2015-12-03 21:19:08 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
namespace opencv_test { namespace {
|
2015-12-03 21:19:08 +08:00
|
|
|
|
|
|
|
enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 };
|
|
|
|
|
|
|
|
|
|
|
|
#if 0 //set 1 to switch ON debug message
|
|
|
|
#define TEST_MESSAGE( message ) std::cout << message;
|
|
|
|
#define TEST_MESSAGEL( message, val) std::cout << message << val << std::endl;
|
|
|
|
#else
|
|
|
|
#define TEST_MESSAGE( message )
|
|
|
|
#define TEST_MESSAGEL( message, val)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/////////////////////ref//////////////////////
|
|
|
|
|
2018-02-07 00:05:34 +08:00
|
|
|
#ifdef CV_CXX11
|
|
|
|
struct greaterThanPtr
|
|
|
|
#else
|
|
|
|
struct greaterThanPtr : public std::binary_function<const float *, const float *, bool>
|
|
|
|
#endif
|
2015-12-03 21:19:08 +08:00
|
|
|
{
|
|
|
|
bool operator () (const float * a, const float * b) const
|
|
|
|
{ return *a > *b; }
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size,
|
|
|
|
int _aperture_size, double k, int mode, int borderType, const Scalar& _borderValue )
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
Scalar borderValue = _borderValue;
|
|
|
|
int aperture_size = _aperture_size < 0 ? 3 : _aperture_size;
|
|
|
|
Point anchor( aperture_size/2, aperture_size/2 );
|
|
|
|
|
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 );
|
|
|
|
CV_Assert( eigenv.type() == CV_32FC1 );
|
|
|
|
CV_Assert( ( src.rows == eigenv.rows ) &&
|
|
|
|
(((mode == MINEIGENVAL)||(mode == HARRIS)) && (src.cols == eigenv.cols)) );
|
|
|
|
|
|
|
|
int type = src.type();
|
|
|
|
int ftype = CV_32FC1;
|
|
|
|
double kernel_scale = 1;
|
|
|
|
|
|
|
|
Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel;
|
|
|
|
|
|
|
|
kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size );
|
|
|
|
cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, borderType, borderValue );
|
|
|
|
kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size );
|
|
|
|
cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue );
|
|
|
|
|
|
|
|
double denom = (1 << (aperture_size-1))*block_size;
|
|
|
|
denom = denom * denom;
|
|
|
|
|
|
|
|
if( _aperture_size < 0 )
|
|
|
|
denom *= 4;
|
|
|
|
if(type != ftype )
|
|
|
|
denom *= 255.;
|
|
|
|
|
|
|
|
denom = 1./denom;
|
|
|
|
|
|
|
|
for( i = 0; i < src.rows; i++ )
|
|
|
|
{
|
|
|
|
float* dxdyp = dxdy.ptr<float>(i);
|
|
|
|
float* dx2p = dx2.ptr<float>(i);
|
|
|
|
float* dy2p = dy2.ptr<float>(i);
|
|
|
|
|
|
|
|
for( j = 0; j < src.cols; j++ )
|
|
|
|
{
|
|
|
|
double xval = dx2p[j], yval = dy2p[j];
|
|
|
|
dxdyp[j] = (float)(xval*yval*denom);
|
|
|
|
dx2p[j] = (float)(xval*xval*denom);
|
|
|
|
dy2p[j] = (float)(yval*yval*denom);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel = Mat::ones(block_size, block_size, CV_32F);
|
|
|
|
anchor = Point(block_size/2, block_size/2);
|
|
|
|
|
|
|
|
cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, borderType, borderValue );
|
|
|
|
cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, borderType, borderValue );
|
|
|
|
cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, borderType, borderValue );
|
|
|
|
|
|
|
|
if( mode == MINEIGENVAL )
|
|
|
|
{
|
|
|
|
for( i = 0; i < src.rows; i++ )
|
|
|
|
{
|
|
|
|
float* eigenvp = eigenv.ptr<float>(i);
|
|
|
|
const float* dxdyp = dxdy.ptr<float>(i);
|
|
|
|
const float* dx2p = dx2.ptr<float>(i);
|
|
|
|
const float* dy2p = dy2.ptr<float>(i);
|
|
|
|
|
|
|
|
for( j = 0; j < src.cols; j++ )
|
|
|
|
{
|
|
|
|
double a = dx2p[j], b = dxdyp[j], c = dy2p[j];
|
