opencv/modules/legacy/src/em.cpp

264 lines
7.5 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
2012-05-03 04:20:14 +08:00
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
CvEMParams::CvEMParams() : nclusters(10), cov_mat_type(CvEM::COV_MAT_DIAGONAL),
2012-05-03 04:20:14 +08:00
start_step(CvEM::START_AUTO_STEP), probs(0), weights(0), means(0), covs(0)
{
term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON );
}
CvEMParams::CvEMParams( int _nclusters, int _cov_mat_type, int _start_step,
2012-05-03 04:20:14 +08:00
CvTermCriteria _term_crit, const CvMat* _probs,
const CvMat* _weights, const CvMat* _means, const CvMat** _covs ) :
nclusters(_nclusters), cov_mat_type(_cov_mat_type), start_step(_start_step),
probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit)
{}
2012-04-30 22:33:52 +08:00
CvEM::CvEM() : logLikelihood(DBL_MAX)
{
}
CvEM::CvEM( const CvMat* samples, const CvMat* sample_idx,
2012-05-03 04:20:14 +08:00
CvEMParams params, CvMat* labels ) : logLikelihood(DBL_MAX)
{
train(samples, sample_idx, params, labels);
}
CvEM::~CvEM()
{
clear();
}
void CvEM::clear()
{
emObj.clear();
}
void CvEM::read( CvFileStorage* fs, CvFileNode* node )
{
FileNode fn(fs, node);
emObj.read(fn);
set_mat_hdrs();
}
void CvEM::write( CvFileStorage* _fs, const char* name ) const
{
FileStorage fs = _fs;
if(name)
fs << name << "{";
emObj.write(fs);
if(name)
fs << "}";
fs.fs.obj = 0;
}
double CvEM::calcLikelihood( const Mat &input_sample ) const
{
2012-04-30 22:33:52 +08:00
return emObj.predict(input_sample)[0];
}
float
CvEM::predict( const CvMat* _sample, CvMat* _probs ) const
{
Mat prbs0 = cvarrToMat(_probs), prbs = prbs0, sample = cvarrToMat(_sample);
2012-04-30 22:33:52 +08:00
int cls = static_cast<int>(emObj.predict(sample, _probs ? _OutputArray(prbs) : cv::noArray())[1]);
if(_probs)
{
if( prbs.data != prbs0.data )
{
CV_Assert( prbs.size == prbs0.size );
prbs.convertTo(prbs0, prbs0.type());
}
}
return (float)cls;
}
void CvEM::set_mat_hdrs()
{
if(emObj.isTrained())
{
meansHdr = emObj.get<Mat>("means");
int K = emObj.get<int>("nclusters");
covsHdrs.resize(K);
covsPtrs.resize(K);
const std::vector<Mat>& covs = emObj.get<vector<Mat> >("covs");
for(size_t i = 0; i < covsHdrs.size(); i++)
{
covsHdrs[i] = covs[i];
covsPtrs[i] = &covsHdrs[i];
}
weightsHdr = emObj.get<Mat>("weights");
probsHdr = probs;
}
}
static
void init_params(const CvEMParams& src,
Mat& prbs, Mat& weights,
Mat& means, vector<Mat>& covsHdrs)
{
prbs = src.probs;
weights = src.weights;
means = src.means;
2012-05-03 04:20:14 +08:00
if(src.covs)
{
covsHdrs.resize(src.nclusters);
for(size_t i = 0; i < covsHdrs.size(); i++)
covsHdrs[i] = src.covs[i];
}
}
bool CvEM::train( const CvMat* _samples, const CvMat* _sample_idx,
2012-05-03 04:20:14 +08:00
CvEMParams _params, CvMat* _labels )
{
CV_Assert(_sample_idx == 0);
Mat samples = cvarrToMat(_samples), labels0, labels;
if( _labels )
labels0 = labels = cvarrToMat(_labels);
bool isOk = train(samples, Mat(), _params, _labels ? &labels : 0);
CV_Assert( labels0.data == labels.data );
2012-05-03 04:20:14 +08:00
return isOk;
}
int CvEM::get_nclusters() const
{
return emObj.get<int>("nclusters");
}
const CvMat* CvEM::get_means() const
{
return emObj.isTrained() ? &meansHdr : 0;
}
const CvMat** CvEM::get_covs() const
{
return emObj.isTrained() ? (const CvMat**)&covsPtrs[0] : 0;
}
const CvMat* CvEM::get_weights() const
{
return emObj.isTrained() ? &weightsHdr : 0;
}
const CvMat* CvEM::get_probs() const
{
return emObj.isTrained() ? &probsHdr : 0;
}
using namespace cv;
CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params )
{
train(samples, sample_idx, params, 0);
}
bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
CvEMParams _params, Mat* _labels )
{
CV_Assert(_sample_idx.empty());
2012-04-30 22:33:52 +08:00
Mat prbs, weights, means, logLikelihoods;
std::vector<Mat> covsHdrs;
init_params(_params, prbs, weights, means, covsHdrs);
2012-05-03 04:20:14 +08:00
emObj = EM(_params.nclusters, _params.cov_mat_type, _params.term_crit);
bool isOk = false;
if( _params.start_step == EM::START_AUTO_STEP )
2012-04-30 22:33:52 +08:00
isOk = emObj.train(_samples,
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs);
else if( _params.start_step == EM::START_E_STEP )
isOk = emObj.trainE(_samples, means, covsHdrs, weights,
2012-04-30 22:33:52 +08:00
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs);
else if( _params.start_step == EM::START_M_STEP )
isOk = emObj.trainM(_samples, prbs,
2012-04-30 22:33:52 +08:00
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs);
else
CV_Error(CV_StsBadArg, "Bad start type of EM algorithm");
if(isOk)
{
2012-04-30 22:33:52 +08:00
logLikelihood = sum(logLikelihoods).val[0];
set_mat_hdrs();
}
2012-05-03 04:20:14 +08:00
return isOk;
}
float
CvEM::predict( const Mat& _sample, Mat* _probs ) const
{
2012-04-30 22:33:52 +08:00
return static_cast<float>(emObj.predict(_sample, _probs ? _OutputArray(*_probs) : cv::noArray())[1]);
}
int CvEM::getNClusters() const
{
return emObj.get<int>("nclusters");
}
Mat CvEM::getMeans() const
{
return emObj.get<Mat>("means");
}
void CvEM::getCovs(vector<Mat>& _covs) const
{
_covs = emObj.get<vector<Mat> >("covs");
}
Mat CvEM::getWeights() const
{
return emObj.get<Mat>("weights");
}
Mat CvEM::getProbs() const
{
return probs;
}
/* End of file. */