For ngx_http_process_request() part to work, this required to set both
r->http_connection->ssl and c->ssl on a QUIC stream. To avoid damaging
global SSL object, ngx_ssl_shutdown() is managed to ignore QUIC streams.
- integer parameters can be configured using the following directives:
quic_max_idle_timeout
quic_max_ack_delay
quic_max_packet_size
quic_initial_max_data
quic_initial_max_stream_data_bidi_local
quic_initial_max_stream_data_bidi_remote
quic_initial_max_stream_data_uni
quic_initial_max_streams_bidi
quic_initial_max_streams_uni
quic_ack_delay_exponent
quic_active_migration
quic_active_connection_id_limit
- only following parameters are actually sent:
active_connection_id_limit
initial_max_streams_uni
initial_max_streams_bidi
initial_max_stream_data_bidi_local
initial_max_stream_data_bidi_remote
initial_max_stream_data_uni
(other parameters are to be added into ngx_quic_create_transport_params()
function as needed, should be easy now)
- draft 24 and draft 27 are now supported
(at compile-time using quic_version macro)
- events handling moved into src/event/ngx_event_quic.c
- http invokes once ngx_quic_run() and passes stream callback
(diff to original http_request.c is now minimal)
- streams are stored in rbtree using ID as a key
- when a new stream is registered, appropriate callback is called
- ngx_quic_stream_t type represents STREAM and stored in c->qs
Introduced ngx_quic_input() and ngx_quic_output() as interface between
nginx and protocol. They are the only functions that are exported.
While there, added copyrights.
Duplicate "Host" headers were allowed in nginx 0.7.0 (revision b9de93d804ea)
as a workaround for some broken Motorola phones which used to generate
requests with two "Host" headers[1]. It is believed that this workaround
is no longer relevant.
[1] http://mailman.nginx.org/pipermail/nginx-ru/2008-May/017845.html
The "identity" transfer coding has been removed in RFC 7230. It is
believed that it is not used in real life, and at the same time it
provides a potential attack vector.
We anyway do not support more than one transfer encoding, so accepting
requests with multiple Transfer-Encoding headers doesn't make sense.
Further, we do not handle multiple headers, and ignore anything but
the first header.
Reported by Filippo Valsorda.
Server name callback is always called by OpenSSL, even
if server_name extension is not present in ClientHello. As such,
checking c->ssl->handshaked before the SSL_get_servername() result
should help to more effectively prevent renegotiation in
OpenSSL 1.1.0 - 1.1.0g, where neither SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS
nor SSL_OP_NO_RENEGOTIATION is available.
Notably this affects various allocation errors, and should generally
improve things if an allocation error actually happens during a callback.
Depending on the OpenSSL version, returning an error can result in
either SSL_R_CALLBACK_FAILED or SSL_R_CLIENTHELLO_TLSEXT error from
SSL_do_handshake(), so both errors were switched to the "info" level.
OpenSSL 1.1.1 does not save server name to the session if server name
callback returns anything but SSL_TLSEXT_ERR_OK, thus breaking
the $ssl_server_name variable in resumed sessions.
Since $ssl_server_name can be used even if we've selected the default
server and there are no other servers, it looks like the only viable
solution is to always return SSL_TLSEXT_ERR_OK regardless of the actual
result.
To fix things in the stream module as well, added a dummy server name
callback which always returns SSL_TLSEXT_ERR_OK.
A virtual server may have no SSL context if it does not have certificates
defined, so we have to use config of the ngx_http_ssl_module from the
SSL context in the certificate callback. To do so, it is now passed as
the argument of the callback.
The stream module doesn't really need any changes, but was modified as
well to match http code.
Passwords have to be copied to the configuration pool to be used
at runtime. Also, to prevent blocking on stdin (with "daemon off;")
an empty password list is provided.
To make things simpler, password handling was modified to allow
an empty array (with 0 elements and elts set to NULL) as an equivalent
of an array with 1 empty password.
To evaluate variables, a request is created in the certificate callback,
and then freed. To do this without side effects on the stub_status
counters and connection state, an additional function was introduced,
ngx_http_alloc_request().
Only works with OpenSSL 1.0.2+, since there is no SSL_CTX_set_cert_cb()
in older versions.
In e3ba4026c02d (1.15.4) nginx own renegotiation checks were disabled
if SSL_OP_NO_RENEGOTIATION is available. But since SSL_OP_NO_RENEGOTIATION
is only set on a connection, not in an SSL context, SSL_clear_option()
removed it as long as a matching virtual server was found. This resulted
in a segmentation fault similar to the one fixed in a6902a941279 (1.9.8),
affecting nginx built with OpenSSL 1.1.0h or higher.
To fix this, SSL_OP_NO_RENEGOTIATION is now explicitly set in
ngx_http_ssl_servername() after adjusting options. Additionally, instead
of c->ssl->renegotiation we now check c->ssl->handshaked, which seems
to be a more correct flag to test, and will prevent the segmentation fault
from happening even if SSL_OP_NO_RENEGOTIATION is not working.
Socket leak was observed in the following configuration:
error_page 400 = /close;
location = /close {
return 444;
}
The problem is that "return 444" triggers termination of the request,
and due to error_page termination thinks that it needs to use a posted
request to clear stack. But at the early request processing where 400
errors are generated there are no ngx_http_run_posted_requests() calls,
so the request is only terminated after an external event.
Variants of the problem include "error_page 497" instead (ticket #695)
and various other errors generated during early request processing
(405, 414, 421, 494, 495, 496, 501, 505).
The same problem can be also triggered with "return 499" and "return 408"
as both codes trigger ngx_http_terminate_request(), much like "return 444".
To fix this, the patch adds ngx_http_run_posted_requests() calls to
ngx_http_process_request_line() and ngx_http_process_request_headers()
functions, and to ngx_http_v2_run_request() and ngx_http_v2_push_stream()
functions in HTTP/2.
Since the ngx_http_process_request() function is now only called via
other functions which call ngx_http_run_posted_requests(), the call
there is no longer needed and was removed.
The "do { c->recv() } while (c->read->ready)" form used in the
ngx_http_lingering_close_handler() is not really correct, as for
example with SSL c->read->ready may be still set when returning NGX_AGAIN
due to SSL_ERROR_WANT_WRITE. Therefore the above might be an infinite loop.
This doesn't really matter in lingering close, as we shutdown write side
of the socket anyway and also disable renegotiation (and even without shutdown
and with renegotiation it requires using very large certificate chain and
tuning socket buffers to trigger SSL_ERROR_WANT_WRITE). But for the sake of
correctness added an NGX_AGAIN check.
In OpenSSL 1.1.0 the SSL_CTRL_CLEAR_OPTIONS macro was removed, so
conditional compilation test on it results in SSL_clear_options()
and SSL_CTX_clear_options() not being used. Notably, this caused
"ssl_prefer_server_ciphers off" to not work in SNI-based virtual
servers if server preference was switched on in the default server.
It looks like the only possible fix is to test OPENSSL_VERSION_NUMBER
explicitly.
In mail and stream modules, no certificate provided is a fatal condition,
much like with the "ssl" and "starttls" directives.
In http, "listen ... ssl" can be used in a non-default server without
certificates as long as there is a certificate in the default one, so
missing certificate is only fatal for default servers.
According to the gRPC protocol specification, the "TE" header is used
to detect incompatible proxies, and at least grpc-c server rejects
requests without "TE: trailers".
To preserve the logic, we have to pass "TE: trailers" to the backend if
and only if the original request contains "trailers" in the "TE" header.
Note that no other TE values are allowed in HTTP/2, so we have to remove
anything else.