|
|
|
double d = sqrt( ( a - c )*( a - c ) + 4*b*b );
|
|
|
|
eigenvp[j] = (float)( 0.5*(a + c - d));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if( mode == HARRIS )
|
|
|
|
{
|
|
|
|
|
|
|
|
for( i = 0; i < src.rows; i++ )
|
|
|
|
{
|
|
|
|
float* eigenvp = eigenv.ptr<float>(i);
|
|
|
|
const float* dxdyp = dxdy.ptr<float>(i);
|
|
|
|
const float* dx2p = dx2.ptr<float>(i);
|
|
|
|
const float* dy2p = dy2.ptr<float>(i);
|
|
|
|
|
|
|
|
for( j = 0; j < src.cols; j++ )
|
|
|
|
{
|
|
|
|
double a = dx2p[j], b = dxdyp[j], c = dy2p[j];
|
|
|
|
eigenvp[j] = (float)(a*c - b*b - k*(a + c)*(a + c));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
|
|
|
int maxCorners, double qualityLevel, double minDistance,
|
2017-09-22 22:04:43 +08:00
|
|
|
InputArray _mask, int blockSize, int gradientSize,
|
2015-12-03 21:19:08 +08:00
|
|
|
bool useHarrisDetector, double harrisK )
|
|
|
|
{
|
|
|
|
|
|
|
|
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
|
|
|
|
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
|
|
|
|
|
|
|
|
|
|
|
|
Mat image = _image.getMat(), mask = _mask.getMat();
|
2017-09-22 22:04:43 +08:00
|
|
|
int aperture_size = gradientSize;
|
2015-12-03 21:19:08 +08:00
|
|
|
int borderType = BORDER_DEFAULT;
|
|
|
|
|
|
|
|
Mat eig, tmp, tt;
|
|
|
|
|
|
|
|
eig.create( image.size(), CV_32F );
|
|
|
|
|
|
|
|
if( useHarrisDetector )
|
|
|
|
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, harrisK, HARRIS, borderType, 0 );
|
|
|
|
else
|
|
|
|
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, 0, MINEIGENVAL, borderType, 0 );
|
|
|
|
|
|
|
|
double maxVal = 0;
|
|
|
|
|
|
|
|
cvtest::minMaxIdx( eig, 0, &maxVal, 0, 0, mask );
|
|
|
|
cvtest::threshold( eig, eig, (float)(maxVal*qualityLevel), 0.f,THRESH_TOZERO );
|
|
|
|
cvtest::dilate( eig, tmp, Mat(),Point(-1,-1),borderType,0);
|
|
|
|
|
|
|
|
Size imgsize = image.size();
|
|
|
|
|
|
|
|
vector<const float*> tmpCorners;
|
|
|
|
|
|
|
|
// collect list of pointers to features - put them into temporary image
|
|
|
|
for( int y = 1; y < imgsize.height - 1; y++ )
|
|
|
|
{
|
|
|
|
const float* eig_data = (const float*)eig.ptr(y);
|
|
|
|
const float* tmp_data = (const float*)tmp.ptr(y);
|
|
|
|
const uchar* mask_data = mask.data ? mask.ptr(y) : 0;
|
|
|
|
|
|
|
|
for( int x = 1; x < imgsize.width - 1; x++ )
|
|
|
|
{
|
|
|
|
float val = eig_data[x];
|
|
|
|
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) )
|
|
|
|
{
|
|
|
|
tmpCorners.push_back(eig_data + x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vector<Point2f> corners;
|
|
|
|
size_t i, j, total = tmpCorners.size(), ncorners = 0;
|
|
|
|
|
|
|
|
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
|
|
|
|
|
|
|
|
if(minDistance >= 1)
|
|
|
|
{
|
|
|
|
// Partition the image into larger grids
|
|
|
|
int w = image.cols;
|
|
|
|
int h = image.rows;
|
|
|
|
|
|
|
|
const int cell_size = cvRound(minDistance);
|
|
|
|
const int grid_width = (w + cell_size - 1) / cell_size;
|
|
|
|
const int grid_height = (h + cell_size - 1) / cell_size;
|
|
|
|
|
|
|
|
std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
|
|
|
|
|
|
|
|
minDistance *= minDistance;
|
|
|
|
|
|
|
|
for( i = 0; i < total; i++ )
|
|
|
|
{
|
|
|
|
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data);
|
|
|
|
int y = (int)(ofs / eig.step);
|
|
|
|
int x = (int)((ofs - y*eig.step)/sizeof(float));
|
|
|
|
|
|
|
|
bool good = true;
|
|
|
|
|
|
|
|
int x_cell = x / cell_size;
|
|
|
|
int y_cell = y / cell_size;
|
|
|
|
|
|
|
|
int x1 = x_cell - 1;
|
|
|
|
int y1 = y_cell - 1;
|
|
|
|
int x2 = x_cell + 1;
|
|
|
