate logging to simplify fixing
this in the affected browsers.
After the 92464ebace8e change, it has been discovered that not all
clients follow the RFC and handle RST_STREAM with NO_ERROR properly.
Notably, Chrome currently interprets it as INTERNAL_ERROR and discards
the response.
As a workaround, instead of RST_STREAM the maximum stream window update
will be sent, which will let client to send up to 2 GB of a request body
data before getting stuck on flow control. All the received data will
be silently discarded.
See for details:
http://mailman.nginx.org/pipermail/nginx-devel/2016-April/008143.htmlhttps://bugs.chromium.org/p/chromium/issues/detail?id=603182
A client is allowed to send requests before receiving and acknowledging
the SETTINGS frame. Such a client having a wrong idea about the stream's
could send the request body that nginx isn't ready to process.
The previous behavior was to send RST_STREAM with FLOW_CONTROL_ERROR in
such case, but it didn't allow retrying requests that have been rejected.
This prevents forming empty records out of such buffers. Particularly it fixes
double end-of-stream records with chunked transfer encoding, or when HTTP/2 is
used and the END_STREAM flag has been sent without data. In both cases there
is an empty buffer at the end of the request body chain with the "last_buf"
flag set.
The canonical libfcgi, as well as php implementation, tolerates such records,
while the HHVM parser is more strict and drops the connection (ticket #950).
There are two improvements:
1. Support for request body filters;
2. Receiving of request body is started only after
the ngx_http_read_client_request_body() call.
The last one fixes the problem when the client_max_body_size value might not be
respected from the right location if the location was changed either during the
process of receiving body or after the whole body had been received.
RFC 7540 states that "A server can send a complete response prior to the client
sending an entire request if the response does not depend on any portion of the
request that has not been sent and received. When this is true, a server MAY
request that the client abort transmission of a request without error by sending
a RST_STREAM with an error code of NO_ERROR after sending a complete response
(i.e., a frame with the END_STREAM flag)."
This should prevent a client from blocking on the stream window, since it isn't
maintained for closed streams. Currently, quite big initial stream windows are
used, so such blocking is very unlikly, but that will be changed in the further
patches.
By default, requests with non-idempotent methods (POST, LOCK, PATCH)
are no longer retried in case of errors if a request was already sent
to a backend. Previous behaviour can be restored by using
"proxy_next_upstream ... non_idempotent".
Much like normal connections, cached connections are now tested against
u->conf->next_upstream, and u->state->status is now always set.
This allows to disable additional tries even with upstream keepalive
by using "proxy_next_upstream off".
When a keys_zone is full then each next request to the cache is
penalized. That is, the cache has to evict older files to get a
slot from the keys_zone synchronously. The patch introduces new
behavior in this scenario. Manager will try to maintain available
free slots in the keys_zone by cleaning old files in the background.
The "aio_write" directive is introduced, which enables use of aio
for writing. Currently it is meaningful only with "aio threads".
Note that aio operations can be done by both event pipe and output
chain, so proper mapping between r->aio and p->aio is provided when
calling ngx_event_pipe() and in output filter.
In collaboration with Valentin Bartenev.
This simplifies the interface of the ngx_thread_read() function.
Additionally, most of the thread operations now explicitly set
file->thread_task, file->thread_handler and file->thread_ctx,
to facilitate use of thread operations in other places.
(Potential problems remain with sendfile in threads though - it uses
file->thread_handler as set in ngx_output_chain(), and it should not
be overwritten to an incompatible one.)
In collaboration with Valentin Bartenev.
It can now be set to "off" conditionally, e.g. using the map
directive.
An empty value will disable the emission of the Server: header
and the signature in error messages generated by nginx.
Any other value is treated as "on", meaning that full nginx
version is emitted in the Server: header and error messages
generated by nginx.
If proxy_cache is enabled, and proxy_no_cache tests true, it was previously
possible for the client connection to be closed after a 304. The fix is to
recheck r->header_only after the final cacheability is determined, and end the
request if no longer cacheable.
