This fixes at least the following cases, where no last_modified_time
(assuming caching is not enabled) resulted in incorrect behaviour:
- slice filter and If-Range requests (ticket #1357);
- If-Range requests with proxy_force_ranges;
- expires modified.
The new request flag "preserve_body" indicates that the request body file should
not be removed by the upstream module because it may be used later by a
subrequest. The flag is set by the SSI (ticket #585), addition and slice
modules. Additionally, it is also set by the upstream module when a background
cache update subrequest is started to prevent the request body file removal
after an internal redirect. Only the main request is now allowed to remove the
file.
This change reworks 13a5f4765887 to only run posted requests once,
with nothing on stack. Running posted requests with other request
functions on stack may result in use-after-free in case of errors,
similar to the one reported in #788.
To only run posted request once, a separate function was introduced
to be used as ssl handshake handler in c->ssl->handler,
ngx_http_upstream_ssl_handshake_handler(). The ngx_http_run_posted_requests()
is only called in this function, and not in ngx_http_upstream_ssl_handshake()
which may be called directly on stack.
Additionaly, ngx_http_upstream_ssl_handshake_handler() now does appropriate
debug logging of the current subrequest, similar to what is done in other
event handlers.
Previously, the upstream resolve handler always called
ngx_http_run_posted_requests() to run posted requests after processing the
resolver response. However, if the handler was called directly from the
ngx_resolve_name() function (for example, if the resolver response was cached),
running posted requests from the handler could lead to the following errors:
- If the request was scheduled for termination, it could actually be terminated
in the resolve handler. Upper stack frames could reference the freed request
object in this case.
- If a significant number of requests were posted, and for each of them the
resolve handler was called directly from the ngx_resolve_name() function,
posted requests could be run recursively and lead to stack overflow.
Now ngx_http_run_posted_requests() is only called from asynchronously invoked
resolve handlers.
Previously, cache background update might not work as expected, making client
wait for it to complete before receiving the final part of a stale response.
This could happen if the response could not be sent to the client socket in one
filter chain call.
Now background cache update is done in a background subrequest. This type of
subrequest does not block any other subrequests or the main request.
If initialization of a header failed for some reason after ngx_list_push(),
leaving the header as is can result in uninitialized memory access by
the header filter or the log module. The fix is to clear partially
initialized headers in case of errors.
For the Cache-Control header, the fix is to postpone pushing
r->headers_out.cache_control until its value is completed.
This change adds "http_429" parameter to "proxy_next_upstream" for
retrying rate-limited requests, and to "proxy_cache_use_stale" for
serving stale cached responses after being rate-limited.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
With post_action or subrequests, it is possible that the timer set for
wev->delayed will expire while the active subrequest write event handler
is not ready to handle this. This results in request hangs as observed
with limit_rate / sendfile_max_chunk and post_action (ticket #776) or
subrequests (ticket #1228).
Moving the handling to the connection event handler fixes the hangs observed,
and also slightly simplifies the code.
If the subrequest is already finalized, the handler set with aio_write
may still be used by sendfile in threads when using range requests
(see also e4c1f5b32868, and the original note in 9fd738b85fad). Calling
already finalized subrequest's r->write_event_handler in practice
results in request hang in some cases.
Fix is to trigger connection event handler if the subrequest was already
finalized.
With "proxy_ignore_client_abort off" (the default), upstream module changes
r->read_event_handler to ngx_http_upstream_rd_check_broken_connection().
If the handler is not cleared during upstream finalization, it can be
triggered later, causing unexpected effects, if, for example, a request
was redirected to a different location using error_page or X-Accel-Redirect.
In particular, it makes "proxy_ignore_client_abort on" non-working after
a redirection in a configuration like this:
location = / {
error_page 502 = /error;
proxy_pass http://127.0.0.1:8082;
}
location /error {
proxy_pass http://127.0.0.1:8083;
proxy_ignore_client_abort on;
}
It is also known to cause segmentation faults with aio used, see
http://mailman.nginx.org/pipermail/nginx-ru/2015-August/056570.html.
Fix is to explicitly set r->read_event_handler to ngx_http_block_reading()
during upstream finalization, similar to how it is done in the request body
reading code and in the limit_req module.
Previously, there was no way to enable the proxy_cache_use_stale behavior by
reading the backend response. Now, stale-while-revalidate and stale-if-error
Cache-Control extensions (RFC 5861) are supported. They specify, how long a
stale response can be used when a cache entry is being updated, or in case of
an error.
The ngx_event_pipe() function wasn't called on write events with
wev->delayed set. As a result, threaded writing results weren't
properly collected in ngx_event_pipe_write_to_downstream() when a
write event was triggered for a completed write.