|
int y2 = y_cell + 1;
|
|
|
|
|
|
|
|
// boundary check
|
|
|
|
x1 = std::max(0, x1);
|
|
|
|
y1 = std::max(0, y1);
|
|
|
|
x2 = std::min(grid_width-1, x2);
|
|
|
|
y2 = std::min(grid_height-1, y2);
|
|
|
|
|
|
|
|
for( int yy = y1; yy <= y2; yy++ )
|
|
|
|
{
|
|
|
|
for( int xx = x1; xx <= x2; xx++ )
|
|
|
|
{
|
|
|
|
vector <Point2f> &m = grid[yy*grid_width + xx];
|
|
|
|
|
|
|
|
if( m.size() )
|
|
|
|
{
|
|
|
|
for(j = 0; j < m.size(); j++)
|
|
|
|
{
|
|
|
|
float dx = x - m[j].x;
|
|
|
|
float dy = y - m[j].y;
|
|
|
|
|
|
|
|
if( dx*dx + dy*dy < minDistance )
|
|
|
|
{
|
|
|
|
good = false;
|
|
|
|
goto break_out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
break_out:
|
|
|
|
|
|
|
|
if(good)
|
|
|
|
{
|
|
|
|
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
|
|
|
|
|
|
|
|
corners.push_back(Point2f((float)x, (float)y));
|
|
|
|
++ncorners;
|
|
|
|
|
|
|
|
if( maxCorners > 0 && (int)ncorners == maxCorners )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( i = 0; i < total; i++ )
|
|
|
|
{
|
|
|
|
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data);
|
|
|
|
int y = (int)(ofs / eig.step);
|
|
|
|
int x = (int)((ofs - y*eig.step)/sizeof(float));
|
|
|
|
|
|
|
|
corners.push_back(Point2f((float)x, (float)y));
|
|
|
|
++ncorners;
|
|
|
|
if( maxCorners > 0 && (int)ncorners == maxCorners )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////end of ref code//////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CV_GoodFeatureToTTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_GoodFeatureToTTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func();
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
|
|
|
|
Mat src, src_gray;
|
|
|
|
Mat src_gray32f, src_gray8U;
|
|
|
|
Mat mask;
|
|
|
|
|
|
|
|
int maxCorners;
|
|
|
|
vector<Point2f> corners;
|
|
|
|
vector<Point2f> Refcorners;
|
|
|
|
double qualityLevel;
|
|
|
|
double minDistance;
|
|
|
|
int blockSize;
|
2017-09-22 22:04:43 +08:00
|
|
|
int gradientSize;
|
2015-12-03 21:19:08 +08:00
|
|
|
bool useHarrisDetector;
|
|
|
|
double k;
|
|
|
|
int SrcType;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_GoodFeatureToTTest::CV_GoodFeatureToTTest()
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
maxCorners = rng.uniform( 50, 100 );
|
|
|
|
qualityLevel = 0.01;
|
|
|
|
minDistance = 10;
|
|
|
|
blockSize = 3;
|
2017-09-22 22:04:43 +08:00
|
|
|
gradientSize = 3;
|
2015-12-03 21:19:08 +08:00
|
|
|
useHarrisDetector = false;
|
|
|
|
k = 0.04;
|
|
|
|
mask = Mat();
|
|
|
|
test_case_count = 4;
|
2015-12-08 21:03:12 +08:00
|
|
|
SrcType = 0;
|
2015-12-03 21:19:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int CV_GoodFeatureToTTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
const static int types[] = { CV_32FC1, CV_8UC1 };
|
|
|
|
|
|
|
|
cvtest::TS& tst = *cvtest::TS::ptr();
|
|
|
|
src = imread(string(tst.get_data_path()) + "shared/fruits.png", IMREAD_COLOR);
|
|
|
|
|
|
|
|
CV_Assert(src.data != NULL);
|
|
|
|
|
2018-10-31 23:08:24 +08:00
|
|
|
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
2015-12-03 21:19:08 +08:00
|
|
|
SrcType = types[test_case_idx & 0x1];
|
|
|
|
useHarrisDetector = test_case_idx & 2 ? true : false;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_GoodFeatureToTTest::run_func()
|
|
|
|
{
|
|
|
|
int cn = src_gray.channels();
|
|
|
|
|
|
|
|
CV_Assert( cn == 1 );
|
|
|
|
CV_Assert( ( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) || ( CV_MAT_DEPTH(SrcType) == CV_8UC1 ));
|
|
|
|
|
|
|
|
TEST_MESSAGEL (" maxCorners = ", maxCorners)
|
|
|
|
if (useHarrisDetector)
|