Example configuration:
proxy_cache foo;
proxy_cache_bypass 1;
proxy_no_cache 1;
If a client sends If-None-Match, and the upstream server returns 200 with a
matching ETag, no body should be returned to the client. At the start of
ngx_http_upstream_send_response proxy_no_cache is not yet tested, thus cacheable
is still 1 and downstream_error is set.
However, by the time the downstream_error check is done in process_request,
proxy_no_cache has been tested and cacheable is set to 0. The client connection
is then closed, regardless of keepalive.
If caching was used, "zero size buf in output" alerts might appear
in logs if a client prematurely closed connection. Alerts appeared
in the following situation:
- writing to client returned an error, so event pipe
drained all busy buffers leaving body output filters
in an invalid state;
- when upstream response was fully received,
ngx_http_upstream_finalize_request() tried to flush
all pending data.
Fix is to avoid flushing body if p->downstream_error is set.
Sendfile handlers (aio preload and thread handler) are called within
ctx->output_filter() in ngx_output_chain(), and hence ctx->aio cannot
be set directly in ngx_output_chain(). Meanwhile, it must be set to
make sure loop within ngx_output_chain() will be properly terminated.
There are no known cases that trigger the problem, though in theory
something like aio + sub filter (something that needs body in memory,
and can also free some memory buffers) + sendfile can result in
"task already active" and "second aio post" alerts.
The fix is to set ctx->aio in ngx_http_copy_aio_sendfile_preload()
and ngx_http_copy_thread_handler().
For consistency, ctx->aio is no longer set explicitly in
ngx_output_chain_copy_buf(), as it's now done in
ngx_http_copy_thread_handler().
Previously, there were only three timeouts used globally for the whole HTTP/2
connection:
1. Idle timeout for inactivity when there are no streams in processing
(the "http2_idle_timeout" directive);
2. Receive timeout for incomplete frames when there are no streams in
processing (the "http2_recv_timeout" directive);
3. Send timeout when there are frames waiting in the output queue
(the "send_timeout" directive on a server level).
Reaching one of these timeouts leads to HTTP/2 connection close.
This left a number of scenarios when a connection can get stuck without any
processing and timeouts:
1. A client has sent the headers block partially so nginx starts processing
a new stream but cannot continue without the rest of HEADERS and/or
CONTINUATION frames;
2. When nginx waits for the request body;
3. All streams are stuck on exhausted connection or stream windows.
The first idea that was rejected was to detect when the whole connection
gets stuck because of these situations and set the global receive timeout.
The disadvantage of such approach would be inconsistent behaviour in some
typical use cases. For example, if a user never replies to the browser's
question about where to save the downloaded file, the stream will be
eventually closed by a timeout. On the other hand, this will not happen
if there's some activity in other concurrent streams.
Now almost all the request timeouts work like in HTTP/1.x connections, so
the "client_header_timeout", "client_body_timeout", and "send_timeout" are
respected. These timeouts close the request.
The global timeouts work as before.
Previously, the c->write->delayed flag was abused to avoid setting timeouts on
stream events. Now, the "active" and "ready" flags are manipulated instead to
control the processing of individual streams.
This is required for implementing per request timeouts.
Previously, the temporary pool was used only during skipping of
headers and the request pool was used otherwise. That required
switching of pools if the request was closed while parsing.
It wasn't a problem since the request could be closed only after
the validation of the fully parsed header. With the per request
timeouts, the request can be closed at any moment, and switching
of pools in the middle of parsing header name or value becomes a
problem.
To overcome this, the temporary pool is now always created and
used. Special checks are added to keep it when either the stream
is being processed or until header block is fully parsed.
Since 667aaf61a778 (1.1.17) the ngx_http_parse_header_line() function can return
NGX_HTTP_PARSE_INVALID_HEADER when a header contains NUL character. In this
case the r->header_end pointer isn't properly initialized, but the log message
in ngx_http_process_request_headers() hasn't been adjusted. It used the pointer
in size calculation, which might result in up to 2k buffer over-read.