Further, this wasn't detected, as p->aio was reset by a thread completion
handler, and results were later collected in ngx_event_pipe_read_upstream()
instead of scheduling a new write of additional data. If this happened
on the last reading from an upstream, last part of the response was never
written to the cache file.
Similar problems might also happen in case of timeouts when writing to
client, as this also results in ngx_event_pipe() not being called on write
events. In this scenario socket leaks were observed.
Fix is to check if p->writing is set in ngx_event_pipe_read_upstream(), and
therefore collect results of previous write operations in case of read events
as well, similar to how we do so in ngx_event_pipe_write_downstream().
This is enough to fix the wev->delayed case. Additionally, we now call
ngx_event_pipe() from ngx_http_upstream_process_request() if there are
uncollected write operations (p->writing and !p->aio). This also fixes
the wev->timedout case.
On Linux, the rename syscall can be slow due to a global file system lock,
acquired for the entire rename operation, unless both old and new files are
in the same directory. To address this temporary files are now created
in the same directory as the expected resulting cache file when using the
"use_temp_path=off" parameter.
This change mostly reverts 99639bfdfa2a and 3281de8142f5, restoring the
behaviour as of a9138c35120d (with minor changes).
Holding a cache node lock doesn't make sense as we can't use caching
anyway, and results in "ignore long locked inactive cache entry" alerts
if a node is locked for a long time.
The same is done for unbuffered connections, as they can be alive for
a long time as well.
It configures a threshold in bytes, above which client range
requests are not cached. In such a case the client's Range
header is passed directly to a proxied server.
The only thing that default_port comparison did in the current
code is prevented implicit upstreams to the same address/port
from being aliased for http and https, e.g.:
proxy_pass http://10.0.0.1:12345;
proxy_pass https://10.0.0.1:12345;
This is inconsistent because it doesn't work for a similar case
with uswgi_pass:
uwsgi_pass uwsgi://10.0.0.1:12345;
uwsgi_pass suwsgi://10.0.0.1:12345;
or with an explicit upstream:
upstream u {
server 10.0.0.1:12345;
}
proxy_pass http://u;
proxy_pass https://u;
Before c9059bd5445b, default_port comparison was needed to
differentiate implicit upstreams in
proxy_pass http://example.com;
and
proxy_pass https://example.com;
as u->port was not set.
When an upstream{} block follows a proxy_pass reference to it,
such an upstream inherited port and default_port settings from
proxy_pass. This was different from when they came in another
order (see ticket #1059). Explicit upstreams should not have
port and default_port in any case.
This fixes the following case:
server { location / { proxy_pass http://u; } ... }
upstream u { server 127.0.0.1; }
server { location / { proxy_pass https://u; } ... }
but not the following:
server { location / { proxy_pass http://u; } ... }
server { location / { proxy_pass https://u; } ... }
upstream u { server 127.0.0.1; }
If proxy_pass (and friends) with variables evaluates an upstream
specified with literal address, nginx always created a per-request
upstream.
Now, if there's a matching upstream specified in the configuration
(either implicit or explicit), it will be used instead.
BoringSSL changed SSL_set_tlsext_host_name() to be a real function
with a (const char *) argument, so it now triggers a warning due to
conversion from (u_char *). Added an explicit cast to silence the
warning.
Prodded by Piotr Sikora, Alessandro Ghedini.
When headers to hide are set at the "http" level and not redefined in
a server block, we now preserve compiled headers hash into the "http"
section configuration to inherit this hash to all servers.
Dependency on cache settings existed prior to 2728c4e4a9ae (0.8.44)
as Set-Cookie header was automatically hidden from responses when
using cache. This is no longer the case, and hide_headers_hash can
be safely inherited regardless of cache settings.
All the errors that prevent loading configuration must be printed on the "emerg"
log level. Previously, nginx might silently fail to load configuration in some
cases as the default log level is "error".
Unlike $upstream_response_length that only counts the body size,
the new variable also counts the size of response header and data
received after switching protocols when proxying WebSockets.
When it's known that the kernel supports EPOLLRDHUP, there is no need in
additional recv() call to get EOF or error when the flag is absent in the
event generated by the kernel. A special runtime test is done at startup
to detect if EPOLLRDHUP is actually supported by the kernel because
epoll_ctl() silently ignores unknown flags.
With this knowledge it's now possible to drop the "ready" flag for partial
read. Previously, the "ready" flag was kept until the recv() returned EOF
or error. In particular, this change allows the lingering close heuristics
(which relies on the "ready" flag state) to actually work on Linux, and not
wait for more data in most cases.
