/* * An internal implementation, based on Alexander Peslyak's * public domain implementation: * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 * It is not expected to be optimal and is used only * if no MD5 implementation was found in system. */ #include #include #include #if !(NGX_HAVE_MD5) static const u_char *ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size); void ngx_md5_init(ngx_md5_t *ctx) { ctx->a = 0x67452301; ctx->b = 0xefcdab89; ctx->c = 0x98badcfe; ctx->d = 0x10325476; ctx->bytes = 0; } void ngx_md5_update(ngx_md5_t *ctx, const void *data, size_t size) { size_t used, free; used = (size_t) (ctx->bytes & 0x3f); ctx->bytes += size; if (used) { free = 64 - used; if (size < free) { ngx_memcpy(&ctx->buffer[used], data, size); return; } data = ngx_cpymem(&ctx->buffer[used], data, free); size -= free; (void) ngx_md5_body(ctx, ctx->buffer, 64); } if (size >= 64) { data = ngx_md5_body(ctx, data, size & ~(size_t) 0x3f); size &= 0x3f; } ngx_memcpy(ctx->buffer, data, size); } void ngx_md5_final(u_char result[16], ngx_md5_t *ctx) { size_t used, free; used = (size_t) (ctx->bytes & 0x3f); ctx->buffer[used++] = 0x80; free = 64 - used; if (free < 8) { ngx_memzero(&ctx->buffer[used], free); (void) ngx_md5_body(ctx, ctx->buffer, 64); used = 0; free = 64; } ngx_memzero(&ctx->buffer[used], free - 8); ctx->bytes <<= 3; ctx->buffer[56] = (u_char) ctx->bytes; ctx->buffer[57] = (u_char) (ctx->bytes >> 8); ctx->buffer[58] = (u_char) (ctx->bytes >> 16); ctx->buffer[59] = (u_char) (ctx->bytes >> 24); ctx->buffer[60] = (u_char) (ctx->bytes >> 32); ctx->buffer[61] = (u_char) (ctx->bytes >> 40); ctx->buffer[62] = (u_char) (ctx->bytes >> 48); ctx->buffer[63] = (u_char) (ctx->bytes >> 56); (void) ngx_md5_body(ctx, ctx->buffer, 64); result[0] = (u_char) ctx->a; result[1] = (u_char) (ctx->a >> 8); result[2] = (u_char) (ctx->a >> 16); result[3] = (u_char) (ctx->a >> 24); result[4] = (u_char) ctx->b; result[5] = (u_char) (ctx->b >> 8); result[6] = (u_char) (ctx->b >> 16); result[7] = (u_char) (ctx->b >> 24); result[8] = (u_char) ctx->c; result[9] = (u_char) (ctx->c >> 8); result[10] = (u_char) (ctx->c >> 16); result[11] = (u_char) (ctx->c >> 24); result[12] = (u_char) ctx->d; result[13] = (u_char) (ctx->d >> 8); result[14] = (u_char) (ctx->d >> 16); result[15] = (u_char) (ctx->d >> 24); ngx_memzero(ctx, sizeof(*ctx)); } /* * The basic MD5 functions. * * F and G are optimized compared to their RFC 1321 definitions for * architectures that lack an AND-NOT instruction, just like in * Colin Plumb's implementation. */ #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | ~(z))) /* * The MD5 transformation for all four rounds. */ #define STEP(f, a, b, c, d, x, t, s) \ (a) += f((b), (c), (d)) + (x) + (t); \ (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ (a) += (b) /* * SET() reads 4 input bytes in little-endian byte order and stores them * in a properly aligned word in host byte order. * * The check for little-endian architectures that tolerate unaligned * memory accesses is just an optimization. Nothing will break if it * does not work. */ #if (NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED) #define SET(n) (*(uint32_t *) &p[n * 4]) #define GET(n) (*(uint32_t *) &p[n * 4]) #else #define SET(n) \ (block[n] = \ (uint32_t) p[n * 4] | \ ((uint32_t) p[n * 4 + 1] << 8) | \ ((uint32_t) p[n * 4 + 2] << 16) | \ ((uint32_t) p[n * 4 + 3] << 24)) #define GET(n) block[n] #endif /* * This processes one or more 64-byte data blocks, but does not update * the bit counters. There are no alignment requirements. */ static const u_char * ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size) { uint32_t a, b, c, d; uint32_t saved_a, saved_b, saved_c, saved_d; const u_char *p; #if !(NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED) uint32_t block[16]; #endif p = data; a = ctx->a; b = ctx->b; c = ctx->c; d = ctx->d; do { saved_a = a; saved_b = b; saved_c = c; saved_d = d; /* Round 1 */ STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7); STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12); STEP(F, c, d, a, b, SET(2), 0x242070db, 17); STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22); STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7); STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12); STEP(F, c, d, a, b, SET(6), 0xa8304613, 17); STEP(F, b, c, d, a, SET(7), 0xfd469501, 22); STEP(F, a, b, c, d, SET(8), 0x698098d8, 7); STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12); STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17); STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22); STEP(F, a, b, c, d, SET(12), 0x6b901122, 7); STEP(F, d, a, b, c, SET(13), 0xfd987193, 12); STEP(F, c, d, a, b, SET(14), 0xa679438e, 17); STEP(F, b, c, d, a, SET(15), 0x49b40821, 22); /* Round 2 */ STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5); STEP(G, d, a, b, c, GET(6), 0xc040b340, 9); STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14); STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20); STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5); STEP(G, d, a, b, c, GET(10), 0x02441453, 9); STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14); STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20); STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5); STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9); STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14); STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20); STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5); STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9); STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14); STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20); /* Round 3 */ STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4); STEP(H, d, a, b, c, GET(8), 0x8771f681, 11); STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16); STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23); STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4); STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11); STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16); STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23); STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4); STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11); STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16); STEP(H, b, c, d, a, GET(6), 0x04881d05, 23); STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4); STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11); STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16); STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23); /* Round 4 */ STEP(I, a, b, c, d, GET(0), 0xf4292244, 6); STEP(I, d, a, b, c, GET(7), 0x432aff97, 10); STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15); STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21); STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6); STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10); STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15); STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21); STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6); STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10); STEP(I, c, d, a, b, GET(6), 0xa3014314, 15); STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21); STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6); STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10); STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15); STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21); a += saved_a; b += saved_b; c += saved_c; d += saved_d; p += 64; } while (size -= 64); ctx->a = a; ctx->b = b; ctx->c = c; ctx->d = d; return p; } #endif