Correct error code for NGX_EXDEV on Windows is ERROR_NOT_SAME_DEVICE,
"The system cannot move the file to a different disk drive".
Previously used ERROR_WRONG_DISK is about wrong diskette in the drive and
is not appropriate.
There is no real difference though, as MoveFile() is able to copy files
between disk drives, and will fail with ERROR_ACCESS_DENIED when asked
to copy directories. The ERROR_NOT_SAME_DEVICE error is only used
by MoveFileEx() when called without the MOVEFILE_COPY_ALLOWED flag.
On Windows there are two possible error codes which correspond to
the EEXIST error code: ERROR_FILE_EXISTS used by CreateFile(CREATE_NEW),
and ERROR_ALREADY_EXISTS used by CreateDirectory().
MoveFile() seems to use both: ERROR_ALREADY_EXISTS when moving within
one filesystem, and ERROR_FILE_EXISTS when copying a file to a different
drive.
By default, requests with non-idempotent methods (POST, LOCK, PATCH)
are no longer retried in case of errors if a request was already sent
to a backend. Previous behaviour can be restored by using
"proxy_next_upstream ... non_idempotent".
Much like normal connections, cached connections are now tested against
u->conf->next_upstream, and u->state->status is now always set.
This allows to disable additional tries even with upstream keepalive
by using "proxy_next_upstream off".
Fixes various aspects of --test-build-devpoll, --test-build-eventport, and
--test-build-epoll.
In particular, if --test-build-devpoll was used on Linux, then "devpoll"
event method would be preferred over "epoll". Also, wrong definitions of
event macros were chosen.
This fixes buffer over-read while using variables in the "proxy_pass",
"fastcgi_pass", "scgi_pass", and "uwsgi_pass" directives, where result
of string evaluation isn't null-terminated.
Found with MemorySanitizer.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
On nginx reload or binary upgrade, an attempt is made to inherit listen sockets
from the previous configuration. Previously, no check for socket type was made
and the inherited socket could have the wrong type. On binary upgrade, socket
type was not detected at all. Wrong socket type could lead to errors on that
socket due to different logic and unsupported syscalls. For example, a UDP
socket, inherited as TCP, lead to the following error after arrival of a
datagram: "accept() failed (102: Operation not supported on socket)".
It allows to turn off accumulation of small pool allocations into a big
preallocated chunk of memory. This is useful for debugging memory access
with sanitizer, since such accumulation can cover buffer overruns from
being detected.
This structure cannot be allocated as a large block anyway, otherwise that will
result in infinite recursion, since each large allocation requires to allocate
another ngx_pool_large_t.
The room for the structure is guaranteed by the NGX_MIN_POOL_SIZE constant.
When a keys_zone is full then each next request to the cache is
penalized. That is, the cache has to evict older files to get a
slot from the keys_zone synchronously. The patch introduces new
behavior in this scenario. Manager will try to maintain available
free slots in the keys_zone by cleaning old files in the background.
The "aio_write" directive is introduced, which enables use of aio
for writing. Currently it is meaningful only with "aio threads".
Note that aio operations can be done by both event pipe and output
chain, so proper mapping between r->aio and p->aio is provided when
calling ngx_event_pipe() and in output filter.
In collaboration with Valentin Bartenev.
The ngx_thread_write_chain_to_file() function introduced, which
uses ngx_file_t thread_handler, thread_ctx and thread_task fields.
The task context structure (ngx_thread_file_ctx_t) is the same for
both reading and writing, and can be safely shared as long as
operations are serialized.
The task->handler field is now always set (and not only when task is
allocated), as the same task can be used with different handlers.
The thread_write flag is introduced in the ngx_temp_file_t structure
to explicitly enable use of ngx_thread_write_chain_to_file() in
ngx_write_chain_to_temp_file() when supported by caller.
In collaboration with Valentin Bartenev.
This simplifies the interface of the ngx_thread_read() function.
Additionally, most of the thread operations now explicitly set
file->thread_task, file->thread_handler and file->thread_ctx,
to facilitate use of thread operations in other places.
(Potential problems remain with sendfile in threads though - it uses
file->thread_handler as set in ngx_output_chain(), and it should not
be overwritten to an incompatible one.)
In collaboration with Valentin Bartenev.
If a write event happens after sendfile() but before we've got the
sendfile results in the main thread, this write event will be ignored.
And if no more events will happen, the connection will hang.
Removing the events works in the simple cases, but not always, as
in some cases events are added back by an unrelated code. E.g.,
the upstream module adds write event in the ngx_http_upstream_init()
to track client aborts.
Fix is to use wev->complete instead. It is now set to 0 before
a sendfile() task is posted, and it is set to 1 once a write event
happens. If on completion of the sendfile() task wev->complete is 1,
we know that an event happened while we were executing sendfile(), and
the socket is still ready for writing even if sendfile() did not sent
all the data or returned EAGAIN.
While sendfilev() is documented to return -1 with EINVAL set
if the file was truncated, at least Solaris 11 silently returns 0,
and this results in CPU hog. Added a test to complain appropriately
if 0 is returned.
The main proxy function ngx_stream_proxy_process() can terminate the stream
session. The code, following it, should check its return code to make sure the
session still exists. This happens in client and upstream initialization
functions. Swapping ngx_stream_proxy_process() call with the code, that
follows it, leaves the same problem vice versa.
In future ngx_stream_proxy_process() will call ngx_stream_proxy_next_upstream()
making it too complicated to know if stream session still exists after this
call.
Now ngx_stream_proxy_process() is called from posted event handlers in both
places with no code following it. The posted event is automatically removed
once session is terminated.
It can now be set to "off" conditionally, e.g. using the map
directive.
An empty value will disable the emission of the Server: header
and the signature in error messages generated by nginx.
Any other value is treated as "on", meaning that full nginx
version is emitted in the Server: header and error messages
generated by nginx.
If proxy_cache is enabled, and proxy_no_cache tests true, it was previously
possible for the client connection to be closed after a 304. The fix is to
recheck r->header_only after the final cacheability is determined, and end the
request if no longer cacheable.
Example configuration:
proxy_cache foo;
proxy_cache_bypass 1;
proxy_no_cache 1;
If a client sends If-None-Match, and the upstream server returns 200 with a
matching ETag, no body should be returned to the client. At the start of
ngx_http_upstream_send_response proxy_no_cache is not yet tested, thus cacheable
is still 1 and downstream_error is set.
However, by the time the downstream_error check is done in process_request,
proxy_no_cache has been tested and cacheable is set to 0. The client connection
is then closed, regardless of keepalive.
If caching was used, "zero size buf in output" alerts might appear
in logs if a client prematurely closed connection. Alerts appeared
in the following situation:
- writing to client returned an error, so event pipe
drained all busy buffers leaving body output filters
in an invalid state;
- when upstream response was fully received,
ngx_http_upstream_finalize_request() tried to flush
all pending data.
Fix is to avoid flushing body if p->downstream_error is set.