The "available" flag is now used in the read event with the semantics similar
to the corresponding counter in kqueue.
This parameter lets binding the proxy connection to a non-local address.
Upstream will see the connection as coming from that address.
When used with $remote_addr, upstream will accept the connection from real
client address.
Example:
proxy_bind $remote_addr transparent;
By default, requests with non-idempotent methods (POST, LOCK, PATCH)
are no longer retried in case of errors if a request was already sent
to a backend. Previous behaviour can be restored by using
"proxy_next_upstream ... non_idempotent".
Much like normal connections, cached connections are now tested against
u->conf->next_upstream, and u->state->status is now always set.
This allows to disable additional tries even with upstream keepalive
by using "proxy_next_upstream off".
The "aio_write" directive is introduced, which enables use of aio
for writing. Currently it is meaningful only with "aio threads".
Note that aio operations can be done by both event pipe and output
chain, so proper mapping between r->aio and p->aio is provided when
calling ngx_event_pipe() and in output filter.
In collaboration with Valentin Bartenev.
If proxy_cache is enabled, and proxy_no_cache tests true, it was previously
possible for the client connection to be closed after a 304. The fix is to
recheck r->header_only after the final cacheability is determined, and end the
request if no longer cacheable.
Example configuration:
proxy_cache foo;
proxy_cache_bypass 1;
proxy_no_cache 1;
If a client sends If-None-Match, and the upstream server returns 200 with a
matching ETag, no body should be returned to the client. At the start of
ngx_http_upstream_send_response proxy_no_cache is not yet tested, thus cacheable
is still 1 and downstream_error is set.
However, by the time the downstream_error check is done in process_request,
proxy_no_cache has been tested and cacheable is set to 0. The client connection
is then closed, regardless of keepalive.
If caching was used, "zero size buf in output" alerts might appear
in logs if a client prematurely closed connection. Alerts appeared
in the following situation:
- writing to client returned an error, so event pipe
drained all busy buffers leaving body output filters
in an invalid state;
- when upstream response was fully received,
ngx_http_upstream_finalize_request() tried to flush
all pending data.
Fix is to avoid flushing body if p->downstream_error is set.
If an upstream with variables evaluated to address without a port,
then instead of a "no port in upstream" error an attempt was made
to connect() which failed with EADDRNOTAVAIL.
The directive toggles conversion of HEAD to GET for cacheable proxy requests.
When disabled, $request_method must be added to cache key for consistency.
By default, HEAD is converted to GET as before.
The value of NGX_ERROR, returned from filter handlers, was treated as a generic
upstream error and changed to NGX_HTTP_INTERNAL_SERVER_ERROR before calling
ngx_http_finalize_request(). This resulted in "header already sent" alert
if header was already sent in filter handlers.
The problem appeared in 54e9b83d00f0 (1.7.5).
The function is now called ngx_parse_http_time(), and can be used by
any code to parse HTTP-style date and time. In particular, it will be
used for OCSP stapling.
For compatibility, a macro to map ngx_http_parse_time() to the new name
provided for a while.
The r->request_body_no_buffering flag was introduced. It instructs
client request body reading code to avoid reading the whole body, and
to call post_handler early instead. The caller should use the
ngx_http_read_unbuffered_request_body() function to read remaining
parts of the body.
Upstream module is now able to use this mode, if configured with
the proxy_request_buffering directive.
In case of filter finalization, r->upstream might be changed during
the ngx_event_pipe() call. Added an argument to preserve it while
calling the ngx_http_upstream_process_request() function.
A request may be already finalized when ngx_http_upstream_finalize_request()
is called, due to filter finalization: after filter finalization upstream
can be finalized via ngx_http_upstream_cleanup(), either from
ngx_http_terminate_request(), or because a new request was initiated
to an upstream. Then the upstream code will see an error returned from
the filter chain and will call the ngx_http_upstream_finalize_request()
function again.
To prevent corruption of various upstream data in this situation, make sure
to do nothing but merely call ngx_http_finalize_request().
Prodded by Yichun Zhang, for details see the thread at
http://nginx.org/pipermail/nginx-devel/2015-February/006539.html.
When replacing a stale cache entry, its last_modified and etag could be
inherited from the old entry if the response code is not 200 or 206. Moreover,
etag could be inherited with any response code if it's missing in the new
response. As a result, the cache entry is left with invalid last_modified or
etag which could lead to broken revalidation.
For example, when a file is deleted from backend, its last_modified is copied to
the new 404 cache entry and is used later for revalidation. Once the old file
appears again with its original timestamp, revalidation succeeds and the cached
404 response is sent to client instead of the file.
