mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
403 lines
12 KiB
C++
403 lines
12 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
#include "precomp.hpp"
|
||
|
|
||
|
typedef struct _PointInfo
|
||
|
{
|
||
|
CvPoint pt;
|
||
|
int left_neigh;
|
||
|
int right_neigh;
|
||
|
|
||
|
}
|
||
|
icvPointInfo;
|
||
|
|
||
|
|
||
|
static CvStatus
|
||
|
icvFindDominantPointsIPAN( CvSeq * contour,
|
||
|
CvMemStorage * storage,
|
||
|
CvSeq ** corners, int dmin2, int dmax2, int dneigh2, float amax )
|
||
|
{
|
||
|
CvStatus status = CV_OK;
|
||
|
|
||
|
/* variables */
|
||
|
int n = contour->total;
|
||
|
|
||
|
float *sharpness;
|
||
|
float *distance;
|
||
|
icvPointInfo *ptInf;
|
||
|
|
||
|
int i, j, k;
|
||
|
|
||
|
CvSeqWriter writer;
|
||
|
|
||
|
float mincos = (float) cos( 3.14159265359 * amax / 180 );
|
||
|
|
||
|
/* check bad arguments */
|
||
|
if( contour == NULL )
|
||
|
return CV_NULLPTR_ERR;
|
||
|
if( storage == NULL )
|
||
|
return CV_NULLPTR_ERR;
|
||
|
if( corners == NULL )
|
||
|
return CV_NULLPTR_ERR;
|
||
|
if( dmin2 < 0 )
|
||
|
return CV_BADSIZE_ERR;
|
||
|
if( dmax2 < dmin2 )
|
||
|
return CV_BADSIZE_ERR;
|
||
|
if( (dneigh2 > dmax2) || (dneigh2 < 0) )
|
||
|
return CV_BADSIZE_ERR;
|
||
|
if( (amax < 0) || (amax > 180) )
|
||
|
return CV_BADSIZE_ERR;
|
||
|
|
||
|
sharpness = (float *) cvAlloc( n * sizeof( float ));
|
||
|
distance = (float *) cvAlloc( n * sizeof( float ));
|
||
|
|
||
|
ptInf = (icvPointInfo *) cvAlloc( n * sizeof( icvPointInfo ));
|
||
|
|
||
|
/*****************************************************************************************/
|
||
|
/* First pass */
|
||
|
/*****************************************************************************************/
|
||
|
|
||
|
if( CV_IS_SEQ_CHAIN_CONTOUR( contour ))
|
||
|
{
|
||
|
CvChainPtReader reader;
|
||
|
|
||
|
cvStartReadChainPoints( (CvChain *) contour, &reader );
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
CV_READ_CHAIN_POINT( ptInf[i].pt, reader );
|
||
|
}
|
||
|
}
|
||
|
else if( CV_IS_SEQ_POINT_SET( contour ))
|
||
|
{
|
||
|
CvSeqReader reader;
|
||
|
|
||
|
cvStartReadSeq( contour, &reader, 0 );
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
CV_READ_SEQ_ELEM( ptInf[i].pt, reader );
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return CV_BADFLAG_ERR;
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
/* find nearest suitable points
|
||
|
which satisfy distance constraint >dmin */
|
||
|
int left_near = 0;
|
||
|
int right_near = 0;
|
||
|
int left_far, right_far;
|
||
|
|
||
|
float dist_l = 0;
|
||
|
float dist_r = 0;
|
||
|
|
||
|
int i_plus = 0;
|
||
|
int i_minus = 0;
|
||
|
|
||
|
float max_cos_alpha;
|
||
|
|
||
|
/* find right minimum */
|
||
|
while( dist_r < dmin2 )
|
||
|
{
|
||
|
float dx, dy;
|
||
|
int ind;
|
||
|
|
||
|
if( i_plus >= n )
|
||
|
goto error;
|
||
|
|
||
|
right_near = i_plus;
|
||
|
|
||
|
if( dist_r < dneigh2 )
|
||
|
ptInf[i].right_neigh = i_plus;
|
||
|
|
||
|
i_plus++;
|
||
|
|
||
|
ind = (i + i_plus) % n;
|
||
|
dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x);
|
||
|
dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y);
|
||
|
dist_r = dx * dx + dy * dy;
|
||
|
}
|
||
|
/* find right maximum */
|
||
|
while( dist_r <= dmax2 )