Found with afl-fuzz.
When the "pending" value is zero, the "buf" will be right shifted
by the width of its type, which results in undefined behavior.
Found by Coverity (CID 1352150).
Due to greater priority of the unary plus operator over the ternary operator
the expression didn't work as expected. That might result in one byte less
allocation than needed for the HEADERS frame buffer.
With main request buffered, it's possible, that a slice subrequest will send
output before it. For example, while main request is waiting for aio read to
complete, a slice subrequest can start an aio operation as well. The order
in which aio callbacks are called is undetermined.
Skip SSL_CTX_set_tlsext_servername_callback in case of renegotiation.
Do nothing in SNI callback as in this case it will be supplied with
request in c->data which isn't expected and doesn't work this way.
This was broken by b40af2fd1c16 (1.9.6) with OpenSSL master branch and LibreSSL.
Splits a request into subrequests, each providing a specific range of response.
The variable "$slice_range" must be used to set subrequest range and proper
cache key. The directive "slice" sets slice size.
The following example splits requests into 1-megabyte cacheable subrequests.
server {
listen 8000;
location / {
slice 1m;
proxy_cache cache;
proxy_cache_key $uri$is_args$args$slice_range;
proxy_set_header Range $slice_range;
proxy_cache_valid 200 206 1h;
proxy_pass http://127.0.0.1:9000;
}
}
If an upstream with variables evaluated to address without a port,
then instead of a "no port in upstream" error an attempt was made
to connect() which failed with EADDRNOTAVAIL.
The HEADERS frame is always represented by more than one buffer since
b930e598a199, but the handling code hasn't been adjusted.
Only the first buffer of HEADERS frame was checked and if it had been
sent while others had not, the rest of the frame was dropped, resulting
in broken connection.
Before b930e598a199, the problem could only be seen in case of HEADERS
frame with CONTINUATION.
The r->invalid_header flag wasn't reset once an invalid header appeared in a
request, resulting in all subsequent headers in the request were also marked
as invalid.
The directive toggles conversion of HEAD to GET for cacheable proxy requests.
When disabled, $request_method must be added to cache key for consistency.
By default, HEAD is converted to GET as before.
OpenSSL doesn't check if the negotiated protocol has been announced.
As a result, the client might force using HTTP/2 even if it wasn't
enabled in configuration.
It caused inconsistency between setting "in_closed" flag and the moment when
the last DATA frame was actually read. As a result, the body buffer might not
be initialized properly in ngx_http_v2_init_request_body(), which led to a
segmentation fault in ngx_http_v2_state_read_data(). Also it might cause
start processing of incomplete body.
This issue could be triggered when the processing of a request was delayed,
e.g. in the limit_req or auth_request modules.
Now it limits only the maximum length of literal string (either raw or
compressed) in HPACK request header fields. It's easier to understand
and to describe in the documentation.
Previous code has been based on assumption that the header block can only be
splitted at the borders of individual headers. That wasn't the case and might
result in emitting frames bigger than the frame size limit.
The current approach is to split header blocks by the frame size limit.
Previously, nginx worker would crash because of a double free
if client disconnected or timed out before sending all headers.
Found with afl-fuzz.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
Previously, streams that were indirectly reprioritized (either because of
a new exclusive dependency on their parent or because of removal of their
parent from the dependency tree), didn't have their pointer to the parent
node updated.
This broke detection of circular dependencies and, as a result, nginx
worker would crash due to stack overflow whenever such dependency was
introduced.
Found with afl-fuzz.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
Per RFC7540, a stream cannot depend on itself.
Previously, this requirement was enforced on PRIORITY frames, but not on
HEADERS frames and due to the implementation details nginx worker would
crash (stack overflow) while opening self-dependent stream.
Found with afl-fuzz.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>