The problem appeared with etags in 44b9ab7752e3 (1.7.3) and affected
last_modified in 1573fc7875fa (1.7.9).
If fastcgi_pass (or any look-alike that doesn't imply a default
port) is specified as an IP literal (as opposed to a hostname),
port absence was not detected at configuration time and could
result in EADDRNOTAVAIL at run time.
Fixed this in such a way that configs like
http {
server {
location / {
fastcgi_pass 127.0.0.1;
}
}
upstream 127.0.0.1 {
server 10.0.0.1:12345;
}
}
still work. That is, port absence check is delayed until after
we make sure there's no explicit upstream with such a name.
If use_temp_path is set to off, a subdirectory "temp" is created in the cache
directory. It's used instead of proxy_temp_path and friends for caching
upstream response.
Some parts of code related to handling variants of a resource moved into
a separate function that is called earlier. This allows to use cache file
name as a prefix for temporary file in the following patch.
The configuration handling code has changed to look similar to the proxy_store
directive and friends. This simplifies adding variable support in the following
patch.
No functional changes.
This changes internal API related to handling of the "store"
flag in ngx_http_upstream_conf_t. Previously, a non-null value
of "store_lengths" was enough to enable store functionality with
custom path. Now, the "store" flag is also required to be set.
No functional changes.
RFC7232 says:
The 304 (Not Modified) status code indicates that a conditional GET
or HEAD request has been received and would have resulted in a 200
(OK) response if it were not for the fact that the condition
evaluated to false.
which means that there is no reason to send requests with "If-None-Match"
and/or "If-Modified-Since" headers for responses cached with other status
codes.
Also, sending conditional requests for responses cached with other status
codes could result in a strange behavior, e.g. upstream server returning
304 Not Modified for cached 404 Not Found responses, etc.
Signed-off-by: Piotr Sikora <piotr@cloudflare.com>
To ensure proper logging make sure to set current_request in all event
handlers, including resolve, ssl handshake, cache lock wait timer and
aio read handlers. A macro ngx_http_set_log_request() introduced to
simplify this.
Once this age is reached, the cache lock is discarded and another
request can acquire the lock. Requests which failed to acquire
the lock are not allowed to cache the response.
When got multiple upstream IP addresses using DNS resolving, the number of
upstreams tries and the maxinum time spent for these tries were not affected.
This patch fixed it.
To cache responses with Vary, we now calculate hash of headers listed
in Vary, and return the response from cache only if new request headers
match.
As of now, only one variant of the same resource can be stored in cache.
Due to the u->headers_in.last_modified_time not being correctly initialized,
this variable was evaluated to "Thu, 01 Jan 1970 00:00:00 GMT" for responses
cached without the "Last-Modified" header which resulted in subsequent proxy
requests being sent with "If-Modified-Since: Thu, 01 Jan 1970 00:00:00 GMT"
header.
Signed-off-by: Piotr Sikora <piotr@cloudflare.com>
Previously, a file buffer start position was reset to the file start.
Now it's reset to the previous file buffer end. This fixes
reinitialization of requests having multiple successive parts of a
single file. Such requests are generated by fastcgi module.
The new directives {proxy,fastcgi,scgi,uwsgi,memcached}_next_upstream_tries
and {proxy,fastcgi,scgi,uwsgi,memcached}_next_upstream_timeout limit
the number of upstreams tried and the maximum time spent for these tries
when searching for a valid upstream.
When memory allocation failed in ngx_http_upstream_cache(), the connection
would be terminated directly in ngx_http_upstream_init_request().
Return a INTERNAL_SERVER_ERROR response instead.
Timeout may not be set on an upstream connection when we call
ngx_ssl_handshake() in ngx_http_upstream_ssl_init_connection(),
so make sure to arm it if it's not set.
Based on a patch by Yichun Zhang.
Previously, ngx_http_map_uri_to_path() errors were not checked in
ngx_http_upstream_store(). Moreover, in case of errors temporary
files were not deleted, as u->store was set to 0, preventing cleanup
code in ngx_http_upstream_finalize_request() from removing them. With
this patch, u->store is set to 0 only if there were no errors.
Reported by Feng Gu.
Previously, nginx closed client connection in cases when a response body
from upstream was needed to be cached or stored but shouldn't be sent to
the client. While this is normal for HTTP, it is unacceptable for SPDY.
Fix is to use instead the p->downstream_error flag to prevent nginx from
sending anything downstream. To make this work, the event pipe code was
modified to properly cache empty responses with the flag set.
The ngx_http_upstream_dummy_handler() must be set regardless of
the read event state. This prevents possible additional call of
ngx_http_upstream_send_request_handler().