|
||
|
{
|
||
|
float dx, dy;
|
||
|
int ind;
|
||
|
|
||
|
if( i_plus >= n )
|
||
|
goto error;
|
||
|
|
||
|
distance[(i + i_plus) % n] = cvSqrt( dist_r );
|
||
|
|
||
|
if( dist_r < dneigh2 )
|
||
|
ptInf[i].right_neigh = i_plus;
|
||
|
|
||
|
i_plus++;
|
||
|
|
||
|
right_far = i_plus;
|
||
|
|
||
|
ind = (i + i_plus) % n;
|
||
|
|
||
|
dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x);
|
||
|
dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y);
|
||
|
dist_r = dx * dx + dy * dy;
|
||
|
}
|
||
|
right_far = i_plus;
|
||
|
|
||
|
/* left minimum */
|
||
|
while( dist_l < dmin2 )
|
||
|
{
|
||
|
float dx, dy;
|
||
|
int ind;
|
||
|
|
||
|
if( i_minus <= -n )
|
||
|
goto error;
|
||
|
|
||
|
left_near = i_minus;
|
||
|
|
||
|
if( dist_l < dneigh2 )
|
||
|
ptInf[i].left_neigh = i_minus;
|
||
|
|
||
|
i_minus--;
|
||
|
|
||
|
ind = i + i_minus;
|
||
|
ind = (ind < 0) ? (n + ind) : ind;
|
||
|
|
||
|
dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x);
|
||
|
dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y);
|
||
|
dist_l = dx * dx + dy * dy;
|
||
|
}
|
||
|
|
||
|
/* find left maximum */
|
||
|
while( dist_l <= dmax2 )
|
||
|
{
|
||
|
float dx, dy;
|
||
|
int ind;
|
||
|
|
||
|
if( i_minus <= -n )
|
||
|
goto error;
|
||
|
|
||
|
ind = i + i_minus;
|
||
|
ind = (ind < 0) ? (n + ind) : ind;
|
||
|
|
||
|
distance[ind] = cvSqrt( dist_l );
|
||
|
|
||
|
if( dist_l < dneigh2 )
|
||
|
ptInf[i].left_neigh = i_minus;
|
||
|
|
||
|
i_minus--;
|
||
|
|
||
|
left_far = i_minus;
|
||
|
|
||
|
ind = i + i_minus;
|
||
|
ind = (ind < 0) ? (n + ind) : ind;
|
||
|
|
||
|
dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x);
|
||
|
dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y);
|
||
|
dist_l = dx * dx + dy * dy;
|
||
|
}
|
||
|
left_far = i_minus;
|
||
|
|
||
|
if( (i_plus - i_minus) > n + 2 )
|
||
|
goto error;
|
||
|
|
||
|
max_cos_alpha = -1;
|
||
|
for( j = left_far + 1; j < left_near; j++ )
|
||
|
{
|
||
|
float dx, dy;
|
||
|
float a, a2;
|
||
|
int leftind = i + j;
|
||
|
|
||
|
leftind = (leftind < 0) ? (n + leftind) : leftind;
|
||
|
|
||
|
a = distance[leftind];
|
||
|
a2 = a * a;
|
||
|
|
||
|
for( k = right_near + 1; k < right_far; k++ )
|
||
|
{
|
||
|
int ind = (i + k) % n;
|
||
|
float c2, cosalpha;
|
||
|
float b = distance[ind];
|
||
|
float b2 = b * b;
|
||
|
|
||
|
/* compute cosinus */
|
||
|
dx = (float) (ptInf[leftind].pt.x - ptInf[ind].pt.x);
|
||
|
dy = (float) (ptInf[leftind].pt.y - ptInf[ind].pt.y);
|
||
|
|
||
|
c2 = dx * dx + dy * dy;
|
||
|
cosalpha = (a2 + b2 - c2) / (2 * a * b);
|
||
|
|
||
|
max_cos_alpha = MAX( max_cos_alpha, cosalpha );
|
||
|
|
||
|
if( max_cos_alpha < mincos )
|
||
|
max_cos_alpha = -1;
|
||
|
|
||
|
sharpness[i] = max_cos_alpha;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/*****************************************************************************************/
|
||
|
/* Second pass */
|
||
|
/*****************************************************************************************/
|
||
|
|
||
|
cvStartWriteSeq( (contour->flags & ~CV_SEQ_ELTYPE_MASK) | CV_SEQ_ELTYPE_INDEX,
|
||
|
sizeof( CvSeq ), sizeof( int ), storage, &writer );
|
||
|
|
||
|
/* second pass - nonmaxima suppression */
|
||
|
