/* * Copyright (C) 2002-2004 Igor Sysoev, http://sysoev.ru/en/ */ #include #include /* * The threads implementation uses the rfork(RFPROC|RFTHREAD|RFMEM) syscall * to create threads. All threads use the stacks of the same size mmap()ed * below the main stack. Thus the current thread id is determinated through * the stack pointer. * * The mutex implementation uses the ngx_atomic_cmp_set() operation * to acquire a mutex and the SysV semaphore to wait on a mutex or to wake up * the waiting threads. The light mutex does not use semaphore, so after * spinning in the lock the thread calls sched_yield(). However the light * mutecies are intended to be used with the "trylock" operation only. * * The condition variable implementation uses the SysV semaphore set of two * semaphores. The first is used by the CV mutex, and the second is used * by the CV to signal. * * This threads implementation currently works on i386 (486+) and amd64 * platforms only. */ char *ngx_freebsd_kern_usrstack; size_t ngx_thread_stack_size; static size_t rz_size; static size_t usable_stack_size; static char *last_stack; static ngx_uint_t nthreads; static ngx_uint_t max_threads; static ngx_tid_t *tids; /* the threads tids array */ /* the thread-safe libc errno */ static int errno0; /* the main thread's errno */ static int *errnos; /* the threads errno's array */ int *__error() { int tid; tid = ngx_gettid(); return tid ? &errnos[tid - 1] : &errno0; } /* * __isthreaded enables the spinlocks in some libc functions, i.e. in malloc() * and some other places. Nevertheless we protect our malloc()/free() calls * by own mutex that is more efficient than the spinlock. * * _spinlock() is a weak referenced stub in src/lib/libc/gen/_spinlock_stub.c * that does nothing. */ extern int __isthreaded; void _spinlock(ngx_atomic_t *lock) { ngx_int_t tries; tries = 0; for ( ;; ) { if (*lock) { if (ngx_freebsd_hw_ncpu > 1 && tries++ < 1000) { continue; } sched_yield(); tries = 0; } else { if (ngx_atomic_cmp_set(lock, 0, 1)) { return; } } } } /* * Before FreeBSD 5.1 _spinunlock() is a simple #define in * src/lib/libc/include/spinlock.h that zeroes lock. * * Since FreeBSD 5.1 _spinunlock() is a weak referenced stub in * src/lib/libc/gen/_spinlock_stub.c that does nothing. */ #ifndef _spinunlock void _spinunlock(ngx_atomic_t *lock) { *lock = 0; } #endif int ngx_create_thread(ngx_tid_t *tid, int (*func)(void *arg), void *arg, ngx_log_t *log) { int id, err; char *stack, *stack_top; if (nthreads >= max_threads) { ngx_log_error(NGX_LOG_CRIT, log, 0, "no more than %d threads can be created", max_threads); return NGX_ERROR; } last_stack -= ngx_thread_stack_size; stack = mmap(last_stack, usable_stack_size, PROT_READ|PROT_WRITE, MAP_STACK, -1, 0); if (stack == MAP_FAILED) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "mmap(" PTR_FMT ":" SIZE_T_FMT ", MAP_STACK) thread stack failed", last_stack, usable_stack_size); return NGX_ERROR; } if (stack != last_stack) { ngx_log_error(NGX_LOG_ALERT, log, 0, "stack address was changed"); } stack_top = stack + usable_stack_size; ngx_log_debug2(NGX_LOG_DEBUG_CORE, log, 0, "thread stack: " PTR_FMT "-" PTR_FMT, stack, stack_top); #if 1 id = rfork_thread(RFPROC|RFTHREAD|RFMEM, stack_top, func, arg); #elif 1 id = rfork_thread(RFPROC|RFMEM, stack_top, func, arg); #elif 1 id = rfork_thread(RFFDG|RFCFDG, stack_top, func, arg); #else id = rfork(RFFDG|RFCFDG); #endif err = ngx_errno; if (id == -1) { ngx_log_error(NGX_LOG_ALERT, log, err, "rfork() failed"); } else { *tid = id; nthreads = (ngx_freebsd_kern_usrstack - stack_top) / ngx_thread_stack_size; tids[nthreads] = id; ngx_log_debug1(NGX_LOG_DEBUG_CORE, log, 0, "rfork()ed thread: %d", id); } return err; } ngx_int_t ngx_init_threads(int n, size_t size, ngx_cycle_t *cycle) { size_t len; char *red_zone, *zone; max_threads = n; len = sizeof(ngx_freebsd_kern_usrstack); if (sysctlbyname("kern.usrstack", &ngx_freebsd_kern_usrstack, &len, NULL, 0) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sysctlbyname(kern.usrstack) failed"); return NGX_ERROR; } /* the main thread stack red zone */ rz_size = ngx_pagesize; red_zone = ngx_freebsd_kern_usrstack - (size + rz_size); ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0, "usrstack: " PTR_FMT " red zone: " PTR_FMT, ngx_freebsd_kern_usrstack, red_zone); zone = mmap(red_zone, rz_size, PROT_NONE, MAP_ANON, -1, 0); if (zone == MAP_FAILED) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "mmap(" PTR_FMT ":" SIZE_T_FMT ", PROT_NONE, MAP_ANON) red zone failed", red_zone, rz_size); return NGX_ERROR; } if (zone != red_zone) { ngx_log_error(NGX_LOG_ALERT, cycle->log, 0, "red zone address was changed"); } /* create the threads errno array */ if (!(errnos = ngx_calloc(n * sizeof(int), cycle->log))) { return NGX_ERROR; } /* create the threads tid array */ if (!(tids = ngx_calloc((n + 1) * sizeof(ngx_tid_t), cycle->log))) { return NGX_ERROR; } tids[0] = ngx_pid; nthreads = 1; last_stack = zone + rz_size; usable_stack_size = size; ngx_thread_stack_size = size + rz_size; /* allow the spinlock in libc malloc() */ __isthreaded = 1; ngx_threaded = 1; return NGX_OK; } ngx_tid_t ngx_thread_self() { int tid; ngx_tid_t pid; tid = ngx_gettid(); if (tids == NULL) { return ngx_pid; } #if 0 if (tids[tid] == 0) { pid = ngx_pid; tids[tid] = pid; return pid; } #endif return tids[tid]; } ngx_mutex_t *ngx_mutex_init(ngx_log_t *log, uint flags) { ngx_mutex_t *m; union semun op; if (!(m = ngx_alloc(sizeof(ngx_mutex_t), log))) { return NULL; } m->lock = 0; m->log = log; if (flags & NGX_MUTEX_LIGHT) { m->semid = -1; return m; } m->semid = semget(IPC_PRIVATE, 1, SEM_R|SEM_A); if (m->semid == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semget() failed"); return NULL; } op.val = 0; if (semctl(m->semid, 0, SETVAL, op) == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(SETVAL) failed"); if (semctl(m->semid, 0, IPC_RMID) == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(IPC_RMID) failed"); } return NULL; } return m; } void ngx_mutex_done(ngx_mutex_t *m) { if (semctl(m->semid, 0, IPC_RMID) == -1) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "semctl(IPC_RMID) failed"); } ngx_free((void *) m); } ngx_int_t ngx_mutex_dolock(ngx_mutex_t *m, ngx_int_t try) { uint32_t lock, new, old; ngx_uint_t tries; struct sembuf op; if (!ngx_threaded) { return NGX_OK; } #if (NGX_DEBUG) if (try) { ngx_log_debug2(NGX_LOG_DEBUG_CORE, m->log, 0, "try lock mutex " PTR_FMT " lock:%X", m, m->lock); } else { ngx_log_debug2(NGX_LOG_DEBUG_CORE, m->log, 0, "lock mutex " PTR_FMT " lock:%X", m, m->lock); } #endif old = m->lock; tries = 0; for ( ;; ) { if (old & NGX_MUTEX_LOCK_BUSY) { if (try) { return NGX_AGAIN; } if (ngx_freebsd_hw_ncpu > 1 && tries++ < 1000) { /* the spinlock is used only on the SMP system */ old = m->lock; continue; } if (m->semid == -1) { sched_yield(); tries = 0; old = m->lock; continue; } ngx_log_debug2(NGX_LOG_DEBUG_CORE, m->log, 0, "mutex " PTR_FMT " lock:%X", m, m->lock); /* * The mutex is locked so we increase a number * of the threads that are waiting on the mutex */ lock = old + 1; if ((lock & ~NGX_MUTEX_LOCK_BUSY) > nthreads) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "%d threads wait for mutex " PTR_FMT ", while only %d threads are available", lock & ~NGX_MUTEX_LOCK_BUSY, m, nthreads); return NGX_ERROR; } if (ngx_atomic_cmp_set(&m->lock, old, lock)) { ngx_log_debug2(NGX_LOG_DEBUG_CORE, m->log, 0, "wait mutex " PTR_FMT " lock:%X", m, m->lock); /* * The number of the waiting threads has been increased * and we would wait on the SysV semaphore. * A semaphore should wake up us more efficiently than * a simple sched_yield() or usleep(). */ op.sem_num = 0; op.sem_op = -1; op.sem_flg = SEM_UNDO; if (semop(m->semid, &op, 