|
|
|
{
|
|
|
|
TEST_MESSAGE (" useHarrisDetector = true\n");
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
TEST_MESSAGE (" useHarrisDetector = false\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
if( CV_MAT_DEPTH(SrcType) == CV_32FC1)
|
|
|
|
{
|
|
|
|
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1);
|
|
|
|
else src_gray32f = src_gray.clone();
|
|
|
|
|
|
|
|
TEST_MESSAGE ("goodFeaturesToTrack 32f\n")
|
|
|
|
|
|
|
|
goodFeaturesToTrack( src_gray32f,
|
|
|
|
corners,
|
|
|
|
maxCorners,
|
|
|
|
qualityLevel,
|
|
|
|
minDistance,
|
|
|
|
Mat(),
|
|
|
|
blockSize,
|
2017-09-22 22:04:43 +08:00
|
|
|
gradientSize,
|
2015-12-03 21:19:08 +08:00
|
|
|
useHarrisDetector,
|
|
|
|
k );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1);
|
|
|
|
else src_gray8U = src_gray.clone();
|
|
|
|
|
|
|
|
TEST_MESSAGE ("goodFeaturesToTrack 8U\n")
|
|
|
|
|
|
|
|
goodFeaturesToTrack( src_gray8U,
|
|
|
|
corners,
|
|
|
|
maxCorners,
|
|
|
|
qualityLevel,
|
|
|
|
minDistance,
|
|
|
|
Mat(),
|
|
|
|
blockSize,
|
2017-09-22 22:04:43 +08:00
|
|
|
gradientSize,
|
2015-12-03 21:19:08 +08:00
|
|
|
useHarrisDetector,
|
|
|
|
k );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx )
|
|
|
|
{
|
|
|
|
static const double eps = 2e-6;
|
|
|
|
|
|
|
|
if( CV_MAT_DEPTH(SrcType) == CV_32FC1 )
|
|
|
|
{
|
|
|
|
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1);
|
|
|
|
else src_gray32f = src_gray.clone();
|
|
|
|
|
|
|
|
TEST_MESSAGE ("test_goodFeaturesToTrack 32f\n")
|
|
|
|
|
|
|
|
test_goodFeaturesToTrack( src_gray32f,
|
|
|
|
Refcorners,
|
|
|
|
maxCorners,
|
|
|
|
qualityLevel,
|
|
|
|
minDistance,
|
|
|
|
Mat(),
|
|
|
|
blockSize,
|
2017-09-22 22:04:43 +08:00
|
|
|
gradientSize,
|
2015-12-03 21:19:08 +08:00
|
|
|
useHarrisDetector,
|
|
|
|
k );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1);
|
|
|
|
else src_gray8U = src_gray.clone();
|
|
|
|
|
|
|
|
TEST_MESSAGE ("test_goodFeaturesToTrack 8U\n")
|
|
|
|
|
|
|
|
test_goodFeaturesToTrack( src_gray8U,
|
|
|
|
Refcorners,
|
|
|
|
maxCorners,
|
|
|
|
qualityLevel,
|
|
|
|
minDistance,
|
|
|
|
Mat(),
|
|
|
|
blockSize,
|
2017-09-22 22:04:43 +08:00
|
|
|
gradientSize,
|
2015-12-03 21:19:08 +08:00
|
|
|
useHarrisDetector,
|
|
|
|
k );
|
|
|
|
}
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
double e = cv::norm(corners, Refcorners); // TODO cvtest
|
2015-12-03 21:19:08 +08:00
|
|
|
|
|
|
|
if (e > eps)
|
|
|
|
{
|
|
|
|
TEST_MESSAGEL ("Number of features: Refcorners = ", Refcorners.size())
|
|
|
|
TEST_MESSAGEL (" TestCorners = ", corners.size())
|
|
|
|
TEST_MESSAGE ("\n")
|
|
|
|
|
|
|
|
ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps);
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
|
|
|
|
|
|
|
for(int i = 0; i < (int)std::min((unsigned int)(corners.size()), (unsigned int)(Refcorners.size())); i++){
|
|
|
|
if ( (corners[i].x != Refcorners[i].x) || (corners[i].y != Refcorners[i].y))
|
|
|
|
printf("i = %i X %2.2f Xref %2.2f Y %2.2f Yref %2.2f\n",i,corners[i].x,Refcorners[i].x,corners[i].y,Refcorners[i].y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
TEST_MESSAGEL (" Refcorners = ", Refcorners.size())
|
|
|
|
TEST_MESSAGEL (" TestCorners = ", corners.size())
|
|
|
|
TEST_MESSAGE ("\n")
|
|
|
|
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
return BaseTest::validate_test_results(test_case_idx);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_GoodFeatureToT, accuracy) { CV_GoodFeatureToTTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
}} // namespace
|
2015-12-03 21:19:08 +08:00
|
|
|
/* End of file. */
|