/* neighborhood of point < dneigh2 */
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
int suppressed = 0;
|
||
|
if( sharpness[i] == -1 )
|
||
|
continue;
|
||
|
|
||
|
for( j = 1; (j <= ptInf[i].right_neigh) && (suppressed == 0); j++ )
|
||
|
{
|
||
|
if( sharpness[i] < sharpness[(i + j) % n] )
|
||
|
suppressed = 1;
|
||
|
}
|
||
|
|
||
|
for( j = -1; (j >= ptInf[i].left_neigh) && (suppressed == 0); j-- )
|
||
|
{
|
||
|
int ind = i + j;
|
||
|
|
||
|
ind = (ind < 0) ? (n + ind) : ind;
|
||
|
if( sharpness[i] < sharpness[ind] )
|
||
|
suppressed = 1;
|
||
|
}
|
||
|
|
||
|
if( !suppressed )
|
||
|
CV_WRITE_SEQ_ELEM( i, writer );
|
||
|
}
|
||
|
|
||
|
*corners = cvEndWriteSeq( &writer );
|
||
|
|
||
|
cvFree( &sharpness );
|
||
|
cvFree( &distance );
|
||
|
cvFree( &ptInf );
|
||
|
|
||
|
return status;
|
||
|
|
||
|
error:
|
||
|
/* dmax is so big (more than contour diameter)
|
||
|
that algorithm could become infinite cycle */
|
||
|
cvFree( &sharpness );
|
||
|
cvFree( &distance );
|
||
|
cvFree( &ptInf );
|
||
|
|
||
|
return CV_BADRANGE_ERR;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*F///////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Name: icvFindDominantPoints
|
||
|
// Purpose:
|
||
|
// Applies some algorithm to find dominant points ( corners ) of contour
|
||
|
//
|
||
|
// Context:
|
||
|
// Parameters:
|
||
|
// contours - pointer to input contour object.
|
||
|
// out_numbers - array of dominant points indices
|
||
|
// count - length of out_numbers array on input
|
||
|
// and numbers of founded dominant points on output
|
||
|
//
|
||
|
// method - only CV_DOMINANT_IPAN now
|
||
|
// parameters - array of parameters
|
||
|
// for IPAN algorithm
|
||
|
// [0] - minimal distance
|
||
|
// [1] - maximal distance
|
||
|
// [2] - neighborhood distance (must be not greater than dmaximal distance)
|
||
|
// [3] - maximal possible angle of curvature
|
||
|
// Returns:
|
||
|
// CV_OK or error code
|
||
|
// Notes:
|
||
|
// User must allocate out_numbers array. If it is small - function fills array
|
||
|
// with part of points and returns error
|
||
|
//F*/
|
||
|
CV_IMPL CvSeq*
|
||
|
cvFindDominantPoints( CvSeq * contour, CvMemStorage * storage, int method,
|
||
|
double parameter1, double parameter2, double parameter3, double parameter4 )
|
||
|
{
|
||
|
CvSeq* corners = 0;
|
||
|
|
||
|
if( !contour )
|
||
|
CV_Error( CV_StsNullPtr, "" );
|
||
|
|
||
|
if( !storage )
|
||
|
storage = contour->storage;
|
||
|
|
||
|
if( !storage )
|
||
|
CV_Error( CV_StsNullPtr, "" );
|
||
|
|
||
|
switch (method)
|
||
|
{
|
||
|
case CV_DOMINANT_IPAN:
|
||
|
{
|
||
|
int dmin = cvRound(parameter1);
|
||
|
int dmax = cvRound(parameter2);
|
||
|
int dneigh = cvRound(parameter3);
|
||
|
int amax = cvRound(parameter4);
|
||
|
|
||
|
if( amax == 0 )
|
||
|
amax = 150;
|
||
|
if( dmin == 0 )
|
||
|
dmin = 7;
|
||
|
if( dmax == 0 )
|
||
|
dmax = dmin + 2;
|
||
|
if( dneigh == 0 )
|
||
|
dneigh = dmin;
|
||
|
|
||
|
IPPI_CALL( icvFindDominantPointsIPAN( contour, storage, &corners,
|
||
|
dmin*dmin, dmax*dmax, dneigh*dneigh, (float)amax ));
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
CV_Error( CV_StsBadArg, "" );
|
||
|
}
|
||
|
|
||
|
return corners;
|
||
|
}
|
||
|
|
||
|
/* End of file. */
|