1) == -1) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "semop() failed while waiting " "on mutex " PTR_FMT, m); return NGX_ERROR; } tries = 0; old = m->lock; continue; } old = m->lock; } else { lock = old | NGX_MUTEX_LOCK_BUSY; if (ngx_atomic_cmp_set(&m->lock, old, lock)) { /* we locked the mutex */ break; } old = m->lock; } if (tries++ > 1000) { ngx_log_debug1(NGX_LOG_DEBUG_CORE, m->log, 0, "mutex " PTR_FMT " is contested", m); /* the mutex is probably contested so we are giving up now */ sched_yield(); tries = 0; old = m->lock; } } ngx_log_debug2(NGX_LOG_DEBUG_CORE, m->log, 0, "mutex " PTR_FMT " is locked, lock:%X", m, m->lock); return NGX_OK; } ngx_int_t ngx_mutex_unlock(ngx_mutex_t *m) { uint32_t lock, new, old; struct sembuf op; if (!ngx_threaded) { return NGX_OK; } old = m->lock; if (!(old & NGX_MUTEX_LOCK_BUSY)) { ngx_log_error(NGX_LOG_ALERT, m->log, 0, "trying to unlock the free mutex " PTR_FMT, m); return NGX_ERROR; } /* free the mutex */ for ( ;; ) { lock = old & ~NGX_MUTEX_LOCK_BUSY; if (ngx_atomic_cmp_set(&m->lock, old, lock)) { break; } old = m->lock; } if (m->semid == -1) { ngx_log_debug1(NGX_LOG_DEBUG_CORE, m->log, 0, "mutex " PTR_FMT " is unlocked", m); return NGX_OK; } /* check whether we need to wake up a waiting thread */ old = m->lock; for ( ;; ) { if (old & NGX_MUTEX_LOCK_BUSY) { /* the mutex is just locked by another thread */ break; } if (old == 0) { break; } /* there are the waiting threads */ lock = old - 1; if (ngx_atomic_cmp_set(&m->lock, old, lock)) { /* wake up the thread that waits on semaphore */ op.sem_num = 0; op.sem_op = 1; op.sem_flg = SEM_UNDO; if (semop(m->semid, &op, 1) == -1) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "semop() failed while waking up on mutex " PTR_FMT, m); return NGX_ERROR; } break; } old = m->lock; } ngx_log_debug1(NGX_LOG_DEBUG_CORE, m->log, 0, "mutex " PTR_FMT " is unlocked", m); return NGX_OK; } ngx_cv_t *ngx_cv_init(ngx_log_t *log) { ngx_cv_t *cv; u_short val[2]; union semun op; if (!(cv = ngx_alloc(sizeof(ngx_cv_t), log))) { return NULL; } cv->mutex.lock = 0; cv->mutex.log = log; cv->mutex.semid = semget(IPC_PRIVATE, 2, SEM_R|SEM_A); if (cv->mutex.semid == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semget() failed"); return NULL; } val[0] = 0; val[1] = 0; op.array = val; if (semctl(cv->mutex.semid, 0, SETALL, op) == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(SETALL) failed"); if (semctl(cv->mutex.semid, 0, IPC_RMID) == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(IPC_RMID) failed"); } return NULL; } return cv; } void ngx_cv_done(ngx_cv_t *cv) { if (semctl(cv->mutex.semid, 0, IPC_RMID) == -1) { ngx_log_error(NGX_LOG_ALERT, cv->mutex.log, ngx_errno, "semctl(IPC_RMID) failed"); } ngx_free(cv); } ngx_int_t ngx_cv_wait(ngx_cv_t *cv) { struct sembuf op[2]; ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->mutex.log, 0, "cv " PTR_FMT " wait", cv); op[0].sem_num = 0; op[0].sem_op = -1; op[0].sem_flg = SEM_UNDO; op[1].sem_num = 1; op[1].sem_op = -1; op[1].sem_flg = SEM_UNDO; if (semop(cv->mutex.semid, op, 2) == -1) { ngx_log_error(NGX_LOG_ALERT, cv->mutex.log, ngx_errno, "semop() failed while waiting on cv " PTR_FMT, cv); return NGX_ERROR; } ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->mutex.log, 0, "cv " PTR_FMT " is waked up", cv); return NGX_OK; } ngx_int_t ngx_cv_signal(ngx_cv_t *cv) { struct sembuf op[2]; ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->mutex.log, 0, "cv " PTR_FMT " to signal", cv); op[0].sem_num = 0; op[0].sem_op = 1; op[0].sem_flg = SEM_UNDO; op[1].sem_num = 1; op[1].sem_op = 1; op[1].sem_flg = SEM_UNDO; if (semop(cv->mutex.semid, op, 2) == -1) { ngx_log_error(NGX_LOG_ALERT, cv->mutex.log, ngx_errno, "semop() failed while signaling cv " PTR_FMT, cv); return NGX_ERROR; } ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->mutex.log, 0, "cv " PTR_FMT " is signaled", cv); return NGX_OK; }