2012-10-17 15:12:04 +08:00
|
|
|
package org.opencv.test.features2d;
|
|
|
|
|
2019-06-06 18:05:41 +08:00
|
|
|
import java.util.Arrays;
|
|
|
|
|
|
|
|
import org.opencv.core.CvType;
|
|
|
|
import org.opencv.core.Mat;
|
|
|
|
import org.opencv.core.MatOfKeyPoint;
|
|
|
|
import org.opencv.core.Point;
|
|
|
|
import org.opencv.core.Scalar;
|
|
|
|
import org.opencv.core.KeyPoint;
|
2012-10-17 15:12:04 +08:00
|
|
|
import org.opencv.test.OpenCVTestCase;
|
2019-06-06 18:05:41 +08:00
|
|
|
import org.opencv.test.OpenCVTestRunner;
|
|
|
|
import org.opencv.imgproc.Imgproc;
|
|
|
|
import org.opencv.features2d.SimpleBlobDetector;
|
2022-12-21 21:03:00 +08:00
|
|
|
import org.opencv.features2d.SimpleBlobDetector_Params;
|
2012-10-17 15:12:04 +08:00
|
|
|
|
|
|
|
public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
|
|
|
|
|
2022-12-21 21:03:00 +08:00
|
|
|
SimpleBlobDetector detector;
|
2019-06-06 18:05:41 +08:00
|
|
|
int matSize;
|
|
|
|
KeyPoint[] truth;
|
|
|
|
|
|
|
|
private Mat getMaskImg() {
|
|
|
|
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
|
|
|
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
|
|
|
|
right.setTo(new Scalar(0));
|
|
|
|
return mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
private Mat getTestImg() {
|
|
|
|
|
|
|
|
int center = matSize / 2;
|
|
|
|
int offset = 40;
|
|
|
|
|
|
|
|
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
|
|
|
Imgproc.circle(img, new Point(center - offset, center), 24, new Scalar(0), -1);
|
|
|
|
Imgproc.circle(img, new Point(center + offset, center), 20, new Scalar(50), -1);
|
|
|
|
Imgproc.circle(img, new Point(center, center - offset), 18, new Scalar(100), -1);
|
|
|
|
Imgproc.circle(img, new Point(center, center + offset), 14, new Scalar(150), -1);
|
|
|
|
Imgproc.circle(img, new Point(center, center), 10, new Scalar(200), -1);
|
|
|
|
return img;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
protected void setUp() throws Exception {
|
|
|
|
super.setUp();
|
|
|
|
detector = SimpleBlobDetector.create();
|
|
|
|
matSize = 200;
|
|
|
|
truth = new KeyPoint[] {
|
2022-12-21 21:03:00 +08:00
|
|
|
new KeyPoint(140, 100, 41.036568f, -1, 0, 0, -1),
|
|
|
|
new KeyPoint(60, 100, 48.538486f, -1, 0, 0, -1),
|
2019-06-06 18:05:41 +08:00
|
|
|
new KeyPoint(100, 60, 36.769554f, -1, 0, 0, -1),
|
|
|
|
new KeyPoint(100, 140, 28.635643f, -1, 0, 0, -1),
|
|
|
|
new KeyPoint(100, 100, 20.880613f, -1, 0, 0, -1)
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2012-10-17 15:12:04 +08:00
|
|
|
public void testCreate() {
|
2019-06-06 18:05:41 +08:00
|
|
|
assertNotNull(detector);
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
public void testDetectListOfMatListOfListOfKeyPoint() {
|
|
|
|
fail("Not yet implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
|
|
|
fail("Not yet implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
public void testDetectMatListOfKeyPoint() {
|
2019-06-06 18:05:41 +08:00
|
|
|
Mat img = getTestImg();
|
|
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
|
|
|
|
|
|
|
detector.detect(img, keypoints);
|
|
|
|
|
|
|
|
assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS);
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
public void testDetectMatListOfKeyPointMat() {
|
2019-06-06 18:05:41 +08:00
|
|
|
Mat img = getTestImg();
|
|
|
|
Mat mask = getMaskImg();
|
|
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
|
|
|
|
|
|
|
detector.detect(img, keypoints, mask);
|
|
|
|
|
|
|
|
assertListKeyPointEquals(Arrays.asList(truth[1]), keypoints.toList(), EPS);
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
public void testEmpty() {
|
2019-06-06 18:05:41 +08:00
|
|
|
// assertFalse(detector.empty());
|
2012-10-17 15:12:04 +08:00
|
|
|
fail("Not yet implemented");
|
|
|
|
}
|
|
|
|
|
2022-12-21 21:03:00 +08:00
|
|
|
public void testReadYml() {
|
2019-06-06 18:05:41 +08:00
|
|
|
Mat img = getTestImg();
|
|
|
|
|
|
|
|
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
|
|
|
|
detector.detect(img, keypoints1);
|
|
|
|
|
|
|
|
String filename = OpenCVTestRunner.getTempFileName("yml");
|
2022-12-21 21:03:00 +08:00
|
|
|
writeFile(filename, "%YAML:1.0\nthresholdStep: 10.0\nminThreshold: 50\nmaxThreshold: 220\nminRepeatability: 2\nminDistBetweenBlobs: 10.\nfilterByColor: 1\nblobColor: 0\nfilterByArea: 1\nminArea: 800\nmaxArea: 6000\nfilterByCircularity: 0\nminCircularity: 0.7\nmaxCircularity: 10.\nfilterByInertia: 1\nminInertiaRatio: 0.2\nmaxInertiaRatio: 11.\nfilterByConvexity: true\nminConvexity: 0.9\nmaxConvexity: 12.\n");
|
2019-06-06 18:05:41 +08:00
|
|
|
detector.read(filename);
|
|
|
|
|
2022-12-21 21:03:00 +08:00
|
|
|
SimpleBlobDetector_Params params = detector.getParams();
|
|
|
|
assertEquals(10.0f, params.get_thresholdStep());
|
|
|
|
assertEquals(50f, params.get_minThreshold());
|
|
|
|
assertEquals(220f, params.get_maxThreshold());
|
|
|
|
assertEquals(2, params.get_minRepeatability());
|
|
|
|
assertEquals(10.0f, params.get_minDistBetweenBlobs());
|
|
|
|
assertEquals(true, params.get_filterByColor());
|
|
|
|
// FIXME: blobColor field has uchar type in C++ and cannot be automatically wrapped to Java as it does not support unsigned types
|
|
|
|
//assertEquals(0, params.get_blobColor());
|
|
|
|
assertEquals(true, params.get_filterByArea());
|
|
|
|
assertEquals(800f, params.get_minArea());
|
|
|
|
assertEquals(6000f, params.get_maxArea());
|
|
|
|
assertEquals(false, params.get_filterByCircularity());
|
|
|
|
assertEquals(0.7f, params.get_minCircularity());
|
|
|
|
assertEquals(10.0f, params.get_maxCircularity());
|
|
|
|
assertEquals(true, params.get_filterByInertia());
|
|
|
|
assertEquals(0.2f, params.get_minInertiaRatio());
|
|
|
|
assertEquals(11.0f, params.get_maxInertiaRatio());
|
|
|
|
assertEquals(true, params.get_filterByConvexity());
|
|
|
|
assertEquals(0.9f, params.get_minConvexity());
|
|
|
|
assertEquals(12.0f, params.get_maxConvexity());
|
|
|
|
|
2019-06-06 18:05:41 +08:00
|
|
|
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
|
|
|
|
detector.detect(img, keypoints2);
|
|
|
|
|
|
|
|
assertTrue(keypoints2.total() <= keypoints1.total());
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
public void testWrite() {
|
2019-06-06 18:05:41 +08:00
|
|
|
String filename = OpenCVTestRunner.getTempFileName("xml");
|
|
|
|
|
|
|
|
detector.write(filename);
|
2012-10-17 15:12:04 +08:00
|
|
|
|
2022-10-08 00:07:51 +08:00
|
|
|
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<format>3</format>\n<thresholdStep>10.</thresholdStep>\n<minThreshold>50.</minThreshold>\n<maxThreshold>220.</maxThreshold>\n<minRepeatability>2</minRepeatability>\n<minDistBetweenBlobs>10.</minDistBetweenBlobs>\n<filterByColor>1</filterByColor>\n<blobColor>0</blobColor>\n<filterByArea>1</filterByArea>\n<minArea>25.</minArea>\n<maxArea>5000.</maxArea>\n<filterByCircularity>0</filterByCircularity>\n<minCircularity>8.0000001192092896e-01</minCircularity>\n<maxCircularity>3.4028234663852886e+38</maxCircularity>\n<filterByInertia>1</filterByInertia>\n<minInertiaRatio>1.0000000149011612e-01</minInertiaRatio>\n<maxInertiaRatio>3.4028234663852886e+38</maxInertiaRatio>\n<filterByConvexity>1</filterByConvexity>\n<minConvexity>9.4999998807907104e-01</minConvexity>\n<maxConvexity>3.4028234663852886e+38</maxConvexity>\n<collectContours>0</collectContours>\n</opencv_storage>\n";
|
2019-06-06 18:05:41 +08:00
|
|
|
assertEquals(truth, readFile(filename));
|
|
|
|
}
|
2012-10-17 15:12:04 +08:00
|
|
|
}
|